1
|
Touati SA, Buffin E, Cladière D, Hached K, Rachez C, van Deursen JM, Wassmann K. Mouse oocytes depend on BubR1 for proper chromosome segregation but not for prophase I arrest. Nat Commun 2015; 6:6946. [PMID: 25897860 DOI: 10.1038/ncomms7946] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 03/16/2015] [Indexed: 12/19/2022] Open
Abstract
Mammalian female meiosis is error prone, with rates of meiotic chromosome missegregations strongly increasing towards the end of the reproductive lifespan. A strong reduction of BubR1 has been observed in oocytes of women approaching menopause and in ovaries of aged mice, which led to the hypothesis that a gradual decline of BubR1 contributes to age-related aneuploidization. Here we employ a conditional knockout approach in mouse oocytes to dissect the meiotic roles of BubR1. We show that BubR1 is required for diverse meiotic functions, including persistent spindle assembly checkpoint activity, timing of meiosis I and the establishment of robust kinetochore-microtubule attachments in a meiosis-specific manner, but not prophase I arrest. These data reveal that BubR1 plays a multifaceted role in chromosome segregation during the first meiotic division and suggest that age-related decline of BubR1 is a key determinant of the formation of aneuploid oocytes as women approach menopause.
Collapse
Affiliation(s)
- Sandra A Touati
- Sorbonne Universités, UPMC Université Paris 06, Institut de Biologie Paris Seine (IBPS), UMR7622, 75005 Paris, France.,CNRS, IBPS, UMR7622 Developmental Biology Lab, 75005 Paris, France
| | - Eulalie Buffin
- Sorbonne Universités, UPMC Université Paris 06, Institut de Biologie Paris Seine (IBPS), UMR7622, 75005 Paris, France.,CNRS, IBPS, UMR7622 Developmental Biology Lab, 75005 Paris, France
| | - Damien Cladière
- Sorbonne Universités, UPMC Université Paris 06, Institut de Biologie Paris Seine (IBPS), UMR7622, 75005 Paris, France.,CNRS, IBPS, UMR7622 Developmental Biology Lab, 75005 Paris, France
| | - Khaled Hached
- Sorbonne Universités, UPMC Université Paris 06, Institut de Biologie Paris Seine (IBPS), UMR7622, 75005 Paris, France.,CNRS, IBPS, UMR7622 Developmental Biology Lab, 75005 Paris, France
| | - Christophe Rachez
- Departement de Biologie du Développement et Cellules Souches, CNRS URA2578, Unité de Régulation Epigénétique, Institut Pasteur, 75015 Paris, France
| | - Jan M van Deursen
- Department of Pediatric and Adolescent Medicine and Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | - Katja Wassmann
- Sorbonne Universités, UPMC Université Paris 06, Institut de Biologie Paris Seine (IBPS), UMR7622, 75005 Paris, France.,CNRS, IBPS, UMR7622 Developmental Biology Lab, 75005 Paris, France
| |
Collapse
|
2
|
Oh JS, Susor A, Schindler K, Schultz RM, Conti M. Cdc25A activity is required for the metaphase II arrest in mouse oocytes. J Cell Sci 2013; 126:1081-5. [PMID: 23345398 DOI: 10.1242/jcs.115592] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Mammalian oocytes are arrested in metaphase of second meiosis (MII) until fertilization. This arrest is enforced by the cytostatic factor (CSF), which maintains the M-phase promoting factor (MPF) in a highly active state. Although the continuous synthesis and degradation of cyclin B to maintain the CSF-mediated MII arrest is well established, it is unknown whether cyclin-dependent kinase 1 (Cdk1) phosphorylations are involved in this arrest in mouse oocytes. Here, we show that a dynamic equilibrium of Cdk1 phosphorylation is required to maintain MII arrest. When the Cdc25A phosphatase is downregulated, mouse oocytes are released from MII arrest and MPF becomes inactivated. This inactivation occurs in the absence of cyclin B degradation and is dependent on Wee1B-mediated phosphorylation of Cdk1. Thus, our data demonstrate that Cdk1 activity is maintained during MII arrest not only by cyclin turnover but also by steady state phosphorylation.
Collapse
Affiliation(s)
- Jeong Su Oh
- Center for Reproductive Sciences and The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Obstetrics, Gynecology and Reproductive Sciences at the University of California, San Francisco, CA 94143-0556, USA
| | | | | | | | | |
Collapse
|
3
|
Althoff F, Karess RE, Lehner CF. Spindle checkpoint-independent inhibition of mitotic chromosome segregation by Drosophila Mps1. Mol Biol Cell 2012; 23:2275-91. [PMID: 22553353 PMCID: PMC3374747 DOI: 10.1091/mbc.e12-02-0117] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 04/17/2012] [Accepted: 04/24/2012] [Indexed: 01/07/2023] Open
Abstract
Monopolar spindle 1 (Mps1) is essential for the spindle assembly checkpoint (SAC), which prevents anaphase onset in the presence of misaligned chromosomes. Moreover, Mps1 kinase contributes in a SAC-independent manner to the correction of erroneous initial attachments of chromosomes to the spindle. Our characterization of the Drosophila homologue reveals yet another SAC-independent role. As in yeast, modest overexpression of Drosophila Mps1 is sufficient to delay progression through mitosis during metaphase, even though chromosome congression and metaphase alignment do not appear to be affected. This delay in metaphase depends on the SAC component Mad2. Although Mps1 overexpression in mad2 mutants no longer causes a metaphase delay, it perturbs anaphase. Sister kinetochores barely move apart toward spindle poles. However, kinetochore movements can be restored experimentally by separase-independent resolution of sister chromatid cohesion. We propose therefore that Mps1 inhibits sister chromatid separation in a SAC-independent manner. Moreover, we report unexpected results concerning the requirement of Mps1 dimerization and kinase activity for its kinetochore localization in Drosophila. These findings further expand Mps1's significance for faithful mitotic chromosome segregation and emphasize the importance of its careful regulation.
Collapse
Affiliation(s)
- Friederike Althoff
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Roger E. Karess
- Centre National de la Recherche Scientifique, Institut Jacques Monod, Unité Mixte de Recherche 7592, Université Paris Diderot, Paris Cedex 13, France
| | - Christian F. Lehner
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
4
|
Abstract
MPS1 protein kinases are found widely, but not ubiquitously, in eukaryotes. This family of potentially dual-specific protein kinases is among several that regulate a number of steps of mitosis. The most widely conserved MPS1 kinase functions involve activities at the kinetochore in both the chromosome attachment and the spindle checkpoint. MPS1 kinases also function at centrosomes. Beyond mitosis, MPS1 kinases have been implicated in development, cytokinesis, and several different signaling pathways. Family members are identified by virtue of a conserved C-terminal kinase domain, though the N-terminal domain is quite divergent. The kinase domain of the human enzyme has been crystallized, revealing an unusual ATP-binding pocket. The activity, level, and subcellular localization of Mps1 family members are tightly regulated during cell-cycle progression. The mitotic functions of Mps1 kinases and their overexpression in some tumors have prompted the identification of Mps1 inhibitors and their active development as anticancer drugs.
Collapse
Affiliation(s)
- Xuedong Liu
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, USA.
| | | |
Collapse
|
5
|
Sun SC, Kim NH. Spindle assembly checkpoint and its regulators in meiosis. Hum Reprod Update 2011; 18:60-72. [DOI: 10.1093/humupd/dmr044] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
6
|
Kubiak JZ, El Dika M. Canonical and Alternative Pathways in Cyclin-Dependent Kinase 1/Cyclin B Inactivation upon M-Phase Exit in Xenopus laevis Cell-Free Extracts. Enzyme Res 2011; 2011:523420. [PMID: 21755042 PMCID: PMC3132491 DOI: 10.4061/2011/523420] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 04/01/2011] [Accepted: 04/18/2011] [Indexed: 11/20/2022] Open
Abstract
Cyclin-Dependent Kinase 1 (CDK1) is the major M-phase kinase known also as the M-phase Promoting Factor or MPF. Studies performed during the last decade have shown many details of how CDK1 is regulated and also how it regulates the cell cycle progression. Xenopus laevis cell-free extracts were widely used to elucidate the details and to obtain a global view of the role of CDK1 in M-phase control. CDK1 inactivation upon M-phase exit is a primordial process leading to the M-phase/interphase transition during the cell cycle. Here we discuss two closely related aspects of CDK1 regulation in Xenopus laevis cell-free extracts: firstly, how CDK1 becomes inactivated and secondly, how other actors, like kinases and phosphatases network and/or specific inhibitors, cooperate with CDK1 inactivation to assure timely exit from the M-phase.
Collapse
Affiliation(s)
- Jacek Z Kubiak
- Cell Cycle Group, Institute of Genetics & Development, University of Rennes 1, CNRS-UMR 6061, Faculty of Medicine, 2 Avenue Prof. Léon Bernard, CS 34317, 35043 Rennes Cedex, France
| | | |
Collapse
|
7
|
Akli S, Van Pelt CS, Bui T, Meijer L, Keyomarsi K. Cdk2 is required for breast cancer mediated by the low-molecular-weight isoform of cyclin E. Cancer Res 2011; 71:3377-86. [PMID: 21385896 DOI: 10.1158/0008-5472.can-10-4086] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cyclin E activates Cdk2, controls centrosome duplication, and regulates histone gene transcription. Cyclin E is deregulated in cancer and appears as low-molecular-weight (LMW) isoforms that correlate strongly with decreased survival in breast cancer patients. Transgenic mice overexpressing LMW-cyclin E have increased incidence of mammary tumors and distant metastasis when compared with mice that had full-length cyclin E. To specifically test the requirement for Cdk2 in LMW-cyclin E-mediated mammary tumorigenesis, we generated transgenic mice, which expressed LMW-cyclin E in a Cdk2-deficient background. We found that mammary gland development proceeds relatively normally in these animals, indicating that Cdk2 kinase activity is largely dispensable for this process. However, Cdk2-deficient mice were completely resistant to LMW-cyclin E-mediated mammary tumors. Cdk2 wild-type or heterozygous mice succumbed to mammary tumors with mean latencies of 16 and 19.5 months, respectively, but Cdk2 nullizygous littermates did not display tumors through 24 months. Similarly, continuous administration of two different Cdk inhibitors significantly delayed LMW-cyclin E-induced mammary tumor progression. Triple transgenic mice generated in a p53 heterozygous background also displayed no tumors. Finally, we found that Cdk2 silencing induced cell death in LMW-overexpressing breast cancer cell lines, but not in cell lines lacking LMW expression. Our findings establish a requirement for Cdk2 in LMW-cyclin E-mediated mammary tumorigenesis, arguing that human breast tumors overexpressing LMW-cyclin E are prime candidates for anti-Cdk2 therapy.
Collapse
Affiliation(s)
- Said Akli
- Department of Experimental Radiation Oncology, University of Texas, MD Anderson Cancer Center, TX, USA
| | | | | | | | | |
Collapse
|
8
|
Dumollard R, Levasseur M, Hebras C, Huitorel P, Carroll M, Chambon JP, McDougall A. Mos limits the number of meiotic divisions in urochordate eggs. Development 2011; 138:885-95. [DOI: 10.1242/dev.057133] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mos kinase is a universal mediator of oocyte meiotic maturation and is produced during oogenesis and destroyed after fertilization. The hallmark of maternal meiosis is that two successive M phases (meiosis I and II) drive two rounds of asymmetric cell division (ACD). However, how the egg limits the number of meioses to just two, thereby preventing gross aneuploidy, is poorly characterized. Here, in urochordate eggs, we show that loss of Mos/MAPK activity is necessary to prevent entry into meiosis III. Remarkably, maintaining the Mos/MAPK pathway active after fertilization at near physiological levels induces additional rounds of meiotic M phase (meiosis III, IV and V). During these additional rounds of meiosis, the spindle is positioned asymmetrically resulting in further rounds of ACD. In addition, inhibiting meiotic exit with Mos prevents pronuclear formation, cyclin A accumulation and maintains sperm-triggered Ca2+ oscillations, all of which are hallmarks of the meiotic cell cycle in ascidians. It will be interesting to determine whether Mos availability in mammals can also control the number of meioses as it does in the urochordates. Our results demonstrate the power of urochordate eggs as a model to dissect the egg-to-embryo transition.
Collapse
Affiliation(s)
- Rémi Dumollard
- Developmental Biology Unit UMR 7009, UMPC Univ. Paris 06 and Centre National de la Recherche (CNRS), Observatoire Océanologique, 06230 Villefranche-sur-Mer, France
| | - Mark Levasseur
- Institute of Cell and Molecular Bioscences, The Medical School, Framlington Place, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, UK
| | - Céline Hebras
- Developmental Biology Unit UMR 7009, UMPC Univ. Paris 06 and Centre National de la Recherche (CNRS), Observatoire Océanologique, 06230 Villefranche-sur-Mer, France
| | - Philippe Huitorel
- Developmental Biology Unit UMR 7009, UMPC Univ. Paris 06 and Centre National de la Recherche (CNRS), Observatoire Océanologique, 06230 Villefranche-sur-Mer, France
| | - Michael Carroll
- Developmental Biology Unit UMR 7009, UMPC Univ. Paris 06 and Centre National de la Recherche (CNRS), Observatoire Océanologique, 06230 Villefranche-sur-Mer, France
| | - Jean-Philippe Chambon
- Developmental Biology Unit UMR 7009, UMPC Univ. Paris 06 and Centre National de la Recherche (CNRS), Observatoire Océanologique, 06230 Villefranche-sur-Mer, France
| | - Alex McDougall
- Developmental Biology Unit UMR 7009, UMPC Univ. Paris 06 and Centre National de la Recherche (CNRS), Observatoire Océanologique, 06230 Villefranche-sur-Mer, France
| |
Collapse
|
9
|
Cunha-Ferreira I, Bento I, Bettencourt-Dias M. From zero to many: control of centriole number in development and disease. Traffic 2010; 10:482-98. [PMID: 19416494 DOI: 10.1111/j.1600-0854.2009.00905.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Centrioles are essential for the formation of microtubule-derived structures, including cilia, flagella and centrosomes. These structures are involved in a variety of functions, from cell motility to division. In most dividing animal cells, centriole formation is coupled to the chromosome cycle. However, this is not the case in certain specialized divisions, such as meiosis, and in some differentiating cells. For example, oocytes loose their centrioles upon differentiation, whereas multiciliated epithelial cells make several of those structures after they exit the cell cycle. Aberrations of centriole number are seen in many cancer cells. Recent studies began to shed light on the molecular control of centriole number, its variations in development, and how centriole number changes in human disease. Here we review the recent developments in this field.
Collapse
Affiliation(s)
- Inês Cunha-Ferreira
- Cell Cycle Regulation Lab, Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6P-2780-156 Oeiras, Portugal
| | | | | |
Collapse
|
10
|
Wu JQ, Kornbluth S. Across the meiotic divide - CSF activity in the post-Emi2/XErp1 era. J Cell Sci 2009; 121:3509-14. [PMID: 18946022 DOI: 10.1242/jcs.036855] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Vertebrate eggs are arrested at the metaphase stage of meiosis II. Only upon fertilization will the metaphase-II-arrested eggs exit meiosis II and enter interphase. In 1971, Masui and Markert injected egg extracts into a two-cell-stage embryo and found that the injected blastomere arrested at the next mitosis. On the basis of these observations, they proposed the existence of an activity present in the eggs that is responsible for meiosis-II arrest and can induce mitotic arrest, and named this activity cytostatic factor (CSF). Although the existence of CSF was hypothesized more than 35 years ago, its precise identity remained unclear until recently. The discovery of the Mos-MAPK pathway and characterization of the anaphase-promoting complex/cyclosome (APC/C) as a central regulator of M-phase exit provided the framework for a molecular understanding of CSF. These pathways have now been linked by the discovery and characterization of the protein Emi2, a meiotic APC/C inhibitor, the activity and stability of which are controlled by the Mos-MAPK pathway. Continued investigation into the mechanism of action and mode of regulation of Emi2 promises to shed light not only on CSF function, but also on the general principles of APC/C regulation and the control of protein function by MAPK pathways.
Collapse
Affiliation(s)
- Judy Qiju Wu
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
11
|
Abstract
The anaphase-promoting complex/cyclosome (APC/C) is a multisubunit E3 ubiquitin ligase that triggers the degradation of multiple substrates during mitosis. Cdc20/Fizzy and Cdh1/Fizzy-related activate the APC/C and confer substrate specificity through complex interactions with both the core APC/C and substrate proteins. The regulation of Cdc20 and Cdh1 is critical for proper APC/C activity and occurs in multiple ways: targeted protein degradation, phosphorylation, and direct binding of inhibitory proteins. During the specialized divisions of meiosis, the activity of the APC/C must be modified to achieve proper chromosome segregation. Recent studies show that one way in which APC/C activity is modified is through the use of meiosis-specific APC/C activators. Furthermore, regulation of the APC/C during meiosis is carried out by both mitotic regulators of the APC/C as well as meiosis-specific regulators. Here, we review the regulation of APC/C activators during mitosis and the role and regulation of the APC/C during female meiosis.
Collapse
Affiliation(s)
- Jillian A Pesin
- Whitehead Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | | |
Collapse
|
12
|
Involvement of Mos-MEK-MAPK pathway in cytostatic factor (CSF) arrest in eggs of the parthenogenetic insect, Athalia rosae. Mech Dev 2008; 125:996-1008. [PMID: 18793721 DOI: 10.1016/j.mod.2008.08.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Revised: 07/17/2008] [Accepted: 08/26/2008] [Indexed: 01/23/2023]
Abstract
Extensive survey of meiotic metaphase II arrest during oocyte maturation in vertebrates revealed that the mitogen-activated protein kinase (MAPK) pathway regulated by the c-mos proto-oncogene product, Mos, has an essential role in cytostatic activity, termed cytostatic factor (CSF). In contrast, little is known in invertebrates in which meiotic arrest occurs in most cases at metaphase I (MI arrest). A parthenogenetic insect, the sawfly Athalia rosae, in which artificial egg activation is practicable, has advantages to investigate the mechanisms of MI arrest. Both the MAPK/extracellular signal-regulated protein kinase kinase (MEK) and MAPK were phosphorylated and maintained active in MI-arrested sawfly eggs, whereas they were dephosphorylated soon after egg activation. Treatment of MI-arrested eggs with U0126, an inhibitor of MEK, resulted in dephosphorylation of MAPK and MI arrest was resumed. The sawfly c-mos gene orthologue encoding a serine/threonine kinase was cloned and analyzed. It was expressed in nurse cells in the ovaries. To examine CSF activity of the sawfly Mos, synthesized glutathione S-transferase (GST)-fusion sawfly Mos protein was injected into MI-resumed eggs in which MEK and MAPK were dephosphorylated. Both MEK and MAPK were phosphorylated again upon injection. In these GST-fusion sawfly Mos-injected eggs subsequent mitotic (syncytial) divisions were blocked and embryonic development was ceased. These results demonstrated that the MEK-MAPK pathway was involved in maintaining CSF arrest in sawfly eggs and Mos functioned as its upstream regulatory molecule.
Collapse
|
13
|
Regulation of the Aurora B chromosome passenger protein complex during oocyte maturation in Xenopus laevis. Mol Cell Biol 2008; 28:4196-203. [PMID: 18378691 DOI: 10.1128/mcb.00169-08] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The dynamics of the Aurora B protein kinase during Xenopus oocyte meiotic maturation were examined. Resting G2 oocytes express inactive Aurora B that is not associated with other subunits of the chromosome passenger complex (CPC). Activity increases near the time of germinal vesicle breakdown in progesterone-treated oocytes, and this increase is correlated with the synthesis of inner centromere protein (INCENP) and survivin, components of the CPC. Ablation of INCENP synthesis led to the failure of progesterone treatment to activate Aurora B, but biochemical progression through the meiosis I-to-II transition and arrest at metaphase II were not affected. At fertilization, Aurora B was deactivated in concert with the degradation of INCENP, and the levels of Aurora B kinase activity and INCENP oscillated in subsequent embryonic cell cycles. Prevention of the decrease in Aurora B activity at fertilization by expression of ectopic wild-type INCENP, but not kinase-dead Aurora B INCENP, blocked calcium-induced exit from metaphase arrest in egg extracts.
Collapse
|
14
|
Kasbek C, Yang CH, Yusof AM, Chapman HM, Winey M, Fisk HA. Preventing the degradation of mps1 at centrosomes is sufficient to cause centrosome reduplication in human cells. Mol Biol Cell 2007; 18:4457-69. [PMID: 17804818 PMCID: PMC2043537 DOI: 10.1091/mbc.e07-03-0283] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Supernumerary centrosomes promote the assembly of abnormal mitotic spindles in many human tumors. In human cells, overexpression of the cyclin-dependent kinase (Cdk)2 partner cyclin A during a prolonged S phase produces extra centrosomes, called centrosome reduplication. Cdk2 activity protects the Mps1 protein kinase from proteasome-mediated degradation, and we demonstrate here that Mps1 mediates cyclin A-dependent centrosome reduplication. Overexpression of cyclin A or a brief proteasome inhibition increases the centrosomal levels of Mps1, whereas depletion of Cdk2 leads to the proteasome-dependent loss of Mps1 from centrosomes only. When a Cdk2 phosphorylation site within Mps1 (T468) is mutated to alanine, Mps1 cannot accumulate at centrosomes or participate in centrosome duplication. In contrast, phosphomimetic mutations at T468 or deletion of the region surrounding T468 prevent the proteasome-dependent removal of Mps1 from centrosomes in the absence of Cdk2 activity. Moreover, cyclin A-dependent centrosome reduplication requires Mps1, and these stabilizing Mps1 mutations cause centrosome reduplication, bypassing cyclin A. Together, our data demonstrate that the region surrounding T468 contains a motif that regulates the accumulation of Mps1 at centrosomes. We suggest that phosphorylation of T468 attenuates the degradation of Mps1 at centrosomes and that preventing this degradation is necessary and sufficient to cause centrosome reduplication in human cells.
Collapse
Affiliation(s)
- Christopher Kasbek
- *Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210-1292; and
| | - Ching-Hui Yang
- *Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210-1292; and
| | - Adlina Mohd Yusof
- *Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210-1292; and
| | - Heather M. Chapman
- *Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210-1292; and
| | - Mark Winey
- Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309
| | - Harold A. Fisk
- *Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210-1292; and
| |
Collapse
|
15
|
Kanai M, Ma Z, Izumi H, Kim SH, Mattison CP, Winey M, Fukasawa K. Physical and functional interaction between mortalin and Mps1 kinase. Genes Cells 2007; 12:797-810. [PMID: 17573779 DOI: 10.1111/j.1365-2443.2007.01091.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mortalin is a member of Hsp70 chaperoning protein family involved in various cellular functions. Through the search of the kinases that mortalin physically interact with, we identified Mps1 as such a kinase. Mps1 kinase has been implicated in the regulation of centrosome duplication and mitotic checkpoint response. Mortalin binds to Mps1, and is phosphorylated by Mps1 on Thr62 and Ser65. The phosphorylated mortalin then super-activates Mps1 in a feedback manner. Mortalin has been previously shown to localize to centrosomes, and to be involved in the regulation of centrosome duplication. We found that centrosomal localization of mortalin depends on the presence of Mps1. Moreover, Mps1-associated acceleration of centrosome duplication depends on the presence of mortalin and super-activation by the Thr62/Ser65 phosphorylated mortalin.
Collapse
Affiliation(s)
- Masayuki Kanai
- Department of Cell Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Liu J, Grimison B, Maller JL. New insight into metaphase arrest by cytostatic factor: from establishment to release. Oncogene 2007; 26:1286-9. [PMID: 17322913 DOI: 10.1038/sj.onc.1210203] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Since the discovery of cytostatic factor (CSF) 35 years ago, significant progress has been made in identifying molecular components of CSF activity and the mechanism of CSF-induced metaphase II arrest (CSF arrest). This short review focuses on recent discoveries in the field and discusses the implication of these results for a general picture of CSF establishment and release. One recent focus is on the cyclin E/Cdk2 pathway. The discovery of a downstream target for cyclin E/Cdk2, the spindle checkpoint protein Mps1, provides insight into how cyclin E/Cdk2 contributes to CSF arrest. The anaphase promoting complex/cyclosome (APC/C) inhibitor Emi2 is another recent focus of work in the field. It is now clear that not only is degradation of Emi2 critical for CSF release, but its abrupt accumulation during meiosis II (M II) is also required for the establishment of CSF arrest. Thus, by discrete pathways of APC/C inhibition operative during CSF arrest, the stability of cell cycle arrest in the egg appears to be reinforced by multiple mechanisms.
Collapse
Affiliation(s)
- J Liu
- Howard Hughes Medical Institute and Department of Pharmacology, University of Colorado School of Medicine, 12801 E. 17th Avenue, Aurora, CO 80045, USA
| | | | | |
Collapse
|
17
|
Madgwick S, Jones KT. How eggs arrest at metaphase II: MPF stabilisation plus APC/C inhibition equals Cytostatic Factor. Cell Div 2007; 2:4. [PMID: 17257429 PMCID: PMC1794241 DOI: 10.1186/1747-1028-2-4] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Accepted: 01/26/2007] [Indexed: 11/10/2022] Open
Abstract
Oocytes from higher chordates, including man and nearly all mammals, arrest at metaphase of the second meiotic division before fertilization. This arrest is due to an activity that has been termed 'Cytostatic Factor'. Cytostatic Factor maintains arrest through preventing loss in Maturation-Promoting Factor (MPF; CDK1/cyclin B). Physiologically, Cytostatic Factor – induced metaphase arrest is only broken by a Ca2+ rise initiated by the fertilizing sperm and results in degradation of cyclin B, the regulatory subunit of MPF through the Anaphase-Promoting Complex/Cyclosome (APC/C). Arrest at metaphase II may therefore be viewed as being maintained by inhibition of the APC/C, and Cytostatic Factor as being one or more pathways, one of which inhibits the APC/C, consorting in the preservation of MPF activity. Many studies over several years have implicated the c-Mos/MEK/MAPK pathway in the metaphase arrest of the two most widely studied vertebrates, frog and mouse. Murine downstream components of this cascade are not known but in frog involve members of the spindle assembly checkpoint, which act to inhibit the APC/C. Interesting these downstream components appear not to be involved in the arrest of mouse eggs, suggesting a lack of conservation with respect to c-Mos targets. However, the recent discovery of Emi2 as an egg specific APC/C inhibitor whose degradation is Ca2+ dependent has greatly increased our understanding of MetII arrest. Emi2 is involved in both the establishment and maintenance of metaphase II arrest in frog and mouse suggesting a conservation of metaphase II arrest. Its identity as the physiologically relevant APC/C inhibitor involved in Cytostatic Factor arrest prompted us to re-evaluate the role of the c-Mos pathway in metaphase II arrest. This review presents a model of Cytostatic Factor arrest, which is primarily induced by Emi2 mediated APC/C inhibition but which also requires the c-Mos pathway to set MPF levels within physiological limits, not too high to induce an arrest that cannot be broken, or too low to induce parthenogenesis.
Collapse
Affiliation(s)
- Suzanne Madgwick
- Institute for Cell and Molecular Biosciences, The Medical School, University of Newcastle, Newcastle NE2 4HH, England, UK
| | - Keith T Jones
- Institute for Cell and Molecular Biosciences, The Medical School, University of Newcastle, Newcastle NE2 4HH, England, UK
| |
Collapse
|
18
|
Liu J, Grimison B, Lewellyn AL, Maller JL. The anaphase-promoting complex/cyclosome inhibitor Emi2 is essential for meiotic but not mitotic cell cycles. J Biol Chem 2006; 281:34736-41. [PMID: 16982610 DOI: 10.1074/jbc.m606607200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vertebrate oocytes awaiting fertilization are arrested at metaphase of meiosis II by cytostatic factor (CSF). This arrest is due to inhibition of the anaphase-promoting complex/cyclosome, in part by a newly identified protein, Emi2 (xErp1). Emi2 is required for maintenance of CSF arrest in egg extracts, but its function in CSF establishment in oocytes and the normal embryonic cell cycle is unknown. Here we show that during oocyte maturation, Emi2 appears only after metaphase I, and its level peaks at CSF arrest (metaphase II). In M phase, Emi2 undergoes a phosphorylation-dependent electrophoretic shift. Microinjection of antisense oligonucleotides against Emi2 into stage VI oocytes blocks progression through meiosis II and the establishment of CSF arrest. Recombinant Emi2 rescues CSF arrest in these oocytes and also causes CSF arrest in egg extracts and in blastomeres of two-cell embryos. Fertilization triggers rapid, complete degradation of Emi2, but it is resynthesized in the first embryonic cell cycle to reach levels 5-fold lower than during CSF arrest. However, depletion of the protein from cycling egg extracts does not prevent mitotic cell cycle progression. Thus, Emi2 plays an essential role in meiotic but not mitotic cell cycles.
Collapse
Affiliation(s)
- Junjun Liu
- Howard Hughes Medical Institute (HHMI) and Department of Pharmacology, University of Colorado School of Medicine, Denver, Colorado 80262, USA
| | | | | | | |
Collapse
|