1
|
Rogerson-Wood L, Goldsbury CS, Sawatari A, Leamey CA. An early enriched experience drives targeted microglial engulfment of miswired neural circuitry during a restricted postnatal period. Glia 2024; 72:1217-1235. [PMID: 38511347 DOI: 10.1002/glia.24522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/17/2024] [Accepted: 02/27/2024] [Indexed: 03/22/2024]
Abstract
Brain function is critically dependent on correct circuit assembly. Microglia are well-known for their important roles in immunological defense and neural plasticity, but whether they can also mediate experience-induced correction of miswired circuitry is unclear. Ten-m3 knockout (KO) mice display a pronounced and stereotyped visuotopic mismapping of ipsilateral retinal inputs in their visual thalamus, providing a useful model to probe circuit correction mechanisms. Environmental enrichment (EE) commenced around birth, but not later in life, can drive a partial correction of the most mismapped retinal inputs in Ten-m3 KO mice. Here, we assess whether enrichment unlocks the capacity for microglia to selectively engulf and remove miswired circuitry, and the timing of this effect. Expression of the microglial-associated lysosomal protein CD68 showed a clear enrichment-driven, spatially restricted change which had not commenced at postnatal day (P)18, was evident at P21, more robust at P25, and had ceased by P30. This was observed specifically at the corrective pruning site and was absent at a control site. An engulfment assay at the corrective pruning site in P25 mice showed EE-driven microglial-uptake of the mismapped axon terminals. This was temporally and spatially specific, as no enrichment-driven microglial engulfment was seen in P18 KO mice, nor the control locus. The timecourse of the EE-driven corrective pruning as determined anatomically, aligned with this pattern of microglia reactivity and engulfment. Collectively, these findings show experience can drive targeted microglial engulfment of miswired neural circuitry during a restricted postnatal window. This may have important therapeutic implications for neurodevelopmental conditions involving aberrant neural connectivity.
Collapse
Affiliation(s)
- Lara Rogerson-Wood
- School of Medical Sciences (Neuroscience theme), Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Claire S Goldsbury
- School of Medical Sciences (Neuroscience theme), Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Atomu Sawatari
- School of Medical Sciences (Neuroscience theme), Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Catherine A Leamey
- School of Medical Sciences (Neuroscience theme), Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Pintori N, Piva A, Mottarlini F, Díaz FC, Maggi C, Caffino L, Fumagalli F, Chiamulera C. Brief exposure to enriched environment rapidly shapes the glutamate synapses in the rat brain: A metaplastic fingerprint. Eur J Neurosci 2024; 59:982-995. [PMID: 38378276 DOI: 10.1111/ejn.16279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/22/2023] [Accepted: 01/27/2024] [Indexed: 02/22/2024]
Abstract
Environmental enrichment (EE) has been shown to produce beneficial effects in addiction disorders; however, due to its configurational complexity, the underlying mechanisms are not yet fully elucidated. Recent evidence suggests that EE, acting as a metaplastic agent, may affect glutamatergic mechanisms underlying appetitive memory and, in turn, modulate reward-seeking behaviours: here, we have investigated such a possibility following a brief EE exposure. Adult male Sprague-Dawley rats were exposed to EE for 22 h and the expression of critical elements of the glutamate synapse was measured 2 h after the end of EE in the medial prefrontal cortex (mPFC), nucleus accumbens (NAc) and hippocampus (Hipp) brain areas, which are critical for reward and memory. We focused our investigation on the expression of NMDA and AMPA receptor subunits, their scaffolding proteins SAP102 and SAP97, vesicular and membrane glutamate transporters vGluT1 and GLT-1, and critical structural components such as proteins involved in morphology and function of glutamatergic synapses, PSD95 and Arc/Arg3.1. Our findings demonstrate that a brief EE exposure induces metaplastic changes in glutamatergic mPFC, NAc and Hipp. Such changes are area-specific and involve postsynaptic NMDA/AMPA receptor subunit composition, as well as changes in the expression of their main scaffolding proteins, thus influencing the retention of such receptors at synaptic sites. Our data indicate that brief EE exposure is sufficient to dynamically modulate the glutamatergic synapses in mPFC-NAc-Hipp circuits, which may modulate rewarding and memory processes.
Collapse
Affiliation(s)
- Nicholas Pintori
- Section of Pharmacology, Department of Diagnostic & Public Health, University of Verona, Verona, Italy
- Current Affiliation: Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Cagliari, Italy
| | - Alessandro Piva
- Section of Pharmacology, Department of Diagnostic & Public Health, University of Verona, Verona, Italy
| | - Francesca Mottarlini
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', University of Milan, Milan, Italy
| | - Fernando Castillo Díaz
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', University of Milan, Milan, Italy
| | - Coralie Maggi
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', University of Milan, Milan, Italy
| | - Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', University of Milan, Milan, Italy
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', University of Milan, Milan, Italy
| | - Cristiano Chiamulera
- Section of Pharmacology, Department of Diagnostic & Public Health, University of Verona, Verona, Italy
| |
Collapse
|
3
|
Riyahi J, Abdoli B, Gelfo F, Petrosini L, Khatami L, Meftahi GH, Haghparast A. Multigenerational effects of paternal spatial training are lasting in the F1 and F2 male offspring. Behav Pharmacol 2022; 33:342-354. [PMID: 35502983 DOI: 10.1097/fbp.0000000000000682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Recent studies on intergenerational transmission of learning and memory performances demonstrated that parental spatial training before fertilization could facilitate learning and memory in the offspring, but many questions remain unclarified. Essential issues regarding whether and how long the effects of parental training in a task can last in several generations, and whether learning a task repeated in the successive generations can enhance a load of multigenerational effects. In the present study, the spatial performances of F1 and F2 generations of male offspring of fathers or grandfathers spatially trained in the Morris Water Maze were evaluated and compared with the performance of a control sample matched for age and sex. Further, to investigate the memory process in F1 and F2 male offspring, brain-derived neurotrophic factor (BDNF), p-ERK1/2 and acetylated histone 3 lysine 14 (H3K14) expression levels in the hippocampus were analyzed. The findings showed that paternal training reduced escape latencies and increased time spent in the target quadrant by F1 and F2 male offspring. Besides, paternal spatial training repeated in two generations did not enhance the beneficial effects on offspring's spatial performances. These findings were supported by neurobiologic data showing that paternal training increased BDNF and p-ERK1/2 in the hippocampus of F1 and F2 male offspring. Furthermore, the hippocampal level of acetylated H3K14 increased in the offspring of spatially trained fathers, reinforcing the hypothesis that the augmented histone acetylation might play an essential role in the inheritance of spatial competence.
Collapse
Affiliation(s)
- Javad Riyahi
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences
| | - Behrouz Abdoli
- Department of Cognitive and Behavioral Science and Technology in Sport, Faculty of Sport Sciences and Health, Shahid Beheshti University, Tehran, Iran
| | - Francesca Gelfo
- IRCCS Santa Lucia Foundation
- Department of Human Sciences, Guglielmo Marconi University, Rome, Italy
| | | | - Leila Khatami
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical sciences, Tehran, Iran
| |
Collapse
|
4
|
Pintori N, Piva A, Guardiani V, Decimo I, Chiamulera C. Brief Environmental Enrichment exposure enhances contextual-induced sucrose-seeking with and without memory reactivation in rats. Behav Brain Res 2022; 416:113556. [PMID: 34474039 DOI: 10.1016/j.bbr.2021.113556] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/21/2021] [Accepted: 08/23/2021] [Indexed: 12/16/2022]
Abstract
Chronic Environmental Enrichment (EE) has been shown to prevent the relapse to addictive behaviours, such as drug-taking and -seeking. Recently, acute EE was shown to reduce cue-induced sucrose-seeking, but its effects on contextual (Cx)-induced sucrose-seeking is still unknown. Here we report the effects of brief EE exposure on Cx-induced sucrose-seeking with and without prior Cx-memory reactivation. Adult male Sprague-Dawley rats were trained to sucrose self-administration associated to a specific conditioning Cx (CxA), followed by a 7-day extinction in a different Cx (CxB). Afterwards, rats were exposed for 22 h to EE, and 1 h later to either i) Cx-induced sucrose-seeking (1 h, renewal without Cx-memory reactivation), ii) or two different Cx-memory reactivations: short (2-min) and long (15-min) CxA-retrieval session (Cx-Ret). In Cx-Ret experiments, CxA-induced sucrose-seeking test (1 h) was done after a subsequent 3-day extinction phase. The assessment of molecular markers of memory reactivation/reconsolidation, Zif-268 and rpS6P, was performed 2 h after Cx-Ret. Brief EE exposure enhanced Cx-induced sucrose-seeking without and with short but not long Cx-retrieval. Moreover, EE impaired discriminative responding at test prior to long, whereas improved it with or without short Cx-retrieval. Different changes in Zif-268 and rpS6P expression induced by short vs. long Cx-Ret were correlated to behavioural data, suggesting the occurrence of different memory processes affected by EE. Our data show that brief EE exposure may differently affect subsequent appetitive relapse depending on the modality of re-exposure to conditioned context. This finding suggests caution and further studies to understand the proper conditions for the use of EE against appetitive and addiction disorders.
Collapse
Affiliation(s)
- N Pintori
- Section of Pharmacology, Dept. Diagnostic & Public Health, University of Verona, Verona, Italy.
| | - A Piva
- Section of Pharmacology, Dept. Diagnostic & Public Health, University of Verona, Verona, Italy
| | - V Guardiani
- Section of Pharmacology, Dept. Diagnostic & Public Health, University of Verona, Verona, Italy
| | - I Decimo
- Section of Pharmacology, Dept. Diagnostic & Public Health, University of Verona, Verona, Italy
| | - C Chiamulera
- Section of Pharmacology, Dept. Diagnostic & Public Health, University of Verona, Verona, Italy
| |
Collapse
|
5
|
Rowell MK, Pillay N, Rymer TL. Problem Solving in Animals: Proposal for an Ontogenetic Perspective. Animals (Basel) 2021; 11:866. [PMID: 33803609 PMCID: PMC8002912 DOI: 10.3390/ani11030866] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/16/2022] Open
Abstract
Problem solving, the act of overcoming an obstacle to obtain an incentive, has been studied in a wide variety of taxa, and is often based on simple strategies such as trial-and-error learning, instead of higher-order cognitive processes, such as insight. There are large variations in problem solving abilities between species, populations and individuals, and this variation could arise due to differences in development, and other intrinsic (genetic, neuroendocrine and aging) and extrinsic (environmental) factors. However, experimental studies investigating the ontogeny of problem solving are lacking. Here, we provide a comprehensive review of problem solving from an ontogenetic perspective. The focus is to highlight aspects of problem solving that have been overlooked in the current literature, and highlight why developmental influences of problem-solving ability are particularly important avenues for future investigation. We argue that the ultimate outcome of solving a problem is underpinned by interacting cognitive, physiological and behavioural components, all of which are affected by ontogenetic factors. We emphasise that, due to the large number of confounding ontogenetic influences, an individual-centric approach is important for a full understanding of the development of problem solving.
Collapse
Affiliation(s)
- Misha K. Rowell
- College of Science and Engineering, James Cook University, P. O. Box 6811, Cairns, Queensland 4870, Australia;
- Centre for Tropical Environmental and Sustainability Sciences, James Cook University, P. O. Box 6811, Cairns, Queensland 4870, Australia
| | - Neville Pillay
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa;
| | - Tasmin L. Rymer
- College of Science and Engineering, James Cook University, P. O. Box 6811, Cairns, Queensland 4870, Australia;
- Centre for Tropical Environmental and Sustainability Sciences, James Cook University, P. O. Box 6811, Cairns, Queensland 4870, Australia
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa;
| |
Collapse
|
6
|
Falcicchia C, Tozzi F, Arancio O, Watterson DM, Origlia N. Involvement of p38 MAPK in Synaptic Function and Dysfunction. Int J Mol Sci 2020; 21:ijms21165624. [PMID: 32781522 PMCID: PMC7460549 DOI: 10.3390/ijms21165624] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 12/19/2022] Open
Abstract
Many studies have revealed a central role of p38 MAPK in neuronal plasticity and the regulation of long-term changes in synaptic efficacy, such as long-term potentiation (LTP) and long-term depression (LTD). However, p38 MAPK is classically known as a responsive element to stress stimuli, including neuroinflammation. Specific to the pathophysiology of Alzheimer’s disease (AD), several studies have shown that the p38 MAPK cascade is activated either in response to the Aβ peptide or in the presence of tauopathies. Here, we describe the role of p38 MAPK in the regulation of synaptic plasticity and its implication in an animal model of neurodegeneration. In particular, recent evidence suggests the p38 MAPK α isoform as a potential neurotherapeutic target, and specific inhibitors have been developed and have proven to be effective in ameliorating synaptic and memory deficits in AD mouse models.
Collapse
Affiliation(s)
- Chiara Falcicchia
- Institute of Neuroscience, Italian National Research Council, 56124 Pisa, Italy;
| | - Francesca Tozzi
- Bio@SNS laboratory, Scuola Normale Superiore, 56124 Pisa, Italy;
| | - Ottavio Arancio
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY 10032, USA;
| | | | - Nicola Origlia
- Institute of Neuroscience, Italian National Research Council, 56124 Pisa, Italy;
- Correspondence: ; Tel.: +39-050-3153193
| |
Collapse
|
7
|
Developmental effects of environmental enrichment on selective and auditory sustained attention. Psychoneuroendocrinology 2020; 111:104479. [PMID: 31704636 DOI: 10.1016/j.psyneuen.2019.104479] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/23/2019] [Accepted: 10/11/2019] [Indexed: 01/29/2023]
Abstract
Environmental enrichment (EE) has been used as a positive manipulation in different disease models. However, there is conflicting evidence reported in the literature about the effects of EE. Additionally, the time period that would be most beneficial in implementing environmental enrichment as an intervention is not clear. Our study aimed to systematically compare the prenatal, juvenile, mid-adolescence, and adulthood developmental trajectory to further the understanding of enriched environment's effects on selective and auditory sustained attention, corresponding to behavioral (conceived) and physiological-reflexive (non-conceived) measures. Rats were exposed for 21 days to enriched environment during various developmental periods and compared to age-matched controls. All groups were tested for long-term effects (at postnatal day 120 and onward) on selective and sustained attention. We found that the exposure to enriched environment during mid-adolescence has yielded the most significant and long-term pattern of effects, including selective and auditory sustained attention performance, increased foraging-like behavior and a significant decrease in corticosterone level. Similarly, the exposure to EE at juvenile period improved selective attention, increased foraging-like behavior, and reduced anxiety levels as reflected in the open field as well as in low corticosterone levels. These results specify a crucial period along the developmental trajectory for applying environmental enrichment. Mid-adolescence is suggested, in future basic and translational studies, as the sensitive time period that induces the most beneficial and long-term effects of EE on attention. The current findings suggest that the exposure to EE during mid-adolescence should be further considered and studied as behavioral alternative intervention, or as adjuvant behavioral therapy, aimed to decrease the probability to develop ADHD in post-adolescence period. This suggestion is highly relevant due to the debate regarding the pros and cons of screens usage (e.g. Facebook, online games, etc.) during early life that decreases environmental enrichment, especially, direct social interaction.
Collapse
|
8
|
O'Connor AM, Burton TJ, Mansuri H, Hand GR, Leamey CA, Sawatari A. Environmental Enrichment From Birth Impacts Parvalbumin Expressing Cells and Wisteria Floribunda Agglutinin Labelled Peri-Neuronal Nets Within the Developing Murine Striatum. Front Neuroanat 2019; 13:90. [PMID: 31708753 PMCID: PMC6821641 DOI: 10.3389/fnana.2019.00090] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 10/01/2019] [Indexed: 11/13/2022] Open
Abstract
Environmental enrichment can dramatically affect both the development and function of neural circuits. This is accomplished, at least in part, by the regulation of inhibitory cellular networks and related extracellular matrix glycoprotein structures known as perineuronal nets. The degree to which enhanced housing can influence brain areas involved in the planning and execution of actions is not well known. We examined the effect of enriching mice from birth on parvalbumin expression and perineuronal net formation in developing and adult striatum. This input nucleus of the basal ganglia consists of topographically discernible regions that serve different functions, providing a means of simultaneously examining the influence of environmental factors on discrete, but related networks. Greater densities of striatal parvalbumin positive cells and wisteria floribunda agglutinin labelled perineuronal nets were present in enriched pups during the second postnatal week, primarily within the lateral portion of the nucleus. Housing conditions continued to have an impact into adulthood, with enriched mice exhibiting higher parvalbumin positive cell densities in both medial and lateral striatum. Curiously, no differences due to housing conditions were detected in striatal perineuronal net densities of mature animals. The degree of overlap between striatal parvalbumin expression and perineuronal net formation was also increased, suggesting that heightened neural activity associated with enrichment may have contributed to greater engagement of networks affiliated with cells that express the calcium binding protein. Brain derived neurotrophic factor, an important regulator of inhibitory network maturation, is also subtly, but significantly affected within the striatum of enriched cohorts. Together, these findings suggest that environmental enrichment can exert cell specific effects within different divisions of an area vital for the regulation of action.
Collapse
Affiliation(s)
- Angela May O'Connor
- Systems Neuroscience Laboratory, Discipline of Physiology, School of Medical Sciences and the Bosch Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Thomas Joseph Burton
- Systems Neuroscience Laboratory, Discipline of Physiology, School of Medical Sciences and the Bosch Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Hannan Mansuri
- Systems Neuroscience Laboratory, Discipline of Physiology, School of Medical Sciences and the Bosch Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Gabriel Rhys Hand
- Systems Neuroscience Laboratory, Discipline of Physiology, School of Medical Sciences and the Bosch Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Catherine Anne Leamey
- Systems Neuroscience Laboratory, Discipline of Physiology, School of Medical Sciences and the Bosch Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Atomu Sawatari
- Systems Neuroscience Laboratory, Discipline of Physiology, School of Medical Sciences and the Bosch Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
9
|
Naik RR, Sotnikov SV, Diepold RP, Iurato S, Markt PO, Bultmann A, Brehm N, Mattheus T, Lutz B, Erhardt A, Binder EB, Schmidt U, Holsboer F, Landgraf R, Czibere L. Polymorphism in Tmem132d regulates expression and anxiety-related behavior through binding of RNA polymerase II complex. Transl Psychiatry 2018; 8:1. [PMID: 29317594 PMCID: PMC5802467 DOI: 10.1038/s41398-017-0025-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 07/30/2017] [Accepted: 08/29/2017] [Indexed: 01/16/2023] Open
Abstract
TMEM132D is a candidate gene, where risk genotypes have been associated with anxiety severity along with higher mRNA expression in the frontal cortex of panic disorder patients. Concurrently, in a high (HAB) and low (LAB) trait anxiety mouse model, Tmem132d was found to show increased expression in the anterior cingulate cortex (aCC) of HAB as compared to LAB mice. To understand the molecular underpinnings underlying the differential expression, we sequenced the gene and found two single-nucleotide polymorphisms (SNPs) in the promoter differing between both lines which could explain the observed mRNA expression profiles using gene reporter assays. In addition, there was no difference in basal DNA methylation in the CpG Island that encompasses the HAB vs. LAB Tmem132d promoter region. Furthermore, we found significantly higher binding of RNA polymerase II (POLR2A) to the proximal HAB-specific SNP (rs233264624) than the corresponding LAB locus in an oligonucleotide pull-down assay, suggesting increased transcription. Virus mediated overexpression of Tmem132d in the aCC of C57BL/6 J mice could confirm its role in mediating an anxiogenic phenotype. To model gene-environmental interactions, HAB mice exposed to enriched environment (HAB-EE) responded with decreased anxiety levels but, had enhanced Tmem132d mRNA expression as compared to standard-housed HAB (HAB-SH) mice. While LAB mice subjected to unpredictable chronic mild stress (LAB-UCMS) exhibited higher anxiety levels and had lower mRNA expression compared to standard-housed LAB (LAB-SH) mice. Chromatin immunoprecipitation revealed significantly higher binding of POLR2A to rs233264624 in HAB-EE, while LAB-UCMS had lower POLR2A binding at this locus, thus explaining the enhanced or attenuated expression of Tmem132d compared to their respective SH controls. To further investigate gene-environment interactions, DNA methylation was assessed using Illumina 450 K BeadChip in 74 panic disorder patients. Significant methylation differences were observed in two CpGs (cg26322591 and cg03283235) located in TMEM132D depending on the number of positive life events supporting the results of an influence of positive environmental cues on regulation of Tmem132d expression in mice.
Collapse
Affiliation(s)
- Roshan R Naik
- Max Planck Institute of Psychiatry, 80804, Munich, Germany.
- Department of Behavioral and Molecular Neurobiology, University of Regensburg, Regensburg, Germany.
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore.
| | - Sergey V Sotnikov
- Max Planck Institute of Psychiatry, 80804, Munich, Germany
- Department of Normal Physiology, Sechenov First Moscow State Medical University, Moscow, Russia
| | | | - Stella Iurato
- Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | | | | | - Nadine Brehm
- Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Tobias Mattheus
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | | | | | - Ulrike Schmidt
- Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | | | | | - Ludwig Czibere
- Max Planck Institute of Psychiatry, 80804, Munich, Germany
- Labor Becker und, 81671, Munich, Germany
| |
Collapse
|
10
|
Gómez C, Jimeno D, Fernández-Medarde A, García-Navas R, Calzada N, Santos E. Ras-GRF2 regulates nestin-positive stem cell density and onset of differentiation during adult neurogenesis in the mouse dentate gyrus. Mol Cell Neurosci 2017; 85:127-147. [PMID: 28966131 DOI: 10.1016/j.mcn.2017.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 09/11/2017] [Accepted: 09/17/2017] [Indexed: 12/12/2022] Open
Abstract
Various parameters of neurogenesis were analyzed in parallel in the two neurogenic areas (the Dentate Gyrus[DG] and the Subventricular Zone[SVZ]/Rostral Migratory Stream[RMS]/Main Olfactory Bulb[MOB] neurogenic system) of adult WT and KO mouse strains for the Ras-GRF1/2 genes (Ras-GRF1-KO, Ras-GRF2-KO, Ras-GRF1/2-DKO). Significantly reduced numbers of doublecortin[DCX]-positive cells were specifically observed in the DG, but not the SVZ/RMS/MOB neurogenic region, of Ras-GRF2-KO and Ras-GRF1/2-DKO mice indicating that this novel Ras-GRF2-dependent phenotype is spatially restricted to a specific neurogenic area. Consistent with a role of CREB as mediator of Ras-GRF2 function in neurogenesis, the density of p-CREB-positive cells was also specifically reduced in all neurogenic regions of Ras-GRF2-KO and DKO mice. Similar levels of early neurogenic proliferation markers (Ki67, BrdU) were observed in all different Ras-GRF genotypes analyzed but significantly elevated levels of nestin-immunolabel, particularly of undifferentiated, highly ramified, A-type nestin-positive neurons were specifically detected in the DG but not the SVZ/RMS/MOB of Ras-GRF2-KO and DKO mice. Together with assays of other neurogenic markers (GFAP, Sox2, Tuj1, NeuN), these observations suggest that the deficit of DCX/p-CREB-positive cells in the DG of Ras-GRF2-depleted mice does not involve impaired neuronal proliferation but rather delayed transition from the stem cell stage to the differentiation stages of the neurogenic process. This model is also supported by functional analyses of DG-derived neurosphere cultures and transcriptional characterization of the neurogenic areas of mice of all relevant Ras-GRF genotypes suggesting that the neurogenic role of Ras-GRF2 is exerted in a cell-autonomous manner through a specific transcriptional program.
Collapse
Affiliation(s)
- Carmela Gómez
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CSIC- Universidad de Salamanca) and CIBERONC, 37007 Salamanca, Spain
| | - David Jimeno
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CSIC- Universidad de Salamanca) and CIBERONC, 37007 Salamanca, Spain
| | - Alberto Fernández-Medarde
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CSIC- Universidad de Salamanca) and CIBERONC, 37007 Salamanca, Spain
| | - Rósula García-Navas
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CSIC- Universidad de Salamanca) and CIBERONC, 37007 Salamanca, Spain
| | - Nuria Calzada
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CSIC- Universidad de Salamanca) and CIBERONC, 37007 Salamanca, Spain
| | - Eugenio Santos
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CSIC- Universidad de Salamanca) and CIBERONC, 37007 Salamanca, Spain.
| |
Collapse
|
11
|
Stamenkovic V, Stamenkovic S, Jaworski T, Gawlak M, Jovanovic M, Jakovcevski I, Wilczynski GM, Kaczmarek L, Schachner M, Radenovic L, Andjus PR. The extracellular matrix glycoprotein tenascin-C and matrix metalloproteinases modify cerebellar structural plasticity by exposure to an enriched environment. Brain Struct Funct 2017; 222:393-415. [PMID: 27089885 DOI: 10.1007/s00429-016-1224-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 04/04/2016] [Indexed: 02/05/2023]
Abstract
The importance of the extracellular matrix (ECM) glycoprotein tenascin-C (TnC) and the ECM degrading enzymes, matrix metalloproteinases (MMPs) -2 and -9, in cerebellar histogenesis is well established. This study aimed to examine whether there is a functional relationship between these molecules in regulating structural plasticity of the lateral deep cerebellar nucleus. To this end, starting from postnatal day 21, TnC- or MMP-9-deficient mice were exposed to an enriched environment (EE). We show that 8 weeks of exposure to EE leads to reduced lectin-based staining of perineuronal nets (PNNs), reduction in the size of GABAergic and increase in the number and size of glutamatergic synaptic terminals in wild-type mice. Conversely, TnC-deficient mice showed reduced staining of PNNs compared to wild-type mice maintained under standard conditions, and exposure to EE did not further reduce, but even slightly increased PNN staining. EE did not affect the densities of the two types of synaptic terminals in TnC-deficient mice, while the size of inhibitory, but not excitatory synaptic terminals was increased. In the time frame of 4-8 weeks, MMP-9, but not MMP-2, was observed to influence PNN remodeling and cerebellar synaptic plasticity as revealed by measurement of MMP-9 activity and colocalization with PNNs and synaptic markers. These findings were supported by observations on MMP-9-deficient mice. The present study suggests that TnC contributes to the regulation of structural plasticity in the cerebellum and that interactions between TnC and MMP-9 are likely to be important for these processes to occur.
Collapse
Affiliation(s)
- Vera Stamenkovic
- Center for Laser Microscopy, Department of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, 11000, Belgrade, Serbia
| | - Stefan Stamenkovic
- Center for Laser Microscopy, Department of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, 11000, Belgrade, Serbia
| | - Tomasz Jaworski
- Laboratory of Neurobiology, Nencki Institute of Experimental Biology, 02-093, Warsaw, Poland
| | - Maciej Gawlak
- Laboratory of Physiology and Pathophysiology, Center for Preclinical Research and Technology, The Medical University of Warsaw, 02-097, Warsaw, Poland
| | - Milos Jovanovic
- Center for Laser Microscopy, Department of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, 11000, Belgrade, Serbia
| | - Igor Jakovcevski
- Experimental Neurophysiology, University Hospital Cologne, 50931, Cologne, Germany
- Experimental Neurophysiology, German Center for Neurodegenerative Diseases, 53175, Bonn, Germany
| | - Grzegorz M Wilczynski
- Laboratory of Neuromorphology, Nencki Institute of Experimental Biology, 02-093, Warsaw, Poland
| | - Leszek Kaczmarek
- Laboratory of Neurobiology, Nencki Institute of Experimental Biology, 02-093, Warsaw, Poland
| | - Melitta Schachner
- Department of Cell Biology and Neuroscience, W. M. Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong, 515041, People's Republic of China
| | - Lidija Radenovic
- Center for Laser Microscopy, Department of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, 11000, Belgrade, Serbia
| | - Pavle R Andjus
- Center for Laser Microscopy, Department of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, 11000, Belgrade, Serbia.
| |
Collapse
|
12
|
Transient Receptor Potential-canonical 1 is Essential for Environmental Enrichment-Induced Cognitive Enhancement and Neurogenesis. Mol Neurobiol 2016; 54:1992-2002. [DOI: 10.1007/s12035-016-9758-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 01/26/2016] [Indexed: 10/22/2022]
|
13
|
O'Connor AM, Burton TJ, Leamey CA, Sawatari A. The use of the puzzle box as a means of assessing the efficacy of environmental enrichment. J Vis Exp 2014:52225. [PMID: 25590345 PMCID: PMC4354494 DOI: 10.3791/52225] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Environmental enrichment can dramatically influence the development and function of neural circuits. Further, enrichment has been shown to successfully delay the onset of symptoms in models of Huntington's disease (1-4), suggesting environmental factors can evoke a neuroprotective effect against the progressive, cellular level damage observed in neurodegenerative disorders. The ways in which an animal can be environmentally enriched, however, can vary considerably. Further, there is no straightforward manner in which the effects of environmental enrichment can be assessed: most methods require either fairly complicated behavioral paradigms and/or postmortem anatomical/physiological analyses. This protocol describes the use of a simple and inexpensive behavioral assay, the Puzzle Box (5-7) as a robust means of determining the efficacy of increased social, sensory and motor stimulation on mice compared to cohorts raised in standard laboratory conditions. This simple problem solving task takes advantage of a rodent's innate desire to avoid open enclosures by seeking shelter. Cognitive ability is assessed by adding increasingly complex impediments to the shelter's entrance. The time a given subject takes to successfully remove the obstructions and enter the shelter serves as the primary metric for task performance. This method could provide a reliable means of rapidly assessing the efficacy of different enrichment protocols on cognitive function, thus paving the way for systematically determining the role specific environmental factors play in delaying the onset of neurodevelopmental and neurodegenerative disease.
Collapse
Affiliation(s)
| | - Thomas J Burton
- Discipline of Physiology, University of Sydney; Bosch Animal Behavioural Facility, University of Sydney
| | | | | |
Collapse
|
14
|
Darcy MJ, Jin SX, Feig LA. R-Ras contributes to LTP and contextual discrimination. Neuroscience 2014; 277:334-42. [PMID: 25043327 DOI: 10.1016/j.neuroscience.2014.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 07/07/2014] [Accepted: 07/08/2014] [Indexed: 11/17/2022]
Abstract
The ability to discriminate between closely related contexts is a specific form of hippocampal-dependent learning that may be impaired in certain neurodegenerative disorders such as Alzheimer's and Down Syndrome. However, signaling pathways regulating this form of learning are poorly understood. Previous studies have shown that the calcium-dependent exchange factor Ras-GRF1, an activator of Rac, Ras and R-Ras GTPases, is important for this form of learning and memory. Moreover, the ability to discriminate contexts was linked to the ability of Ras-GRF1 to promote high-frequency stimulation long-term potentiation (HFS-LTP) via the activation of p38 Map kinase. Here, we show that R-Ras is involved in this form of learning by using virally-delivered miRNAs targeting R-Ras into the CA1 region of the dorsal hippocampus and observing impaired contextual discrimination. Like the loss of GRF1, knockdown of R-Ras in the CA1 also impairs the induction of HFS-LTP and p38 Map kinase. Nevertheless, experiments indicate that this involvement of R-Ras in HFS-LTP that is required for contextual discrimination is independent of Ras-GRF1. Thus, R-Ras is a novel regulator of a form of hippocampal-dependent LTP as well as learning and memory that is affected in certain forms of neurodegenerative diseases.
Collapse
Affiliation(s)
- M J Darcy
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, United States
| | - S-X Jin
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, United States
| | - L A Feig
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, United States; Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States.
| |
Collapse
|
15
|
Transformation of cortical and hippocampal neural circuit by environmental enrichment. Neuroscience 2014; 280:282-98. [PMID: 25242640 DOI: 10.1016/j.neuroscience.2014.09.031] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/10/2014] [Accepted: 09/10/2014] [Indexed: 12/17/2022]
Abstract
It has been half a century since brain volume enlargement was first reported in animals reared in an enriched environment (EE). As EE animals show improved memory task performance, exposure to EE has been a useful model system for studying the effects of experience on brain plasticity. We review EE-induced neural changes in the cerebral cortex and hippocampus focusing mainly on works published in the recent decade. The review is organized in three large domains of changes: anatomical, electrophysiological, and molecular changes. Finally, we discuss open issues and future outlook toward better understanding of EE-induced neural changes.
Collapse
|
16
|
Novkovic T, Mittmann T, Manahan-Vaughan D. BDNF contributes to the facilitation of hippocampal synaptic plasticity and learning enabled by environmental enrichment. Hippocampus 2014; 25:1-15. [PMID: 25112659 DOI: 10.1002/hipo.22342] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2014] [Indexed: 12/12/2022]
Abstract
Sensory, motor, and cognitive stimuli, resulting from interactions with the environment, play a key role in optimizing and modifying the neuronal circuitry required for normal brain function. An experimental animal model for this phenomenon comprises environmental enrichment (EE) in rodents. EE causes profound changes in neuronal and signaling levels of excitation and plasticity throughout the entire central nervous system and the hippocampus is particularly affected. The mechanisms underlying these changes are not yet fully understood. As brain-derived neurotrophic factor (BDNF) supports hippocampal long-term potentiation (LTP), we explored whether it participates in the facilitation of synaptic plasticity and hippocampus-dependent learning that occurs following EE. In the absence of EE, LTP elicited by high-frequency stimulation was equivalent in wildtype mice and heterozygous BDNF(+/-) siblings. LTP elicited by theta-burst stimulation in BDNF(+/-) mice was less than in wildtypes. Long-term depression (LTD) was also impaired. EE for three weeks, beginning after weaning, improved hippocampal LTP in both wildtype and transgenic animals, with LTP in transgenics achieving levels seen in wildtypes in the absence of EE. Object recognition memory was evident in wildtypes 24 h and 7 days after initial object exposure. EE improved memory performance in wildtypes 24 h but not 7 days after initial exposure. BDNF(+/-) mice in the absence of EE showed impaired memory 7 days after initial object exposure that was restored by EE. Western blotting revealed increased levels of BDNF, but not proBDNF, among both EE cohorts. These data support that BDNF plays an intrinsic role in improvements of synaptic plasticity and cognition that occur in EE.
Collapse
Affiliation(s)
- Tanja Novkovic
- Medical Faculty, Department of Neurophysiology, Ruhr University Bochum, 44780, Bochum, Germany; International Graduate School of Neuroscience, 44780 Bochum, Germany, 44780, Bochum, Germany
| | | | | |
Collapse
|
17
|
Jin SX, Bartolome C, Arai JA, Hoffman L, Uzturk BG, Kumar-Singh R, Waxham MN, Feig LA. Domain contributions to signaling specificity differences between Ras-guanine nucleotide releasing factor (Ras-GRF) 1 and Ras-GRF2. J Biol Chem 2014; 289:16551-64. [PMID: 24755227 DOI: 10.1074/jbc.m114.557959] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ras-GRF1 (GRF1) and Ras-GRF2 (GRF2) constitute a family of similar calcium sensors that regulate synaptic plasticity. They are both guanine exchange factors that contain a very similar set of functional domains, including N-terminal pleckstrin homology, coiled-coil, and calmodulin-binding IQ domains and C-terminal Dbl homology Rac-activating domains, Ras-exchange motifs, and CDC25 Ras-activating domains. Nevertheless, they regulate different forms of synaptic plasticity. Although both GRF proteins transduce calcium signals emanating from NMDA-type glutamate receptors in the CA1 region of the hippocampus, GRF1 promotes LTD, whereas GRF2 promotes θ-burst stimulation-induced LTP (TBS-LTP). GRF1 can also mediate high frequency stimulation-induced LTP (HFS-LTP) in mice over 2-months of age, which involves calcium-permeable AMPA-type glutamate receptors. To add to our understanding of how proteins with similar domains can have different functions, WT and various chimeras between GRF1 and GRF2 proteins were tested for their abilities to reconstitute defective LTP and/or LTD in the CA1 hippocampus of Grf1/Grf2 double knock-out mice. These studies revealed a critical role for the GRF2 CDC25 domain in the induction of TBS-LTP by GRF proteins. In contrast, the N-terminal pleckstrin homology and/or coiled-coil domains of GRF1 are key to the induction of HFS-LTP by GRF proteins. Finally, the IQ motif of GRF1 determines whether a GRF protein can induce LTD. Overall, these findings show that for the three forms of synaptic plasticity that are regulated by GRF proteins in the CA1 hippocampus, specificity is encoded in only one or two domains, and a different set of domains for each form of synaptic plasticity.
Collapse
Affiliation(s)
- Shan-Xue Jin
- From the Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts 02111 and
| | - Christopher Bartolome
- From the Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts 02111 and
| | - Junko A Arai
- From the Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts 02111 and
| | - Laurel Hoffman
- the Department of Neurobiology and Anatomy, University of Texas, Houston, Texas
| | - B Gizem Uzturk
- From the Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts 02111 and
| | - Rajendra Kumar-Singh
- From the Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts 02111 and
| | - M Neal Waxham
- the Department of Neurobiology and Anatomy, University of Texas, Houston, Texas
| | - Larry A Feig
- From the Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts 02111 and
| |
Collapse
|
18
|
Jin SX, Arai J, Tian X, Kumar-Singh R, Feig LA. Acquisition of contextual discrimination involves the appearance of a RAS-GRF1/p38 mitogen-activated protein (MAP) kinase-mediated signaling pathway that promotes long term potentiation (LTP). J Biol Chem 2013; 288:21703-13. [PMID: 23766509 DOI: 10.1074/jbc.m113.471904] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
RAS-GRF1 is a guanine nucleotide exchange factor with the ability to activate RAS and RAC GTPases in response to elevated calcium levels. We previously showed that beginning at 1 month of age, RAS-GRF1 mediates NMDA-type glutamate receptor (NMDAR)-induction of long term depression in the CA1 region of the hippocampus of mice. Here we show that beginning at 2 months of age, when mice first acquire the ability to discriminate between closely related contexts, RAS-GRF1 begins to contribute to the induction of long term potentiation (LTP) in the CA1 hippocampus by mediating the action of calcium-permeable, AMPA-type glutamate receptors (CP-AMPARs). Surprisingly, LTP induction by CP-AMPARs through RAS-GRF1 occurs via activation of p38 MAP kinase rather than ERK MAP kinase, which has more frequently been linked to LTP. Moreover, contextual discrimination is blocked by knockdown of Ras-Grf1 expression specifically in the CA1 hippocampus, infusion of a p38 MAP kinase inhibitor into the CA1 hippocampus, or the injection of an inhibitor of CP-AMPARs. These findings implicate the CA1 hippocampus in the developmentally dependent capacity to distinguish closely related contexts through the appearance of a novel LTP-supporting signaling pathway.
Collapse
Affiliation(s)
- Shan-Xue Jin
- Department of Biochemistry, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | | | |
Collapse
|
19
|
Li S, Jin M, Zhang D, Yang T, Koeglsperger T, Fu H, Selkoe DJ. Environmental novelty activates β2-adrenergic signaling to prevent the impairment of hippocampal LTP by Aβ oligomers. Neuron 2013; 77:929-41. [PMID: 23473322 DOI: 10.1016/j.neuron.2012.12.040] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2012] [Indexed: 01/11/2023]
Abstract
A central question about human brain aging is whether cognitive enrichment slows the development of Alzheimer changes. Here, we show that prolonged exposure to an enriched environment (EE) facilitated signaling in the hippocampus of wild-type mice that promoted long-term potentiation. A key feature of the EE effect was activation of β2-adrenergic receptors and downstream cAMP/PKA signaling. This EE pathway prevented LTP inhibition by soluble oligomers of amyloid β-protein (Aβ) isolated from AD cortex. Protection by EE occurred in both young and middle-aged wild-type mice. Exposure to novelty afforded greater protection than did aerobic exercise. Mice chronically fed a β-adrenergic agonist without EE were protected from hippocampal impairment by Aβ oligomers. Thus, EE enhances hippocampal synaptic plasticity by activating β-adrenoceptor signaling and mitigating synaptotoxicity of human Aβ oligomers. These mechanistic insights support using prolonged exposure to cognitive novelty and/or oral β-adrenergic agonists to lessen the effects of Aβ accumulation during aging.
Collapse
Affiliation(s)
- Shaomin Li
- Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Moreira ELG, Aguiar AS, de Carvalho CR, Santos DB, de Oliveira J, de Bem AF, Xikota JC, Walz R, Farina M, Prediger RD. Effects of lifestyle modifications on cognitive impairments in a mouse model of hypercholesterolemia. Neurosci Lett 2013; 541:193-8. [DOI: 10.1016/j.neulet.2013.02.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 02/05/2013] [Accepted: 02/26/2013] [Indexed: 11/27/2022]
|
21
|
Bartlett TE, Wang YT. The intersections of NMDAR-dependent synaptic plasticity and cell survival. Neuropharmacology 2013; 74:59-68. [PMID: 23357336 DOI: 10.1016/j.neuropharm.2013.01.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 01/09/2013] [Accepted: 01/14/2013] [Indexed: 10/27/2022]
Abstract
The discovery of a requirement for N-methyl d-aspartate receptor (NMDAR) activation in long-term potentiation (LTP) set off an explosion of interest in the mechanisms of NMDAR-dependent synaptic plasticity. Meanwhile other research has advanced our understanding of how NMDAR activation regulates neuronal death and survival. Surprisingly, there have been few attempts to correlate these important areas of research. Here we review current knowledge of the various mechanisms of NMDAR-dependent synaptic plasticity that are shared with neuronal survival and death, while drawing comparisons with the proneurotrophin/neurotrophin receptor and intracellular signaling systems. Our conclusion is that NMDAR-dependent LTP and long-term depression (LTD) share many common mechanisms with cell survival and cell death, respectively. The intersections of plasticity and cell survival may represent novel avenues for neuroprotection. This article is part of the Special Issue entitled 'Glutamate Receptor-Dependent Synaptic Plasticity'.
Collapse
Affiliation(s)
- Thomas E Bartlett
- Brain Research Centre, Room F270, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6T 2B5, Canada
| | | |
Collapse
|
22
|
Buschler A, Manahan-Vaughan D. Brief environmental enrichment elicits metaplasticity of hippocampal synaptic potentiation in vivo. Front Behav Neurosci 2012; 6:85. [PMID: 23248592 PMCID: PMC3522088 DOI: 10.3389/fnbeh.2012.00085] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 11/17/2012] [Indexed: 11/24/2022] Open
Abstract
Long-term environmental enrichment (EE) elicits enduring effects on the adult brain, including altered synaptic plasticity. Synaptic plasticity may underlie memory formation and includes robust (>24 h) and weak (<2 h) forms of long-term potentiation (LTP) and long-term depression (LTD). Most studies of the effect of EE on synaptic efficacy have examined the consequences of very prolonged EE-exposure. It is unclear whether brief exposure to EE can alter synaptic plasticity. Clarifying this issue could help develop strategies to address cognitive deficits arising from neglect in children or adults. We assessed whether short-term EE elicits alterations in hippocampal synaptic plasticity and if social context may play a role. Adult mice were exposed to EE for 14 consecutive days. We found that robust late-LTP (>24 h) and short-term depression (<2 h) at Schaffer-collateral-CA1 synapses in freely behaving mice were unaltered, whereas early-LTP (E-LTP, <2 h) was significantly enhanced by EE. Effects were transient: E-LTP returned to control levels 1 week after cessation of EE. Six weeks later, animals were re-exposed to EE for 14 days. Under these conditions, E-LTP was facilitated into L-LTP (>24 h), suggesting that metaplasticity was induced during the first EE experience and that EE-mediated modifications are cumulative. Effects were absent in mice that underwent solitary enrichment or were group-housed without EE. These data suggest that EE in naïve animals strengthens E-LTP, and also promotes L-LTP in animals that underwent EE in the past. This indicates that brief exposure to EE, particularly under social conditions can elicit lasting positive effects on synaptic strength that may have beneficial consequences for cognition that depends on synaptic plasticity.
Collapse
Affiliation(s)
- Arne Buschler
- Department of Neurophysiology, Faculty of Medicine, Ruhr University Bochum Bochum, Germany ; International Graduate School for Neuroscience, Ruhr University Bochum Bochum, Germany
| | | |
Collapse
|
23
|
Silingardi D, Angelucci A, De Pasquale R, Borsotti M, Squitieri G, Brambilla R, Putignano E, Pizzorusso T, Berardi N. ERK pathway activation bidirectionally affects visual recognition memory and synaptic plasticity in the perirhinal cortex. Front Behav Neurosci 2011; 5:84. [PMID: 22232579 PMCID: PMC3246765 DOI: 10.3389/fnbeh.2011.00084] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 12/05/2011] [Indexed: 11/13/2022] Open
Abstract
ERK 1,2 pathway mediates experience-dependent gene transcription in neurons and several studies have identified its pivotal role in experience-dependent synaptic plasticity and in forms of long term memory involving hippocampus, amygdala, or striatum. The perirhinal cortex (PRHC) plays an essential role in familiarity-based object recognition memory. It is still unknown whether ERK activation in PRHC is necessary for recognition memory consolidation. Most important, it is unknown whether by modulating the gain of the ERK pathway it is possible to bidirectionally affect visual recognition memory and PRHC synaptic plasticity. We have first pharmacologically blocked ERK activation in the PRHC of adult mice and found that this was sufficient to impair long term recognition memory in a familiarity-based task, the object recognition task (ORT). We have then tested performance in the ORT in Ras-GRF1 knock-out (KO) mice, which exhibit a reduced activation of ERK by neuronal activity, and in ERK1 KO mice, which have an increased activation of ERK2 and exhibit enhanced striatal plasticity and striatal mediated memory. We found that Ras-GRF1 KO mice have normal short term memory but display a long term memory deficit; memory reconsolidation is also impaired. On the contrary, ERK1 KO mice exhibit a better performance than WT mice at 72 h retention interval, suggesting a longer lasting recognition memory. In parallel with behavioral data, LTD was strongly reduced and LTP was significantly smaller in PRHC slices from Ras-GRF1 KO than in WT mice while enhanced LTP and LTD were found in PRHC slices from ERK1 KO mice.
Collapse
|
24
|
Abstract
Ras-GRF1 (GRF1) and Ras-GRF2 (GRF2) constitute a family of guanine nucleotide exchange factors (GEFs). The main isoforms, p140-GRF1 and p135-GRF2, have 2 GEF domains that give them the capacity to activate both Ras and Rac GTPases in response to signals from a variety of neurotransmitter receptors. GRF1 and GRF2 proteins are found predominantly in adult neurons of the central nervous system, although they can also be detected in a limited number of other tissues. p140-GRF1 and p135-GRF2 contain calcium/calmodulin-binding IQ domains that allow them to act as calcium sensors to mediate the actions of NMDA-type and calcium-permeable AMPA-type glutamate receptors. p140-GRF1 also mediates the action of dopamine receptors that signal through cAMP. Although p140-GRF1 and p135-GRF2 have similar functional domains, studies of GRF knockout mice show that they can play strikingly different roles in regulating MAP kinase family members, neuronal synaptic plasticity, specific forms of learning and memory, and behavioral responses to psychoactive drugs. In addition, the function of GRF proteins may vary in different regions of the brain. Alternative splice variants yielding smaller GRF1 gene isoforms with fewer functional domains also exist; however, their distinct roles in neurons have not been revealed. Continuing studies of these proteins should yield important insights into the biochemical basis of brain function as well as novel concepts to explain how complex signal transduction proteins, like Ras-GRFs, integrate multiple upstream signals into specific downstream outputs to control brain function.
Collapse
Affiliation(s)
- Larry A Feig
- Departments of Biochemistry and Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
25
|
Mirisola MG, Longo VD. Conserved role of Ras-GEFs in promoting aging: from yeast to mice. Aging (Albany NY) 2011; 3:340-3. [PMID: 21732566 PMCID: PMC3117446 DOI: 10.18632/aging.100320] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
26
|
Russell VA. Overview of animal models of attention deficit hyperactivity disorder (ADHD). ACTA ACUST UNITED AC 2011; Chapter 9:Unit9.35. [PMID: 21207367 DOI: 10.1002/0471142301.ns0935s54] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a heterogeneous, highly heritable, behavioral disorder that affects ∼5% to 10% of children worldwide. Although animal models cannot truly reflect human psychiatric disorders, they can provide insight into the disorder that cannot be obtained from human studies because of the limitations of available techniques. Genetic models include the spontaneously hypertensive rat (SHR), the Naples High Excitability (NHE) rat, poor performers in the 5-choice serial reaction time (5-CSRT) task, the dopamine transporter (DAT) knock-out mouse, the SNAP-25 deficient mutant coloboma mouse, mice expressing a human mutant thyroid hormone receptor, a nicotinic receptor knock-out mouse, and a tachykinin-1 (NK1) receptor knock-out mouse. Chemically induced models of ADHD include prenatal or early postnatal exposure to ethanol, nicotine, polychlorinated biphenyls, or 6-hydroxydopamine (6-OHDA). Environmentally induced models have also been suggested; these include neonatal anoxia and rat pups reared in social isolation. The major insight provided by animal models was the consistency of findings regarding the involvement of dopaminergic, noradrenergic, and sometimes also serotonergic systems, as well as more fundamental defects in neurotransmission.
Collapse
Affiliation(s)
- Vivienne Ann Russell
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa
| |
Collapse
|
27
|
Arai JA, Feig LA. Long-lasting and transgenerational effects of an environmental enrichment on memory formation. Brain Res Bull 2010; 85:30-5. [PMID: 21078373 DOI: 10.1016/j.brainresbull.2010.11.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 11/02/2010] [Accepted: 11/03/2010] [Indexed: 11/28/2022]
Abstract
It has long been believed that genetically determined, but not environmentally acquired, phenotypes can be inherited. However, a large number of recent studies have reported that phenotypes acquired from an animal's environment can be transmitted to the next generation. Moreover, epidemiology studies have hinted that a similar phenomenon occurs in humans. This type of inheritance does not involve gene mutations that change DNA sequence. Instead, it is thought that epigenetic changes in chromatin, such as DNA methylation and histone modification, occur. In this review, we will focus on one exciting new example of this phenomenon, transfer across generations of enhanced synaptic plasticity and memory formation induced by exposure to an "enriched" environment.
Collapse
Affiliation(s)
- Junko A Arai
- Department of Biochemistry, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA, USA
| | | |
Collapse
|
28
|
Ye X, Carew TJ. Small G protein signaling in neuronal plasticity and memory formation: the specific role of ras family proteins. Neuron 2010; 68:340-61. [PMID: 21040840 PMCID: PMC3008420 DOI: 10.1016/j.neuron.2010.09.013] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2010] [Indexed: 01/04/2023]
Abstract
Small G proteins are an extensive family of proteins that bind and hydrolyze GTP. They are ubiquitous inside cells, regulating a wide range of cellular processes. Recently, many studies have examined the role of small G proteins, particularly the Ras family of G proteins, in memory formation. Once thought to be primarily involved in the transduction of a variety of extracellular signals during development, it is now clear that Ras family proteins also play critical roles in molecular processing underlying neuronal and behavioral plasticity. We here review a number of recent studies that explore how the signaling of Ras family proteins contributes to memory formation. Understanding these signaling processes is of fundamental importance both from a basic scientific perspective, with the goal of providing mechanistic insights into a critical aspect of cognitive behavior, and from a clinical perspective, with the goal of providing effective therapies for a range of disorders involving cognitive impairments.
Collapse
Affiliation(s)
- Xiaojing Ye
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA 92697, USA
| | | |
Collapse
|
29
|
Long-term potentiation-dependent spine enlargement requires synaptic Ca2+-permeable AMPA receptors recruited by CaM-kinase I. J Neurosci 2010; 30:11565-75. [PMID: 20810878 DOI: 10.1523/jneurosci.1746-10.2010] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
It is well established that long-term potentiation (LTP), a paradigm for learning and memory, results in a stable enlargement of potentiated spines associated with recruitment of additional GluA1-containing AMPA receptors (AMPARs). Although regulation of the actin cytoskeleton is involved, the detailed signaling mechanisms responsible for this spine expansion are unclear. Here, we used cultured mature hippocampal neurons stimulated with a glycine-induced, synapse-specific form of chemical LTP (GI-LTP). We report that the stable structural plasticity (i.e., spine head enlargement and spine length shortening) that accompanies GI-LTP was blocked by inhibitors of NMDA receptors (NMDARs; APV) or CaM-kinase kinase (STO-609), the upstream activator of CaM-kinase I (CaMKI), as well as by transfection with dominant-negative (dn) CaMKI but not dnCaMKIV. Recruitment of GluA1 to the spine surface occurred after GI-LTP and was mimicked by transfection with constitutively active CaMKI. Spine enlargement induced by transfection of GluA1 was associated with synaptic recruitment of Ca(2+)-permeable AMPARs (CP-AMPARs) as assessed by an increase in the rectification index of miniature EPSCs (mEPSCs) and their sensitivity to IEM-1460, a selective antagonist of CP-AMPARs. Furthermore, the increase in spine size and mEPSC amplitude resulting from GI-LTP itself was blocked by IEM-1460, demonstrating involvement of CP-AMPARs. Downstream signaling effectors of CP-AMPARs, identified by suppression of their activation by IEM-1460, included the Rac/PAK/LIM-kinase pathway that regulates spine actin dynamics. Together, our results suggest that synaptic recruitment of CP-AMPARs via CaMKI may provide a mechanistic link between NMDAR activation in LTP and regulation of a signaling pathway that drives spine enlargement via actin polymerization.
Collapse
|
30
|
Kanamori T, Matsukawa N, Kobayashi H, Uematsu N, Sagisaka T, Toyoda T, Kato D, Oikawa S, Ojika K. Suppressed phosphorylation of collapsin response mediator protein-2 in the hippocampus of HCNP precursor transgenic mice. Brain Res 2010; 1355:180-8. [PMID: 20682295 DOI: 10.1016/j.brainres.2010.07.081] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 07/21/2010] [Accepted: 07/22/2010] [Indexed: 11/16/2022]
Abstract
We previously reported a novel peptide, Hippocampal Cholinergic Neurostimulating Peptide (HCNP), which induces acetylcholine synthesis by increasing the amount of choline acetyltransferase (ChAT) in medial septal nuclei. The HCNP precursor protein (HCNP-pp), composed of 186 amino acids, is an inhibitory factor of the c-Raf/MEK cascade and may be involved in fetal rat brain development via the inhibition of phosphorylation of Erk. To clarify the involvement of HCNP in hippocampal cholinergic circuitry, we previously generated HCNP-pp transgenic (HCNP-pp Tg) mice using the promoter of the α subunit of Ca(2+) calmodulin-dependent protein kinase II (CaMKIIα). These mice showed increased levels of ChAT in medial septal nuclei at 12 weeks of age, and the phenotype of depressive mood at 30 weeks of age. Here, through proteomic analysis we investigated the alteration of protein expression in the hippocampus of HCNP-pp Tg mice compared with wild-type littermate mice. We demonstrate that the activation of collapsin response mediator protein-2 (CRMP-2) is increased in the transgenic mice at 12 weeks of age when compared with wild-type littermate mice.
Collapse
Affiliation(s)
- Tetsuko Kanamori
- Department of Neurology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Fasano S, D’Antoni A, Orban PC, Valjent E, Putignano E, Vara H, Pizzorusso T, Giustetto M, Yoon B, Soloway P, Maldonado R, Caboche J, Brambilla R. Ras-guanine nucleotide-releasing factor 1 (Ras-GRF1) controls activation of extracellular signal-regulated kinase (ERK) signaling in the striatum and long-term behavioral responses to cocaine. Biol Psychiatry 2009; 66:758-68. [PMID: 19446794 PMCID: PMC2910545 DOI: 10.1016/j.biopsych.2009.03.014] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Revised: 03/10/2009] [Accepted: 03/10/2009] [Indexed: 12/30/2022]
Abstract
BACKGROUND Ras-extracellular signal-regulated kinase (Ras-ERK) signaling is central to the molecular machinery underlying cognitive functions. In the striatum, ERK1/2 kinases are co-activated by glutamate and dopamine D1/5 receptors, but the mechanisms providing such signaling integration are still unknown. The Ras-guanine nucleotide-releasing factor 1 (Ras-GRF1), a neuronal specific activator of Ras-ERK signaling, is a likely candidate for coupling these neurotransmitter signals to ERK kinases in the striatonigral medium spiny neurons (MSN) and for modulating behavioral responses to drug abuse such as cocaine. METHODS We used genetically modified mouse mutants for Ras-GRF1 as a source of primary MSN cultures and organotypic slices, to perform both immunoblot and immunofluorescence studies in response to glutamate and dopamine receptor agonists. Mice were also subjected to behavioral and immunohistochemical investigations upon treatment with cocaine. RESULTS Phosphorylation of ERK1/2 in response to glutamate, dopamine D1 agonist, or both stimuli simultaneously is impaired in Ras-GRF1-deficient striatal cells and organotypic slices of the striatonigral MSN compartment. Consistently, behavioral responses to cocaine are also affected in mice deficient for Ras-GRF1 or overexpressing it. Both locomotor sensitization and conditioned place preference are significantly attenuated in Ras-GRF1-deficient mice, whereas a robust facilitation is observed in overexpressing transgenic animals. Finally, we found corresponding changes in ERK1/2 activation and in accumulation of FosB/DeltaFosB, a well-characterized marker for long-term responses to cocaine, in MSN from these animals. CONCLUSIONS These results strongly implicate Ras-GRF1 in the integration of the two main neurotransmitter inputs to the striatum and in the maladaptive modulation of striatal networks in response to cocaine.
Collapse
|
32
|
Nithianantharajah J, Hannan AJ. The neurobiology of brain and cognitive reserve: mental and physical activity as modulators of brain disorders. Prog Neurobiol 2009; 89:369-82. [PMID: 19819293 DOI: 10.1016/j.pneurobio.2009.10.001] [Citation(s) in RCA: 227] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 09/16/2009] [Accepted: 10/01/2009] [Indexed: 12/23/2022]
Abstract
The concept of 'cognitive reserve', and a broader theory of 'brain reserve', were originally proposed to help explain epidemiological data indicating that individuals who engaged in higher levels of mental and physical activity via education, occupation and recreation, were at lower risk of developing Alzheimer's disease and other forms of dementia. Subsequently, behavioral, cellular and molecular studies in animals (predominantly mice and rats) have revealed dramatic effects of environmental enrichment, which involves enhanced levels of sensory, cognitive and motor stimulation via housing in novel, complex environments. Furthermore, increasing levels of voluntary physical exercise, via ad libitum access to running wheels, can have significant effects on brain and behavior, thus informing the relative effects of mental and physical activity. More recently, animal models of brain disorders have been compared under environmentally stimulating and standard housing conditions, and this has provided new insights into environmental modulators and gene-environment interactions involved in pathogenesis. Here, we review animal studies that have investigated the effects of modifying mental and physical activity via experimental manipulations, and discuss their relevance to brain and cognitive reserve (BCR). Recent evidence suggests that the concept of BCR is not only relevant to brain aging, neurodegenerative diseases and dementia, but also to other neurological and psychiatric disorders. Understanding the cellular and molecular mechanisms mediating BCR may not only facilitate future strategies aimed at optimising healthy brain aging, but could also identify molecular targets for novel pharmacological approaches aimed at boosting BCR in 'at risk' and symptomatic individuals with various brain disorders.
Collapse
Affiliation(s)
- Jess Nithianantharajah
- Howard Florey Institute, Florey Neuroscience Institutes, University of Melbourne, Victoria 3010, Australia
| | | |
Collapse
|
33
|
Uematsu N, Matsukawa N, Kanamori T, Arai Y, Sagisaka T, Toyoda T, Yoshida M, Ojika K. Overexpression of hippocampal cholinergic neurostimulating peptide in heterozygous transgenic mice increases the amount of ChAT in the medial septal nucleus. Brain Res 2009; 1305:150-7. [PMID: 19815004 DOI: 10.1016/j.brainres.2009.09.112] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 09/28/2009] [Accepted: 09/29/2009] [Indexed: 11/15/2022]
Abstract
Acetylcholine modulates neural activity in the hippocampal glutamatergic pathway via the induction of phosphorylated Erk and may act as a novel transmitter in septohippocampal memory formation. However, how acetylcholine synthesis in the septal nucleus is regulated is unknown. We have purified a peptide from the hippocampus of the young adult rat, named hippocampal cholinergic neurostimulating peptide (HCNP) that induces acetylcholine synthesis in vitro in the septal nucleus. Previously, levels of this peptide and/or precursor protein were reported to be decreased, and the protein to be nitrated in the brains of patients with Alzheimer's disease. Here, to clarify the involvement in the regulation of acetylcholine synthesis in vivo in the medial septal nucleus, we generated HCNP precursor transgenic mice, using a Ca2+ calmodulin-dependent protein kinase II genomic promoter. The amount of cholineacetyltransferase (ChAT) in the medial septal nucleus was increased in heterozygous HCNP transgenic mice, compared with non-transgenic littermates. This result suggests that HCNP is involved in regulating acetylcholine synthesis in vivo in the medial septal nucleus and, as such, is important for memory function.
Collapse
Affiliation(s)
- Norihiko Uematsu
- Department of Neurology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
An enriched environment restores normal behavior while providing cytoskeletal restoration and synaptic changes in the hippocampus of rats exposed to an experimental model of depression. Neuroscience 2009; 164:929-40. [PMID: 19729049 DOI: 10.1016/j.neuroscience.2009.08.059] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 08/23/2009] [Accepted: 08/25/2009] [Indexed: 11/21/2022]
Abstract
The exposure of rats to an enriched environment (EE) has several effects in common with the administration of antidepressants. However, there is still little information about the molecular underpinnings of these effects on rats subjected to experimental models of depression. The aim of this research was to evaluate the effects of EE on rats exposed to the learned helplessness paradigm (LH), a well-known model of the disease. We found that a 21 day exposure to EE reverts helplessness behavior to normal in LH animals. Inmunohistochemical labeling showed that this effect was accompanied by normalization of two structural proteins of hippocampal neurons to control values: the light neurofilament subunit (NFL) and the postsynaptic density 95 (PSD-95) protein, which were decreased in LH animals housed in standard cages. The decrease in the presynaptic protein synaptophysin (SYN) observed in LH animals remained unchanged after exposure to EE. There was no increase in neurogenesis as measured by quantification of double-labeled cells with 5-bromo-2'-deoxyuridine (BrdU) and the neuronal marker beta-tubulin class III. These results show that EE may have behavioral and synaptic effects on animals exposed to an experimental model of depression, and that such actions seem to be independent from neurogenesis.
Collapse
|
35
|
Simonetti T, Lee H, Bourke M, Leamey CA, Sawatari A. Enrichment from birth accelerates the functional and cellular development of a motor control area in the mouse. PLoS One 2009; 4:e6780. [PMID: 19756157 PMCID: PMC2742178 DOI: 10.1371/journal.pone.0006780] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 07/20/2009] [Indexed: 11/19/2022] Open
Abstract
Background There is strong evidence that sensory experience in early life has a profound influence on the development of sensory circuits. Very little is known, however, about the role of experience in the early development of striatal networks which regulate both motor and cognitive function. To address this, we have investigated the influence of early environmental enrichment on motor development. Methodology/Principal Findings Mice were raised in standard or enriched housing from birth. For animals assessed as adults, half of the mice had their rearing condition reversed at weaning to enable the examination of the effects of pre- versus post-weaning enrichment. We found that exclusively pre-weaning enrichment significantly improved performance on the Morris water maze compared to non-enriched mice. The effects of early enrichment on the emergence of motor programs were assessed by performing behavioural tests at postnatal day 10. Enriched mice traversed a significantly larger region of the test arena in an open-field test and had improved swimming ability compared to non-enriched cohorts. A potential cellular correlate of these changes was investigated using Wisteria-floribunda agglutinin (WFA) staining to mark chondroitin-sulfate proteoglycans (CSPGs). We found that the previously reported transition of CSPG staining from striosome-associated clouds to matrix-associated perineuronal nets (PNNs) is accelerated in enriched mice. Conclusions/Significance This is the first demonstration that the early emergence of exploratory as well as coordinated movement is sensitive to experience. These behavioural changes are correlated with an acceleration of the emergence of striatal PNNs suggesting that they may consolidate the neural circuits underlying these behaviours. Finally, we confirm that pre-weaning experience can lead to life long changes in the learning ability of mice.
Collapse
Affiliation(s)
- Teresa Simonetti
- Discipline of Physiology, School of Medical Sciences and the Bosch Institute, University of Sydney, Sydney, Australia
| | - Hyunchul Lee
- Discipline of Physiology, School of Medical Sciences and the Bosch Institute, University of Sydney, Sydney, Australia
| | - Michael Bourke
- Discipline of Physiology, School of Medical Sciences and the Bosch Institute, University of Sydney, Sydney, Australia
| | - Catherine A. Leamey
- Discipline of Physiology, School of Medical Sciences and the Bosch Institute, University of Sydney, Sydney, Australia
| | - Atomu Sawatari
- Discipline of Physiology, School of Medical Sciences and the Bosch Institute, University of Sydney, Sydney, Australia
- * E-mail:
| |
Collapse
|
36
|
Viola GG, Rodrigues L, Américo JC, Hansel G, Vargas RS, Biasibetti R, Swarowsky A, Gonçalves CA, Xavier LL, Achaval M, Souza DO, Amaral OB. Morphological changes in hippocampal astrocytes induced by environmental enrichment in mice. Brain Res 2009; 1274:47-54. [PMID: 19374889 DOI: 10.1016/j.brainres.2009.04.007] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Revised: 03/30/2009] [Accepted: 04/07/2009] [Indexed: 12/20/2022]
Abstract
Environmental enrichment is known to induce plastic changes in the brain, including morphological changes in hippocampal neurons, with increases in synaptic and spine densities. In recent years, the evidence for a role of astrocytes in regulating synaptic transmission and plasticity has increased, and it is likely that morphological and functional changes in astrocytes play an important role in brain plasticity. Our study was designed to evaluate changes in astrocytes induced by environmental enrichment in the CA1 region of the hippocampus, focusing on astrocytic density and on morphological changes in astrocytic processes. After 8 weeks of environmental enrichment starting at weaning, male CF-1 mice presented no significant changes in astrocyte number or in the density of glial fibrillary acidic protein (GFAP) immunoreactivity in the stratum radiatum. However, they did present changes in astrocytic morphology in the same region, as expressed by a significant increase in the ramification of astrocytic processes measured by the Sholl concentric circles method, as well as by an increase in the number and length of primary processes extending in a parallel orientation to CA1 nerve fibers. This led astrocytes to acquire a more stellate morphology, a fact which could be related to the increase in hippocampal synaptic density observed in previous studies. These findings corroborate the idea that structural changes in astrocytic networks are an integral part of plasticity processes occurring in the brain.
Collapse
Affiliation(s)
- Giordano G Viola
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600-Anexo, 90035-003 Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Environmental enrichment restores memory functioning in mice with impaired IL-1 signaling via reinstatement of long-term potentiation and spine size enlargement. J Neurosci 2009; 29:3395-403. [PMID: 19295146 DOI: 10.1523/jneurosci.5352-08.2009] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Environmental enrichment (EE) was found to facilitate memory functioning and neural plasticity in normal and neurologically impaired animals. However, the ability of this manipulation to rescue memory and its biological substrate in animals with specific genetically based deficits in these functions has not been extensively studied. In the present study, we investigated the effects of EE in two mouse models of impaired memory functioning and plasticity. Previous research demonstrated that mice with a deletion of the receptor for the cytokine interleukin-1 (IL-1rKO), and mice with CNS-specific transgenic over-expression of the IL-1 receptor antagonist (IL-1raTG) display impaired hippocampal memory and long-term potentiation (LTP). We report here a corrective effect of EE on spatial and contextual memory in IL-1rKO and IL-1raTG mice and reveal two mechanisms for this beneficial effect: Concomitantly with their disturbed memory functioning, LTP in IL-1rKO mice that were raised in a regular environment is impaired, and their dendritic spine size is reduced. Both of these impairments were corrected by environmental enrichment. No deficiencies in neurogenesis or hippocampal BDNF and vascular endothelial growth factor secretion were found in IL-1rKO mice that were raised in a regular environment, and both of these variables were increased to a similar degree in enriched IL-1rKO and wild-type mice. These findings suggest that exposure to an enriched environment may be beneficial for individuals with impaired learning and memory related to genetic impairments of IL-1 signaling (and possibly other genetic causes), by reversing impairments in dentate gyrus LTP and spine size and by promoting neurogenesis and trophic factors secretion.
Collapse
|
38
|
Arai JA, Li S, Feig LA. Sos2 is dispensable for NMDA-induced Erk activation and LTP induction. Neurosci Lett 2009; 455:22-5. [PMID: 19429099 DOI: 10.1016/j.neulet.2009.03.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Revised: 03/09/2009] [Accepted: 03/12/2009] [Indexed: 11/25/2022]
Abstract
N-methyl-d-aspartate (NMDA) receptor-induced activation of extracellular signal-related protein kinase (Erk) plays important roles in various neuronal functions including long-term potentiation (LTP). Son of sevenless (Sos) proteins have been implicated in NMDA-induced Erk activation in neurons of young mice. However, contribution of each of the two Sos isoforms, Sos1 and Sos2, has not been clarified. In this study, Sos2 involvement in NMDA-induced Erk activation was examined. We observed no defect in Erk phosphorylation induced by NMDA treatment of cortical neuronal cultures from Sos2-/- newborn mice. Moreover, theta-burst-induced LTP induction in the hippocampus of Sos2-/- mice was also normal. Finally, Erk activation by either depolarization or BDNF treatment was also normal in cultured neurons from Sos2 knockout mice. These results imply that Sos1 is the major regulator of these well-known neuronal Sos functions and suggest that a novel function for Sos2 in neurons remains to be determined.
Collapse
Affiliation(s)
- Junko A Arai
- Sackler School of Graduate Biomedical Sciences and Department of Biochemistry, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | | | | |
Collapse
|
39
|
Transgenerational rescue of a genetic defect in long-term potentiation and memory formation by juvenile enrichment. J Neurosci 2009; 29:1496-502. [PMID: 19193896 DOI: 10.1523/jneurosci.5057-08.2009] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The idea that qualities acquired from experience can be transmitted to future offspring has long been considered incompatible with current understanding of genetics. However, the recent documentation of non-Mendelian transgenerational inheritance makes such a "Lamarckian"-like phenomenon more plausible. Here, we demonstrate that exposure of 15-d-old mice to 2 weeks of an enriched environment (EE), that includes exposure to novel objects, elevated social interactions and voluntary exercise, enhances long-term potentiation (LTP) not only in these enriched mice but also in their future offspring through early adolescence, even if the offspring never experience EE. In both generations, LTP induction is augmented by a newly appearing cAMP/p38 MAP kinase-dependent signaling cascade. Strikingly, defective LTP and contextual fear conditioning memory normally associated with ras-grf knock-out mice are both masked in the offspring of enriched mutant parents. The transgenerational transmission of this effect occurs from the enriched mother to her offspring during embryogenesis. If a similar phenomenon occurs in humans, the effectiveness of one's memory during adolescence, particularly in those with defective cell signaling mechanisms that control memory, can be influenced by environmental stimulation experienced by one's mother during her youth.
Collapse
|
40
|
Inheriting memory. Nature 2009. [DOI: 10.1038/news.2009.76] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
41
|
The ubiquitin ligase RPM-1 and the p38 MAPK PMK-3 regulate AMPA receptor trafficking. PLoS One 2009; 4:e4284. [PMID: 19172179 PMCID: PMC2627918 DOI: 10.1371/journal.pone.0004284] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Accepted: 12/18/2008] [Indexed: 11/19/2022] Open
Abstract
Ubiquitination occurs at synapses, yet its role remains unclear. Previous studies demonstrated that the RPM-1 ubiquitin ligase organizes presynaptic boutons at neuromuscular junctions in C. elegans motorneurons. Here we find that RPM-1 has a novel postsynaptic role in interneurons, where it regulates the trafficking of the AMPA-type glutamate receptor GLR-1 from synapses into endosomes. Mutations in rpm-1 cause the aberrant accumulation of GLR-1 in neurites. Moreover, rpm-1 mutations enhance the endosomal accumulation of GLR-1 observed in mutants for lin-10, a Mint2 ortholog that promotes GLR-1 recycling from Syntaxin-13 containing endosomes. As in motorneurons, RPM-1 negatively regulates the pmk-3/p38 MAPK pathway in interneurons by repressing the protein levels of the MAPKKK DLK-1. This regulation of PMK-3 signaling is critical for RPM-1 function with respect to GLR-1 trafficking, as pmk-3 mutations suppress both lin-10 and rpm-1 mutations. Positive or negative changes in endocytosis mimic the effects of rpm-1 or pmk-3 mutations, respectively, on GLR-1 trafficking. Specifically, RAB-5(GDP), an inactive mutant of RAB-5 that reduces endocytosis, mimics the effect of pmk-3 mutations when introduced into wild-type animals, and occludes the effect of pmk-3 mutations when introduced into pmk-3 mutants. By contrast, RAB-5(GTP), which increases endocytosis, suppresses the effect of pmk-3 mutations, mimics the effect of rpm-1 mutations, and occludes the effect of rpm-1 mutations. Our findings indicate a novel specialized role for RPM-1 and PMK-3/p38 MAPK in regulating the endosomal trafficking of AMPARs at central synapses.
Collapse
|
42
|
Enhanced plasticity in zincergic, cortical circuits after exposure to enriched environments. J Neurosci 2009; 28:13995-9. [PMID: 19091988 DOI: 10.1523/jneurosci.4645-08.2008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Despite the plethora of reports that demonstrate plasticity in the mammalian cerebral cortex, the characterization of the cellular mechanisms that mediate it is sparse. Here, we show that the magnitude of the experience-dependent regulation of vesicular zinc is significantly increased through enriched-environment housing. Mice were reared either in a deprived environment and subsequently housed in deprived, minimally enriched, or enriched conditions after the removal of the c-row of vibrissae or reared in an enriched environment before and after vibrissae removal. Levels of vesicular zinc were assessed in deprived and nondeprived barrels 6 h to 14 d after vibrissae removal. We found that housing in enriched environmental conditions resulted in a greater change in vesicular zinc levels than did other housing conditions; however, this effect was dependent on both the magnitude and duration of enrichment. Our data indicate that enriched-environment housing has profound effects on the regulation of vesicular zinc that occurs concurrently with experience-dependent plasticity, suggesting a role for zinc in the multitude of cortical modifications associated with enriched environments.
Collapse
|
43
|
Vasuta C, Caunt C, James R, Samadi S, Schibuk E, Kannangara T, Titterness AK, Christie BR. Effects of exercise on NMDA receptor subunit contributions to bidirectional synaptic plasticity in the mouse dentate gyrus. Hippocampus 2008; 17:1201-8. [PMID: 17879376 DOI: 10.1002/hipo.20349] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We examined synaptic plasticity in the dentate gyrus (DG) of the hippocampus in vitro in juvenile C57Bl6 mice (28-40 days of age), housed in control conditions with minimal enrichment (Controls) or with access to an exercise wheel (Runners). LTP expression was significantly greater in slices from Runners than in those from Controls, but could be blocked by APV in both groups. LTP was significantly reduced by NR2B subunit antagonists in both groups. NVP-AAM077, an antagonist with a higher preference for NR2A subunits over NR2B subunits, blocked LTP in slices from Runners and produced a slight depression in Control animals. LTD in the DG was also blocked by APV, but not by either of the NR2B specific antagonists. Strikingly, NVP-AAM077 prevented LTD in Runners, but not in Control animals, suggesting an increased involvement of NR2A subunits in LTD in animals that exercise. NVP-AAM077 did not block LTD in NR2A Knock Out (KO) animals that exercised, as expected. In an attempt to discern whether NMDA receptors located at extrasynaptic sites could play a role in the induction of LTD, DL-TBOA was used to block excitatory amino acid transport and increase extracellular glutamate levels. Under these conditions, LTD was not blocked by the co-application of a specific NR2B subunit antagonist in either group, but NVP-AAM077 again blocked LTD selectively in Runners. These results indicate that NR2A and NR2B subunits play a significant role in LTP in the DG, and that exercise can significantly alter the contribution of NMDA NR2A subunits to LTD.
Collapse
Affiliation(s)
- Cristina Vasuta
- The Neuroscience Program, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Li S, Feig LA, Hartley DM. A brief, but repeated, swimming protocol is sufficient to overcome amyloid beta-protein inhibition of hippocampal long-term potentiation. Eur J Neurosci 2007; 26:1289-98. [PMID: 17767506 DOI: 10.1111/j.1460-9568.2007.05760.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease starts as an almost imperceptible malady, first observed clinically as a mild memory problem. Accumulating genetic and biochemical data have suggested that amyloid beta-protein (Abeta) plays an important role in this memory loss, and Abeta has been shown to suppress long-term potentiation (LTP), a cellular model for memory and learning. Here we show that a very brief (3 min) swimming, twice daily for 2 weeks, rescues LTP inhibition in the CA1 region of hippocampal slices caused by Abeta(42) or Abeta(40) carrying the Arctic mutation using a theta burst stimulation (TBS) protocol. Whereas the input-output curve was not affected, the paired-pulse ratio was reduced in mice receiving our repeated swimming protocol, suggesting a possible involvement of presynaptic facilitation. Similar to swimming, Abeta's inhibition of LTP could be rescued with the adenylyl cyclase, forskolin. Interestingly, this swimming protocol produced conditions in which a weak-TBS could invoke LTP not observed in naïve mice, which again was mimicked by forskolin. In contrast, the protein kinase A (PKA) inhibitor, H89, blocked both the forskolin and swimming potentiation of LTP; these data implicate cAMP/PKA signaling in the protective effect of swimming and mediating Abeta' detrimental effects. Our data add a new simple behavior paradigm that shows the importance of an environmental factor in reversing the pathophysiological effects of Abeta, and suggest new therapeutic avenues.
Collapse
Affiliation(s)
- Shaomin Li
- Department of Biochemistry, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA 02111, USA
| | | | | |
Collapse
|