1
|
Katoh-Kurasawa M, Lehmann P, Shaulsky G. The greenbeard gene tgrB1 regulates altruism and cheating in Dictyostelium discoideum. Nat Commun 2024; 15:3984. [PMID: 38734736 PMCID: PMC11088635 DOI: 10.1038/s41467-024-48380-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Greenbeard genetic elements encode rare perceptible signals, signal recognition ability, and altruism towards others that display the same signal. Putative greenbeards have been described in various organisms but direct evidence for all the properties in one system is scarce. The tgrB1-tgrC1 allorecognition system of Dictyostelium discoideum encodes two polymorphic membrane proteins which protect cells from chimerism-associated perils. During development, TgrC1 functions as a ligand-signal and TgrB1 as its receptor, but evidence for altruism has been indirect. Here, we show that mixing wild-type and activated tgrB1 cells increases wild-type spore production and relegates the mutants to the altruistic stalk, whereas mixing wild-type and tgrB1-null cells increases mutant spore production and wild-type stalk production. The tgrB1-null cells cheat only on partners that carry the same tgrC1-allotype. Therefore, TgrB1 activation confers altruism whereas TgrB1 inactivation causes allotype-specific cheating, supporting the greenbeard concept and providing insight into the relationship between allorecognition, altruism, and exploitation.
Collapse
Affiliation(s)
- Mariko Katoh-Kurasawa
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Peter Lehmann
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Graduate program in Genetics and Genomics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Gad Shaulsky
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
2
|
Cortés-Pérez S, Ferrera-Cerrato R, Rodríguez-Zaragoza S, Alarcón A. Short-Term Evaluation of the Spatial Distribution of Trophic Groups of Amoebae in the Rhizosphere of Zea mays Inoculated with Rhizophagus intraradices. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02132-3. [PMID: 36331579 DOI: 10.1007/s00248-022-02132-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Primary production in terrestrial ecosystems is sustained by plants, microbiota, and fungi, which are the major organic matter providers in the root zone, setting in motion the soil food webs. Predators like soil amoebae voraciously feed on bacteria, fungi, and microbial eukaryotes releasing the nutrients sequestered in their biomass. Early food web setting up is crucial for seedling nutrition and its further development after establishment. Mycorrhizal fungi are more than phosphorus providers, and we wonder what their role is in structuring the predators' trophic groups in the root zone. We evaluated the effect of Rhizophagus intraradices inoculated in Zea mays (mycorrhizosphere), on the structuration of amoebae trophic groups along vertical and horizontal (3, 6, and 9 cm) soil distribution when compared to un-inoculated plants, after 20 days in microcosms. Amoebae species richness was highest in non-mycorrhizal seedlings in the root zone at 6- to 9-cm depth, and 3 cm away from plants. More bacterial species are needed when plants are devoid of mycorrhiza, and their influence is constrained 3 cm away from roots. Higher diversity of trophic groups was recorded at mycorrhizal seedlings and at the compartment influenced by the mycelium at 6- to 9-cm depth. The highest bacterivorous diversity, higher number of rare species and protozoa-eating amoebae, and the absence of fungivorous group recorded at the mycorrhizosphere of Z. mays, indicate that the community was very different from the non-mycorrhizal plants. We conclude that the arbuscular mycorrhizal fungus exerts significant changes on the community of trophic groups of amoebae.
Collapse
Affiliation(s)
- Sandra Cortés-Pérez
- Microbiologia de Suelos, Posgrado de Edafología, Colegio de Postgraduados, Carretera Mexico-Texcoco Km. 36.5, Montecillo, 56230, Texcoco, Estado de Mexico, Mexico
| | - Ronald Ferrera-Cerrato
- Microbiologia de Suelos, Posgrado de Edafología, Colegio de Postgraduados, Carretera Mexico-Texcoco Km. 36.5, Montecillo, 56230, Texcoco, Estado de Mexico, Mexico.
| | - Salvador Rodríguez-Zaragoza
- Laboratorio de Ecología Microbiana, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autonoma de Mexico, Av de los Barrios 1, 54090, Los Reyes Iztacala, Estado de Mexico, Mexico
| | - Alejandro Alarcón
- Microbiologia de Suelos, Posgrado de Edafología, Colegio de Postgraduados, Carretera Mexico-Texcoco Km. 36.5, Montecillo, 56230, Texcoco, Estado de Mexico, Mexico
| |
Collapse
|
3
|
Macfarlane FR, Lorenzi T, Painter KJ. The Impact of Phenotypic Heterogeneity on Chemotactic Self-Organisation. Bull Math Biol 2022; 84:143. [PMID: 36319913 PMCID: PMC9626439 DOI: 10.1007/s11538-022-01099-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022]
Abstract
The capacity to aggregate through chemosensitive movement forms a paradigm of self-organisation, with examples spanning cellular and animal systems. A basic mechanism assumes a phenotypically homogeneous population that secretes its own attractant, with the well known system introduced more than five decades ago by Keller and Segel proving resolutely popular in modelling studies. The typical assumption of population phenotypic homogeneity, however, often lies at odds with the heterogeneity of natural systems, where populations may comprise distinct phenotypes that vary according to their chemotactic ability, attractant secretion, etc. To initiate an understanding into how this diversity can impact on autoaggregation, we propose a simple extension to the classical Keller and Segel model, in which the population is divided into two distinct phenotypes: those performing chemotaxis and those producing attractant. Using a combination of linear stability analysis and numerical simulations, we demonstrate that switching between these phenotypic states alters the capacity of a population to self-aggregate. Further, we show that switching based on the local environment (population density or chemoattractant level) leads to diverse patterning and provides a route through which a population can effectively curb the size and density of an aggregate. We discuss the results in the context of real world examples of chemotactic aggregation, as well as theoretical aspects of the model such as global existence and blow-up of solutions.
Collapse
Affiliation(s)
- Fiona R Macfarlane
- School of Mathematics and Statistics, University of St Andrews, St Andrews, Scotland.
| | - Tommaso Lorenzi
- Department of Mathematical Sciences "G. L. Lagrange", Politecnico di Torino, Turin, Italy
| | - Kevin J Painter
- Inter-university Department of Regional and Urban Studies and Planning, Politecnico di Torino, Turin, Italy
| |
Collapse
|
4
|
Detomasi TC, Rico-Ramírez AM, Sayler RI, Gonçalves AP, Marletta MA, Glass NL. A moonlighting function of a chitin polysaccharide monooxygenase, CWR-1, in Neurospora crassa allorecognition. eLife 2022; 11:e80459. [PMID: 36040303 PMCID: PMC9550227 DOI: 10.7554/elife.80459] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Organisms require the ability to differentiate themselves from organisms of different or even the same species. Allorecognition processes in filamentous fungi are essential to ensure identity of an interconnected syncytial colony to protect it from exploitation and disease. Neurospora crassa has three cell fusion checkpoints controlling formation of an interconnected mycelial network. The locus that controls the second checkpoint, which allows for cell wall dissolution and subsequent fusion between cells/hyphae, cwr (cell wall remodeling), encodes two linked genes, cwr-1 and cwr-2. Previously, it was shown that cwr-1 and cwr-2 show severe linkage disequilibrium with six different haplogroups present in N. crassa populations. Isolates from an identical cwr haplogroup show robust fusion, while somatic cell fusion between isolates of different haplogroups is significantly blocked in cell wall dissolution. The cwr-1 gene encodes a putative polysaccharide monooxygenase (PMO). Herein we confirm that CWR-1 is a C1-oxidizing chitin PMO. We show that the catalytic (PMO) domain of CWR-1 was sufficient for checkpoint function and cell fusion blockage; however, through analysis of active-site, histidine-brace mutants, the catalytic activity of CWR-1 was ruled out as a major factor for allorecognition. Swapping a portion of the PMO domain (V86 to T130) did not switch cwr haplogroup specificity, but rather cells containing this chimera exhibited a novel haplogroup specificity. Allorecognition to mediate cell fusion blockage is likely occurring through a protein-protein interaction between CWR-1 with CWR-2. These data highlight a moonlighting role in allorecognition of the CWR-1 PMO domain.
Collapse
Affiliation(s)
- Tyler C Detomasi
- Department of Chemistry, University of California, BerkeleyBerkeleyUnited States
| | - Adriana M Rico-Ramírez
- Department of Plant and Microbial Biology, University of California, BerkeleyBerkeleyUnited States
| | - Richard I Sayler
- California Institute for Quantitative Biosciences, University of California, BerkeleyBerkeleyUnited States
| | - A Pedro Gonçalves
- Department of Plant and Microbial Biology, University of California, BerkeleyBerkeleyUnited States
| | - Michael A Marletta
- Department of Chemistry, University of California, BerkeleyBerkeleyUnited States
- California Institute for Quantitative Biosciences, University of California, BerkeleyBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - N Louise Glass
- Department of Plant and Microbial Biology, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
5
|
Rai A, Klare JP, Reinke PYA, Englmaier F, Fohrer J, Fedorov R, Taft MH, Chizhov I, Curth U, Plettenburg O, Manstein DJ. Structural and Biochemical Characterization of a Dye-Decolorizing Peroxidase from Dictyostelium discoideum. Int J Mol Sci 2021; 22:ijms22126265. [PMID: 34200865 PMCID: PMC8230527 DOI: 10.3390/ijms22126265] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 05/29/2021] [Accepted: 06/05/2021] [Indexed: 12/23/2022] Open
Abstract
A novel cytoplasmic dye-decolorizing peroxidase from Dictyostelium discoideum was investigated that oxidizes anthraquinone dyes, lignin model compounds, and general peroxidase substrates such as ABTS efficiently. Unlike related enzymes, an aspartate residue replaces the first glycine of the conserved GXXDG motif in Dictyostelium DyPA. In solution, Dictyostelium DyPA exists as a stable dimer with the side chain of Asp146 contributing to the stabilization of the dimer interface by extending the hydrogen bond network connecting two monomers. To gain mechanistic insights, we solved the Dictyostelium DyPA structures in the absence of substrate as well as in the presence of potassium cyanide and veratryl alcohol to 1.7, 1.85, and 1.6 Å resolution, respectively. The active site of Dictyostelium DyPA has a hexa-coordinated heme iron with a histidine residue at the proximal axial position and either an activated oxygen or CN- molecule at the distal axial position. Asp149 is in an optimal conformation to accept a proton from H2O2 during the formation of compound I. Two potential distal solvent channels and a conserved shallow pocket leading to the heme molecule were found in Dictyostelium DyPA. Further, we identified two substrate-binding pockets per monomer in Dictyostelium DyPA at the dimer interface. Long-range electron transfer pathways associated with a hydrogen-bonding network that connects the substrate-binding sites with the heme moiety are described.
Collapse
Affiliation(s)
- Amrita Rai
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz Hartmann Centre for Medical Research Carl Neuberg Str. 1, D-30625 Hannover, Germany; (A.R.); (P.Y.A.R.); (M.H.T.); (I.C.); (U.C.)
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, D-44227 Dortmund, Germany
| | - Johann P. Klare
- Department of Physics, University of Osnabrueck, Barbarastrasse 7, D-49076 Osnabrück, Germany;
| | - Patrick Y. A. Reinke
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz Hartmann Centre for Medical Research Carl Neuberg Str. 1, D-30625 Hannover, Germany; (A.R.); (P.Y.A.R.); (M.H.T.); (I.C.); (U.C.)
- Division for Structural Biochemistry, Hannover Medical School, Carl Neuberg Str. 1, D-30625 Hannover, Germany;
- Center for Free-Electron Laser Science, German Electron Synchrotron (DESY), Notkestr. 85, D-22607 Hamburg, Germany
| | - Felix Englmaier
- Institute of Medicinal Chemistry, Helmholtz Zentrum München (GmbH), German Research Center for Environmental Health, Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany; (F.E.); (O.P.)
- Center of Biomolecular Drug Research (BMWZ), Institute of Organic Chemistry, Leibniz University Hannover, Schneiderberg 1b, D-30167 Hannover, Germany;
| | - Jörg Fohrer
- Center of Biomolecular Drug Research (BMWZ), Institute of Organic Chemistry, Leibniz University Hannover, Schneiderberg 1b, D-30167 Hannover, Germany;
- NMR Department of the Department of Chemistry, Technical University Darmstadt, Clemens Schöpf Institute for Organic Chemistry and Biochemistry, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany
| | - Roman Fedorov
- Division for Structural Biochemistry, Hannover Medical School, Carl Neuberg Str. 1, D-30625 Hannover, Germany;
| | - Manuel H. Taft
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz Hartmann Centre for Medical Research Carl Neuberg Str. 1, D-30625 Hannover, Germany; (A.R.); (P.Y.A.R.); (M.H.T.); (I.C.); (U.C.)
| | - Igor Chizhov
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz Hartmann Centre for Medical Research Carl Neuberg Str. 1, D-30625 Hannover, Germany; (A.R.); (P.Y.A.R.); (M.H.T.); (I.C.); (U.C.)
- Division for Structural Biochemistry, Hannover Medical School, Carl Neuberg Str. 1, D-30625 Hannover, Germany;
| | - Ute Curth
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz Hartmann Centre for Medical Research Carl Neuberg Str. 1, D-30625 Hannover, Germany; (A.R.); (P.Y.A.R.); (M.H.T.); (I.C.); (U.C.)
- Division for Structural Biochemistry, Hannover Medical School, Carl Neuberg Str. 1, D-30625 Hannover, Germany;
| | - Oliver Plettenburg
- Institute of Medicinal Chemistry, Helmholtz Zentrum München (GmbH), German Research Center for Environmental Health, Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany; (F.E.); (O.P.)
- Center of Biomolecular Drug Research (BMWZ), Institute of Organic Chemistry, Leibniz University Hannover, Schneiderberg 1b, D-30167 Hannover, Germany;
| | - Dietmar J. Manstein
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz Hartmann Centre for Medical Research Carl Neuberg Str. 1, D-30625 Hannover, Germany; (A.R.); (P.Y.A.R.); (M.H.T.); (I.C.); (U.C.)
- Division for Structural Biochemistry, Hannover Medical School, Carl Neuberg Str. 1, D-30625 Hannover, Germany;
- RESiST, Cluster of Excellence 2155, Medizinische Hochschule Hannover, D-30625 Hannover, Germany
- Correspondence: ; Tel.: +49-511-5323700
| |
Collapse
|
6
|
Mathavarajah S, VanIderstine C, Dellaire G, Huber RJ. Cancer and the breakdown of multicellularity: What Dictyostelium discoideum, a social amoeba, can teach us. Bioessays 2021; 43:e2000156. [PMID: 33448043 DOI: 10.1002/bies.202000156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 01/01/2023]
Abstract
Ancient pathways promoting unicellularity and multicellularity are associated with cancer, the former being pro-oncogenic and the latter acting to suppress oncogenesis. However, there are only a limited number of non-vertebrate models for studying these pathways. Here, we review Dictyostelium discoideum and describe how it can be used to understand these gene networks. D. discoideum has a unicellular and multicellular life cycle, making it possible to study orthologs of cancer-associated genes in both phases. During development, differentiated amoebae form a fruiting body composed of a mass of spores that are supported atop a stalk. A portion of the cells sacrifice themselves to become non-reproductive stalk cells. Cheating disrupts the principles of multicellularity, as cheater cells alter their cell fate to preferentially become spores. Importantly, D. discoideum has gene networks and several strategies for maintaining multicellularity. Therefore, D. discoideum can help us better understand how conserved genes and pathways involved in multicellularity also influence cancer development, potentially identifying new therapeutic avenues.
Collapse
Affiliation(s)
- Sabateeshan Mathavarajah
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Carter VanIderstine
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Graham Dellaire
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Robert J Huber
- Department of Biology, Trent University, Peterborough, Ontario, Canada
| |
Collapse
|
7
|
Liu P, Zhang S, Zou Y, Li Z, Stephenson SL, Li Y. Distribution and ecology of dictyostelids in China. FUNGAL BIOL REV 2020. [DOI: 10.1016/j.fbr.2020.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Abstract
Sex promotes the recombination and reassortment of genetic material and is prevalent across eukaryotes, although our knowledge of the molecular details of sexual inheritance is scant in several major lineages. In social amoebae, sex involves a promiscuous mixing of cytoplasm before zygotes consume the majority of cells, but for technical reasons, sexual progeny have been difficult to obtain and study. We report here genome-wide characterization of meiotic progeny in Dictyostelium discoideum We find that recombination occurs at high frequency in pairwise crosses between all three mating types, despite the absence of the Spo11 enzyme that is normally required to initiate crossover formation. Fusions of more than two gametes to form transient syncytia lead to frequent triparental inheritance, with haploid meiotic progeny bearing recombined nuclear haplotypes from two parents and the mitochondrial genome from a third. Cells that do not contribute genetically to the Dictyostelium zygote nucleus thereby have a stake in the next haploid generation. D. discoideum mitochondrial genomes are polymorphic, and our findings raise the possibility that some of this variation might be a result of sexual selection on genes that can promote the spread of individual organelle genomes during sex. This kind of self-interested mitochondrial behavior may have had important consequences during eukaryogenesis and the initial evolution of sex.
Collapse
|
9
|
Abstract
Sex in social amoebae (or dictyostelids) has a number of striking features. Dictyostelid zygotes do not proliferate but grow to a large size by feeding on other cells of the same species, each zygote ultimately forming a walled structure called a macrocyst. The diploid macrocyst nucleus undergoes meiosis, after which a single meiotic product survives to restart haploid vegetative growth. Meiotic recombination is generally initiated by the Spo11 enzyme, which introduces DNA double-strand breaks. Uniquely, as far as is known among sexual eukaryotes, dictyostelids lack a SPO11 gene. Despite this, recombination occurs at high frequencies during meiosis in dictyostelids, through unknown mechanisms. The molecular processes underlying these events, and the evolutionary drivers that brought them into being, may shed light on the genetic conflicts that occur within and between genomes, and how they can be resolved.
Collapse
|
10
|
Durgan J, Florey O. Cancer cell cannibalism: Multiple triggers emerge for entosis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2018; 1865:831-841. [PMID: 29548938 DOI: 10.1016/j.bbamcr.2018.03.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/02/2018] [Accepted: 03/06/2018] [Indexed: 12/22/2022]
Abstract
Entosis is a form of epithelial cell engulfment and cannibalism prevalent in human cancer. Until recently, the only known trigger for entosis was loss of attachment to the extracellular matrix, as often occurs in the tumour microenvironment. However, two new studies now reveal that entosis can also occur among adherent epithelial cells, induced by mitosis or glucose starvation. Together, these findings point to the intriguing notion that certain hallmark properties of cancer cells, including anchorage independence, aberrant proliferation and metabolic stress, can converge on the induction of cell cannibalism, a phenomenon so frequently observed in tumours. In this review, we explore the molecular, cellular and biophysical mechanisms underlying entosis and discuss the impact of cell cannibalism on tumour biology.
Collapse
Affiliation(s)
- J Durgan
- Babraham Institute, Cambridge, UK.
| | - O Florey
- Babraham Institute, Cambridge, UK
| |
Collapse
|
11
|
Strategic investment explains patterns of cooperation and cheating in a microbe. Proc Natl Acad Sci U S A 2018; 115:E4823-E4832. [PMID: 29735672 DOI: 10.1073/pnas.1716087115] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Contributing to cooperation is typically costly, while its rewards are often available to all members of a social group. So why should individuals be willing to pay these costs, especially if they could cheat by exploiting the investments of others? Kin selection theory broadly predicts that individuals should invest more into cooperation if their relatedness to group members is high (assuming they can discriminate kin from nonkin). To better understand how relatedness affects cooperation, we derived the ‟Collective Investment" game, which provides quantitative predictions for patterns of strategic investment depending on the level of relatedness. We then tested these predictions by experimentally manipulating relatedness (genotype frequencies) in mixed cooperative aggregations of the social amoeba Dictyostelium discoideum, which builds a stalk to facilitate spore dispersal. Measurements of stalk investment by natural strains correspond to the predicted patterns of relatedness-dependent strategic investment, wherein investment by a strain increases with its relatedness to the group. Furthermore, if overall group relatedness is relatively low (i.e., no strain is at high frequency in a group) strains face a scenario akin to the "Prisoner's Dilemma" and suffer from insufficient collective investment. We find that strains employ relatedness-dependent segregation to avoid these pernicious conditions. These findings demonstrate that simple organisms like D. discoideum are not restricted to being ‟cheaters" or ‟cooperators" but instead measure their relatedness to their group and strategically modulate their investment into cooperation accordingly. Consequently, all individuals will sometimes appear to cooperate and sometimes cheat due to the dynamics of strategic investing.
Collapse
|
12
|
Genetic signatures of microbial altruism and cheating in social amoebas in the wild. Proc Natl Acad Sci U S A 2018; 115:3096-3101. [PMID: 29507206 DOI: 10.1073/pnas.1720324115] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Many microbes engage in social interactions. Some of these have come to play an important role in the study of cooperation and conflict, largely because, unlike most animals, they can be genetically manipulated and experimentally evolved. However, whereas animal social behavior can be observed and assessed in natural environments, microbes usually cannot, so we know little about microbial social adaptations in nature. This has led to some difficult-to-resolve controversies about social adaptation even for well-studied traits such as bacterial quorum sensing, siderophore production, and biofilms. Here we use molecular signatures of population genetics and molecular evolution to address controversies over the existence of altruism and cheating in social amoebas. First, we find signatures of rapid adaptive molecular evolution that are consistent with social conflict being a significant force in nature. Second, we find population-genetic signatures of purifying selection to support the hypothesis that the cells that form the sterile stalk evolve primarily through altruistic kin selection rather than through selfish direct reproduction. Our results show how molecular signatures can provide insight into social adaptations that cannot be observed in their natural context, and they support the hypotheses that social amoebas in the wild are both altruists and cheaters.
Collapse
|
13
|
Shibasaki S, Shirokawa Y, Shimada M. Cooperation induces other cooperation: Fruiting bodies promote the evolution of macrocysts in Dictyostelium discoideum. J Theor Biol 2017; 421:136-145. [PMID: 28385668 DOI: 10.1016/j.jtbi.2017.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/31/2017] [Accepted: 04/03/2017] [Indexed: 01/15/2023]
Abstract
Biological studies of the evolution of cooperation are challenging because this process is vulnerable to cheating. Many mechanisms, including kin discrimination, spatial structure, or by-products of self-interested behaviors, can explain this evolution. Here we propose that the evolution of cooperation can be induced by other cooperation. To test this idea, we used a model organism Dictyostelium discoideum because it exhibits two cooperative dormant phases, the fruiting body and the macrocyst. In both phases, the same chemoattractant, cyclic AMP (cAMP), is used to collect cells. This common feature led us to hypothesize that the evolution of macrocyst formation would be induced by coexistence with fruiting bodies. Before forming a mathematical model, we confirmed that macrocysts coexisted with fruiting bodies, at least under laboratory conditions. Next, we analyzed our evolutionary game theory-based model to investigate whether coexistence with fruiting bodies would stabilize macrocyst formation. The model suggests that macrocyst formation represents an evolutionarily stable strategy and a global invader strategy under this coexistence, but is unstable if the model ignores the fruiting body formation. This result indicates that the evolution of macrocyst formation and maintenance is attributable to coexistence with fruiting bodies. Therefore, macrocyst evolution can be considered as an example of evolution of cooperation induced by other cooperation.
Collapse
Affiliation(s)
- Shota Shibasaki
- Department of General Systems Studies, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 1538902, Japan.
| | - Yuka Shirokawa
- Department of General Systems Studies, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 1538902, Japan
| | - Masakazu Shimada
- Department of General Systems Studies, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 1538902, Japan
| |
Collapse
|
14
|
Wang X. Cell-in-cell phenomenon: A New Paradigm in Life Sciences. Curr Mol Med 2016; 15:810-8. [PMID: 26511712 PMCID: PMC5403960 DOI: 10.2174/1566524015666151026095730] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 10/06/2015] [Accepted: 10/19/2015] [Indexed: 12/19/2022]
Abstract
Cell-in-cell, a phenomenon characterized by one or more viable cells entering actively into another cell, was observed more than a century and has only attracted more attention in recent years and is becoming a new hot topic in the biological field, owing its biological significance in evolutionary as well as physiological and pathological relevance in development, homeostasis and diseases. In this paper we focus on the diversity, evolutionary conservatism and clinical implication of cell-in-cell as well as latest opinions on the research strategies. Based on the findings from our laboratory and other research groups three working models of cell-in-cell are also proposed.
Collapse
Affiliation(s)
- X Wang
- Institute of Life Sciences, the Key Laboratory of Normal Aging & Geriatric, the Chinese PLA General Hospital, Beijing 100853, P.R. China.
| |
Collapse
|
15
|
Saada EA, DeMarco SF, Shimogawa MM, Hill KL. "With a Little Help from My Friends"-Social Motility in Trypanosoma brucei. PLoS Pathog 2015; 11:e1005272. [PMID: 26679190 PMCID: PMC4683075 DOI: 10.1371/journal.ppat.1005272] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Edwin A. Saada
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Stephanie F. DeMarco
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Michelle M. Shimogawa
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Kent L. Hill
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
16
|
Wolf JB, Howie JA, Parkinson K, Gruenheit N, Melo D, Rozen D, Thompson CRL. Fitness Trade-offs Result in the Illusion of Social Success. Curr Biol 2015; 25:1086-90. [PMID: 25819562 PMCID: PMC4406944 DOI: 10.1016/j.cub.2015.02.061] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 01/20/2015] [Accepted: 02/20/2015] [Indexed: 11/01/2022]
Abstract
Cooperation is ubiquitous across the tree of life, from simple microbes to the complex social systems of animals. Individuals cooperate by engaging in costly behaviors that can be exploited by other individuals who benefit by avoiding these associated costs. Thus, if successful exploitation of social partners during cooperative interactions increases relative fitness, then we expect selection to lead to the emergence of a single optimal winning strategy in which individuals maximize their gain from cooperation while minimizing their associated costs. Such social "cheating" appears to be widespread in nature, including in several microbial systems, but despite the fitness advantages favoring social cheating, populations tend to harbor significant variation in social success rather than a single optimal winning strategy. Using the social amoeba Dictyostelium discoideum, we provide a possible explanation for the coexistence of such variation. We find that genotypes typically designated as "cheaters" because they produce a disproportionate number of spores in chimeric fruiting bodies do not actually gain higher fitness as a result of this apparent advantage because they produce smaller, less viable spores than putative "losers." As a consequence of this trade-off between spore number and viability, genotypes with different spore production strategies, which give the appearance of differential social success, ultimately have similar realized fitness. These findings highlight the limitations of using single fitness proxies in evolutionary studies and suggest that interpreting social trait variation in terms of strategies like cheating or cooperating may be misleading unless these behaviors are considered in the context of the true multidimensional nature of fitness.
Collapse
Affiliation(s)
- Jason B Wolf
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| | - Jennifer A Howie
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Katie Parkinson
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Nicole Gruenheit
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Diogo Melo
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Daniel Rozen
- Institute of Biology, Leiden University, Sylvius Laboratory, Sylviusweg 72, PO Box 9505, 2300 RA Leiden, the Netherlands
| | - Christopher R L Thompson
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
17
|
Sitti M, Ceylan H, Hu W, Giltinan J, Turan M, Yim S, Diller E. Biomedical Applications of Untethered Mobile Milli/Microrobots. PROCEEDINGS OF THE IEEE. INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS 2015; 103:205-224. [PMID: 27746484 PMCID: PMC5063027 DOI: 10.1109/jproc.2014.2385105] [Citation(s) in RCA: 308] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Untethered robots miniaturized to the length scale of millimeter and below attract growing attention for the prospect of transforming many aspects of health care and bioengineering. As the robot size goes down to the order of a single cell, previously inaccessible body sites would become available for high-resolution in situ and in vivo manipulations. This unprecedented direct access would enable an extensive range of minimally invasive medical operations. Here, we provide a comprehensive review of the current advances in biome dical untethered mobile milli/microrobots. We put a special emphasis on the potential impacts of biomedical microrobots in the near future. Finally, we discuss the existing challenges and emerging concepts associated with designing such a miniaturized robot for operation inside a biological environment for biomedical applications.
Collapse
Affiliation(s)
- Metin Sitti
- Max-Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany, and also are with Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15238 USA
| | - Hakan Ceylan
- Max-Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Wenqi Hu
- Max-Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Joshua Giltinan
- Max-Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany, and also are with Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15238 USA
| | - Mehmet Turan
- Max-Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Sehyuk Yim
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Eric Diller
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S3G8, Canada
| |
Collapse
|
18
|
Imhof S, Knüsel S, Gunasekera K, Vu XL, Roditi I. Social motility of African trypanosomes is a property of a distinct life-cycle stage that occurs early in tsetse fly transmission. PLoS Pathog 2014; 10:e1004493. [PMID: 25357194 PMCID: PMC4214818 DOI: 10.1371/journal.ppat.1004493] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 09/29/2014] [Indexed: 12/21/2022] Open
Abstract
The protozoan pathogen Trypanosoma brucei is transmitted between mammals by tsetse flies. The first compartment colonised by trypanosomes after a blood meal is the fly midgut lumen. Trypanosomes present in the lumen—designated as early procyclic forms—express the stage-specific surface glycoproteins EP and GPEET procyclin. When the trypanosomes establish a mature infection and colonise the ectoperitrophic space, GPEET is down-regulated, and EP becomes the major surface protein of late procyclic forms. A few years ago, it was discovered that procyclic form trypanosomes exhibit social motility (SoMo) when inoculated on a semi-solid surface. We demonstrate that SoMo is a feature of early procyclic forms, and that late procyclic forms are invariably SoMo-negative. In addition, we show that, apart from GPEET, other markers are differentially expressed in these two life-cycle stages, both in culture and in tsetse flies, indicating that they have different biological properties and should be considered distinct stages of the life cycle. Differentially expressed genes include two closely related adenylate cyclases, both hexokinases and calflagins. These findings link the phenomenon of SoMo in vitro to the parasite forms found during the first 4–7 days of a midgut infection. We postulate that ordered group movement on plates reflects the migration of parasites from the midgut lumen into the ectoperitrophic space within the tsetse fly. Moreover, the process can be uncoupled from colonisation of the salivary glands. Although they are the major surface proteins of procyclic forms, EP and GPEET are not essential for SoMo, nor, as shown previously, are they required for near normal colonisation of the fly midgut. African trypanosomes, single-celled parasites that cause human sleeping sickness and Nagana in animals, are transmitted by tsetse flies. Bloodstream form trypanosomes ingested by tsetse differentiate into procyclic forms in the midgut lumen of the insect. Successful transmission to a new mammalian host requires at least two migrations within the fly: one from the midgut lumen to the ectoperitrophic space, and a subsequent migration from the ectoperitrophic space to the salivary glands. Procyclic forms can exhibit social motility, a form of coordinated movement, on semi-solid surfaces. While social motility in bacteria is linked to virulence, the biological significance for trypanosomes is unknown. We demonstrate that social motility is a property of early procyclic forms, which are equivalent to the forms present during the first week of fly infection. In contrast, late procyclic forms characteristic for established infections are deficient for social motility. Our findings link social motility to a biological process, confirm that early and late procyclic forms are distinct life-cycle stages and imply that genes essential for social motility will be of key importance in fly transmission. We suggest that using the social motility assay as a surrogate for fly experiments should enable many more laboratories to examine this aspect of parasite transmission.
Collapse
Affiliation(s)
- Simon Imhof
- Institute of Cell Biology, University of Bern, Bern, Switzerland
- Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Sebastian Knüsel
- Institute of Cell Biology, University of Bern, Bern, Switzerland
- Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | | | - Xuan Lan Vu
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Isabel Roditi
- Institute of Cell Biology, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
19
|
Herron MD, Rashidi A, Shelton DE, Driscoll WW. Cellular differentiation and individuality in the 'minor' multicellular taxa. Biol Rev Camb Philos Soc 2013; 88:844-61. [PMID: 23448295 PMCID: PMC4103886 DOI: 10.1111/brv.12031] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Revised: 01/30/2013] [Accepted: 02/05/2013] [Indexed: 01/07/2023]
Abstract
Biology needs a concept of individuality in order to distinguish organisms from parts of organisms and from groups of organisms, to count individuals and compare traits across taxa, and to distinguish growth from reproduction. Most of the proposed criteria for individuality were designed for 'unitary' or 'paradigm' organisms: contiguous, functionally and physiologically integrated, obligately sexually reproducing multicellular organisms with a germ line sequestered early in development. However, the vast majority of the diversity of life on Earth does not conform to all of these criteria. We consider the issue of individuality in the 'minor' multicellular taxa, which collectively span a large portion of the eukaryotic tree of life, reviewing their general features and focusing on a model species for each group. When the criteria designed for unitary organisms are applied to other groups, they often give conflicting answers or no answer at all to the question of whether or not a given unit is an individual. Complex life cycles, intimate bacterial symbioses, aggregative development, and strange genetic features complicate the picture. The great age of some of the groups considered shows that 'intermediate' forms, those with some but not all of the traits traditionally associated with individuality, cannot reasonably be considered ephemeral or assumed transitional. We discuss a handful of recent attempts to reconcile the many proposed criteria for individuality and to provide criteria that can be applied across all the domains of life. Finally, we argue that individuality should be defined without reference to any particular taxon and that understanding the emergence of new kinds of individuals requires recognizing individuality as a matter of degree.
Collapse
Affiliation(s)
- Matthew D. Herron
- Department of Ecology and Evolutionary Biology, University of Arizona, 1041 Lowell St, Tucson, AZ 85721, USA
| | | | - Deborah E. Shelton
- Department of Ecology and Evolutionary Biology, University of Arizona, 1041 Lowell St, Tucson, AZ 85721, USA
| | - William W. Driscoll
- Department of Ecology and Evolutionary Biology, University of Arizona, 1041 Lowell St, Tucson, AZ 85721, USA
| |
Collapse
|
20
|
Landry CD, Kandel ER, Rajasethupathy P. New mechanisms in memory storage: piRNAs and epigenetics. Trends Neurosci 2013; 36:535-42. [DOI: 10.1016/j.tins.2013.05.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/10/2013] [Accepted: 05/24/2013] [Indexed: 12/13/2022]
|
21
|
|
22
|
Ho HI, Hirose S, Kuspa A, Shaulsky G. Kin recognition protects cooperators against cheaters. Curr Biol 2013; 23:1590-5. [PMID: 23910661 DOI: 10.1016/j.cub.2013.06.049] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 05/20/2013] [Accepted: 06/18/2013] [Indexed: 10/26/2022]
Abstract
The evolution of sociality and altruism is enigmatic because cooperators are constantly threatened by cheaters who benefit from cooperation without incurring its full cost [1, 2]. Kin recognition is the ability to recognize and cooperate with genetically close relatives. It has also been proposed as a potential mechanism that limits cheating [3, 4], but there has been no direct experimental support for that possibility. Here we show that kin recognition protects cooperators against cheaters. The social amoebae Dictyostelium discoideum cooperate by forming multicellular aggregates that develop into fruiting bodies of viable spores and dead stalk cells. Cheaters preferentially differentiate into spores while their victims die as stalk cells in chimeric aggregates. We engineered syngeneic cheaters and victims that differed only in their kin-recognition genes, tgrB1 and tgrC1, and in a single cheater allele and found that the victims escaped exploitation by different types of nonkin cheaters. This protection depends on kin-recognition-mediated segregation because it is compromised when we disrupt strain segregation. These findings provide direct evidence for the role of kin recognition in cheater control and suggest a mechanism for the maintenance of stable cooperative systems.
Collapse
Affiliation(s)
- Hsing-I Ho
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
23
|
Santorelli LA, Kuspa A, Shaulsky G, Queller DC, Strassmann JE. A new social gene in Dictyostelium discoideum, chtB. BMC Evol Biol 2013; 13:4. [PMID: 23298336 PMCID: PMC3559258 DOI: 10.1186/1471-2148-13-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 11/29/2012] [Indexed: 11/10/2022] Open
Abstract
Background Competitive social interactions are ubiquitous in nature, but their genetic basis is difficult to determine. Much can be learned from single gene knockouts in a eukaryote microbe. The mutants can be competed with the parent to discern the social impact of that specific gene. Dictyostelium discoideum is a social amoeba that exhibits cooperative behavior in the construction of a multicellular fruiting body. It is a good model organism to study the genetic basis of cooperation since it has a sequenced genome and it is amenable to genetic manipulation. When two strains of D. discoideum are mixed, a cheater strain can exploit its social partner by differentiating more spore than its fair share relative to stalk cells. Cheater strains can be generated in the lab or found in the wild and genetic analyses have shown that cheating behavior can be achieved through many pathways. Results We have characterized the knockout mutant chtB, which was isolated from a screen for cheater mutants that were also able to form normal fruiting bodies on their own. When mixed in equal proportions with parental strain cells, chtB mutants contributed almost 60% of the total number of spores. To do so, chtB cells inhibit wild type cells from becoming spores, as indicated by counts and by the wild type cells’ reduced expression of the prespore gene, cotB. We found no obvious fitness costs (morphology, doubling time in liquid medium, spore production, and germination efficiency) associated with the cheating ability of the chtB knockout. Conclusions In this study we describe a new gene in D. discoideum, chtB, which when knocked out inhibits the parental strain from producing spores. Moreover, under lab conditions, we did not detect any fitness costs associated with this behavior.
Collapse
Affiliation(s)
- Lorenzo A Santorelli
- Department of Ecology and Evolutionary Biology, Rice University, Houston, TX 77005, USA.
| | | | | | | | | |
Collapse
|
24
|
Nydam ML, De Tomaso AW. The fester locus in Botryllus schlosseri experiences selection. BMC Evol Biol 2012; 12:249. [PMID: 23259925 PMCID: PMC3549757 DOI: 10.1186/1471-2148-12-249] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 12/19/2012] [Indexed: 11/14/2022] Open
Abstract
Background Allorecognition, the ability of an organism to distinguish self from non-self, occurs throughout the entire tree of life. Despite the prevalence and importance of allorecognition systems, the genetic basis of allorecognition has rarely been characterized outside the well-known MHC (Major Histocompatibility Complex) in vertebrates and SI (Self-Incompatibility) in plants. Where loci have been identified, their evolutionary history is an open question. We have previously identified the genes involved in self/non-self recognition in the colonial ascidian Botryllus schlosseri, and we can now begin to investigate their evolution. In B. schlosseri, colonies sharing 1 or more alleles of a gene called FuHC (Fusion Histocompatibility) will fuse. Protein products of a locus called fester, located ~300 kb from FuHC, have been shown to play multiple roles in the histocompatibility reaction, as activating and/or inhibitory receptors. We test whether the proteins encoded by this locus are evolving neutrally or are experiencing balancing, directional, or purifying selection. Results Nearly all of the variation in the fester locus resides within populations. The 13 housekeeping genes (12 nuclear genes and mitochondrial cytochrome oxidase I) have substantially more structure among populations within groups and among groups than fester. All polymorphism statistics (Tajima's D, Fu and Li's D* and F*) are significantly negative for the East Coast A-type alleles, and Fu and Li's F* statistic is significantly negative for the West Coast A-type alleles. These results are likely due to selection rather than demography, given that 10 of the housekeeping loci have no populations with significant values for any of the polymorphism statistics. The majority of codons in the fester proteins have ω values < 1, but 15–27 codons have > 95% posterior probability of ω values > 1. Conclusion Fester proteins are evolving non-neutrally. The polymorphism statistics are consistent with either purifying selection or directional selection. The ω statistics show that the majority of the protein is experiencing purifying selection (ω < 1), but that 15–27 codons are undergoing either balancing or directional selection: ω > 1 is compatible with either scenario. The distribution of variation within and among populations points towards balancing selection and away from directional selection. While these data do not provide unambiguous support for a specific type of selection, they contribute to our evolutionary understanding of a critical biological process by determining the forces that affect loci involved in allorecognition.
Collapse
Affiliation(s)
- Marie L Nydam
- Division of Science and Mathematics, Centre College, Danville, KY 40422, USA.
| | | |
Collapse
|
25
|
Nydam ML, Taylor AA, De Tomaso AW. Evidence for selection on a chordate histocompatibility locus. Evolution 2012; 67:487-500. [PMID: 23356620 DOI: 10.1111/j.1558-5646.2012.01787.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Allorecognition is the ability of an organism to differentiate self or close relatives from unrelated individuals. The best known applications of allorecognition are the prevention of inbreeding in hermaphroditic species (e.g., the self-incompatibility [SI] systems in plants), the vertebrate immune response to foreign antigens mediated by MHC loci, and somatic fusion, where two genetically independent individuals physically join to become a chimera. In the few model systems where the loci governing allorecognition outcomes have been identified, the corresponding proteins have exhibited exceptional polymorphism. But information about the evolution of this polymorphism outside MHC is limited. We address this subject in the ascidian Botryllus schlosseri, where allorecognition outcomes are determined by a single locus, called FuHC (Fusion/HistoCompatibility). Molecular variation in FuHC is distributed almost entirely within populations, with very little evidence for differentiation among different populations. Mutation plays a larger role than recombination in the creation of FuHC polymorphism. A selection statistic, neutrality tests, and distribution of variation within and among different populations all provide evidence for selection acting on FuHC, but are not in agreement as to whether the selection is balancing or directional.
Collapse
Affiliation(s)
- Marie L Nydam
- Division of Science and Mathematics, Centre College, Danville, Kentucky 40422, USA.
| | | | | |
Collapse
|
26
|
|
27
|
Nydam ML, De Tomaso AW. Creation and maintenance of variation in allorecognition Loci: molecular analysis in various model systems. Front Immunol 2011; 2:79. [PMID: 22566868 PMCID: PMC3342096 DOI: 10.3389/fimmu.2011.00079] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 12/02/2011] [Indexed: 01/28/2023] Open
Abstract
Allorecognition is the ability of an organism to differentiate self or close relatives from unrelated conspecifics. Effective allorecognition systems are critical to the survival of organisms; they prevent inbreeding and facilitate fusions between close relatives. Where the loci governing allorecognition outcomes have been identified, the corresponding proteins often exhibit exceptional polymorphism. Two important questions about this polymorphism remain unresolved: how is it created, and how is it maintained. Because the genetic bases of several allorecognition systems have now been identified, including alr1 and alr2 in Hydractinia, fusion histocompatibility in Botryllus, the het (vic) loci in fungi, tgrB1 and tgrC1 in Dictyostelium, and self-incompatibility (SI) loci in several plant families, we are now poised to achieve a clearer understanding of how these loci evolve. In this review, we summarize what is currently known about the evolution of allorecognition loci, highlight open questions, and suggest future directions.
Collapse
Affiliation(s)
- Marie L Nydam
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara Santa Barbara, CA, USA.
| | | |
Collapse
|
28
|
Lopez MA, Nguyen HT, Oberholzer M, Hill KL. Social parasites. Curr Opin Microbiol 2011; 14:642-8. [PMID: 22020108 DOI: 10.1016/j.mib.2011.09.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 09/23/2011] [Accepted: 09/27/2011] [Indexed: 11/24/2022]
Abstract
Protozoan parasites cause tremendous human suffering worldwide, but strategies for therapeutic intervention are limited. Recent studies illustrate that the paradigm of microbes as social organisms can be brought to bear on questions about parasite biology, transmission and pathogenesis. This review discusses recent work demonstrating adaptation of social behaviors by parasitic protozoa that cause African sleeping sickness and malaria. The recognition of social behavior and cell-cell communication as a ubiquitous property of bacteria has transformed our view of microbiology, but protozoan parasites have not generally been considered in this context. Works discussed illustrate the potential for concepts of sociomicrobiology to provide insight into parasite biology and should stimulate new approaches for thinking about parasites and parasite-host interactions.
Collapse
Affiliation(s)
- Miguel A Lopez
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
29
|
Hirose S, Benabentos R, Ho HI, Kuspa A, Shaulsky G. Self-recognition in social amoebae is mediated by allelic pairs of tiger genes. Science 2011; 333:467-70. [PMID: 21700835 PMCID: PMC3142563 DOI: 10.1126/science.1203903] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Free-living cells of the social amoebae Dictyostelium discoideum can aggregate and develop into multicellular fruiting bodies in which many die altruistically as they become stalk cells that support the surviving spores. Dictyostelium cells exhibit kin discrimination--a potential defense against cheaters, which sporulate without contributing to the stalk. Kin discrimination depends on strain relatedness, and the polymorphic genes tgrB1 and tgrC1 are potential components of that mechanism. Here, we demonstrate a direct role for these genes in kin discrimination. We show that a matching pair of tgrB1 and tgrC1 alleles is necessary and sufficient for attractive self-recognition, which is mediated by differential cell-cell adhesion. We propose that TgrB1 and TgrC1 proteins mediate this adhesion through direct binding. This system is a genetically tractable ancient model of eukaryotic self-recognition.
Collapse
Affiliation(s)
- Shigenori Hirose
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
30
|
Hendrata M, Yang Z, Lux R, Shi W. Experimentally guided computational model discovers important elements for social behavior in myxobacteria. PLoS One 2011; 6:e22169. [PMID: 21811570 PMCID: PMC3139613 DOI: 10.1371/journal.pone.0022169] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 06/16/2011] [Indexed: 12/29/2022] Open
Abstract
Identifying essential factors in cellular interactions and organized movement of cells is important in predicting behavioral phenotypes exhibited by many bacterial cells. We chose to study Myxococcus xanthus, a soil bacterium whose individual cell behavior changes while in groups, leading to spontaneous formation of aggregation center during the early stage of fruiting body development. In this paper, we develop a cell-based computational model that solely relies on experimentally determined parameters to investigate minimal elements required to produce the observed social behaviors in M. xanthus. The model verifies previously known essential parameters and identifies one novel parameter, the active turning, which we define as the ability and tendency of a cell to turn to a certain angle without the presence of any obvious external factors. The simulation is able to produce both gliding pattern and spontaneous aggregation center formation as observed in experiments. The model is tested against several known M. xanthus mutants and our modification of parameter values relevant for the individual mutants produces good phenotypic agreements. This outcome indicates the strong predictive potential of our model for the social behaviors of uncharacterized mutants and their expected phenotypes during development.
Collapse
Affiliation(s)
- Melisa Hendrata
- Department of Mathematics, California State University Los Angeles, Los Angeles, California, United States of America.
| | | | | | | |
Collapse
|
31
|
Strassmann JE, Queller DC. How social evolution theory impacts our understanding of development in the social amoeba Dictyostelium. Dev Growth Differ 2011; 53:597-607. [DOI: 10.1111/j.1440-169x.2011.01272.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Abstract
The social amoebae possess a sexual cycle that involves transient mutlicellularity: first a zygote attracts surrounding haploid amoebae to form a walled aggregate around it, and then cannibalizes these peripheral cells, eventually forming a dormant single-celled macrocyst. Self-fertile homothallic isolates occur as well as breeding groups of self-infertile heterothallic cells, which commonly have more than two mating types. The mating-type locus of the widely studied model organism Dictyostelium discoideum, which has three mating types, has recently been identified. Two of the three mating types are determined by single putative regulatory genes bearing no mutual similarity, while the third is specified by homologues of both of these genes. This is the first sex-determining locus of an Amoebozoan to be described and, since none of the key regulators show homology to known proteins, may be a first glimpse of a novel mode of regulation used in these organisms. The sexual cycle of dictyostelids has been relatively neglected, but continues to yield much interesting biology as well as having the potential to add to the genetic tools available for the study of these organisms.
Collapse
Affiliation(s)
- Gareth Bloomfield
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 0QH, UK.
| |
Collapse
|
33
|
Parkinson K, Buttery NJ, Wolf JB, Thompson CRL. A simple mechanism for complex social behavior. PLoS Biol 2011; 9:e1001039. [PMID: 21468302 PMCID: PMC3066132 DOI: 10.1371/journal.pbio.1001039] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Accepted: 02/18/2011] [Indexed: 11/19/2022] Open
Abstract
The evolution of cooperation is a paradox because natural selection should favor exploitative individuals that avoid paying their fair share of any costs. Such conflict between the self-interests of cooperating individuals often results in the evolution of complex, opponent-specific, social strategies and counterstrategies. However, the genetic and biological mechanisms underlying complex social strategies, and therefore the evolution of cooperative behavior, are largely unknown. To address this dearth of empirical data, we combine mathematical modeling, molecular genetic, and developmental approaches to test whether variation in the production of and response to social signals is sufficient to generate the complex partner-specific social success seen in the social amoeba Dictyostelium discoideum. Firstly, we find that the simple model of production of and response to social signals can generate the sort of apparent complex changes in social behavior seen in this system, without the need for partner recognition. Secondly, measurements of signal production and response in a mutant with a change in a single gene that leads to a shift in social behavior provide support for this model. Finally, these simple measurements of social signaling can also explain complex patterns of variation in social behavior generated by the natural genetic diversity found in isolates collected from the wild. Our studies therefore demonstrate a novel and elegantly simple underlying mechanistic basis for natural variation in complex social strategies in D. discoideum. More generally, they suggest that simple rules governing interactions between individuals can be sufficient to generate a diverse array of outcomes that appear complex and unpredictable when those rules are unknown. Despite the appearance of cooperation in nature, selection should often favor exploitative individuals who perform less of any cooperative behaviors while maintaining the benefits accrued from the cooperative behavior of others. This conflict of interest among cooperating individuals can lead to the evolution of complex social strategies that depend on the identity (e.g. genotype or strategy) of the individuals with whom you interact. The social amoeba Dictyostelium discoideum provides a compelling model for studying such “partner specific” conflict and cooperation. Upon starvation, free-living amoebae aggregate and form a fruiting body composed of dead stalk cells and hardy spores. Different genotypes will aggregate to produce chimeric fruiting bodies, resulting in potential social conflict over who will contribute to the reproductive sporehead and who will “sacrifice” themselves to produce the dead stalk. The outcomes of competitive interactions in chimera appear complex, with social success being strongly partner specific. Here we propose a simple mechanism to explain social strategies in D. discoideum, based on the production of and response to stalk-inducing factors, the social signals that determine whether cells become stalk or spore. Indeed, measurements of signal production and response can predict social behavior of different strains, thus demonstrating a novel and elegantly simple underlying mechanistic basis for natural variation in complex facultative social strategies. This suggests that simple social rules can be sufficient to generate a diverse array of behavioral outcomes that appear complex and unpredictable when those rules are unknown.
Collapse
Affiliation(s)
- Katie Parkinson
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Manchester, United Kingdom
| | - Neil J. Buttery
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Manchester, United Kingdom
| | - Jason B. Wolf
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
- * E-mail: (JBW); (CRLT)
| | - Christopher R. L. Thompson
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Manchester, United Kingdom
- * E-mail: (JBW); (CRLT)
| |
Collapse
|
34
|
The cooperative amoeba: Dictyostelium as a model for social evolution. Trends Genet 2011; 27:48-54. [DOI: 10.1016/j.tig.2010.11.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 11/17/2010] [Accepted: 11/17/2010] [Indexed: 11/20/2022]
|
35
|
Abstract
Cell migration is a fundamental process that controls morphogenesis and inflammation. Its deregulation causes or is part of many diseases, including autoimmune syndromes, chronic inflammation, mental retardation, and cancer. Cell migration is an integral part of the cell biology, embryology, immunology, and neuroscience fields; as such, it has benefited from quantum leaps in molecular biology, biochemistry, and imaging techniques, and the emergence of the genomic and proteomic era. Combinations of these techniques have revealed new and exciting insights that explain how cells adhere and move, how the migration of multiple cells are coordinated and regulated, and how the cells interact with neighboring cells and/or react to changes in their microenvironment. This introduction provides a primer of the molecular and cellular insights, particularly the signaling networks, which control the migration of individual cells as well as collective migrations. The rest of the chapters are devoted to describe in detail some of the most salient technical advances that have illuminated the field of cell migration in recent years.
Collapse
|
36
|
The ROCO kinase QkgA is necessary for proliferation inhibition by autocrine signals in Dictyostelium discoideum. EUKARYOTIC CELL 2010; 9:1557-65. [PMID: 20709790 DOI: 10.1128/ec.00121-10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
AprA and CfaD are secreted proteins that function as autocrine signals to inhibit cell proliferation in Dictyostelium discoideum. Cells lacking AprA or CfaD proliferate rapidly, and adding AprA or CfaD to cells slows proliferation. Cells lacking the ROCO kinase QkgA proliferate rapidly, with a doubling time 83% of that of the wild type, and overexpression of a QkgA-green fluorescent protein (GFP) fusion protein slows cell proliferation. We found that qkgA(-) cells accumulate normal levels of extracellular AprA and CfaD. Exogenous AprA or CfaD does not slow the proliferation of cells lacking qkgA, and expression of QkgA-GFP in qkgA(-) cells rescues this insensitivity. Like cells lacking AprA or CfaD, cells lacking QkgA tend to be multinucleate, accumulate nuclei rapidly, and show a mass and protein accumulation per nucleus like those of the wild type, suggesting that QkgA negatively regulates proliferation but not growth. Despite their rapid proliferation, cells lacking AprA, CfaD, or QkgA expand as a colony on bacteria less rapidly than the wild type. Unlike AprA and CfaD, QkgA does not affect spore viability following multicellular development. Together, these results indicate that QkgA is necessary for proliferation inhibition by AprA and CfaD, that QkgA mediates some but not all of the effects of AprA and CfaD, and that QkgA may function downstream of these proteins in a signal transduction pathway regulating proliferation.
Collapse
|
37
|
Bendich AJ. Mitochondrial DNA, chloroplast DNA and the origins of development in eukaryotic organisms. Biol Direct 2010; 5:42. [PMID: 20587059 PMCID: PMC2907347 DOI: 10.1186/1745-6150-5-42] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 06/29/2010] [Indexed: 01/12/2023] Open
Abstract
Background Several proposals have been made to explain the rise of multicellular life forms. An internal environment can be created and controlled, germ cells can be protected in novel structures, and increased organismal size allows a "division of labor" among cell types. These proposals describe advantages of multicellular versus unicellular organisms at levels of organization at or above the individual cell. I focus on a subsequent phase of evolution, when multicellular organisms initiated the process of development that later became the more complex embryonic development found in animals and plants. The advantage here is realized at the level of the mitochondrion and chloroplast. Hypothesis The extreme instability of DNA in mitochondria and chloroplasts has not been widely appreciated even though it was first reported four decades ago. Here, I show that the evolutionary success of multicellular animals and plants can be traced to the protection of organellar DNA. Three stages are envisioned. Sequestration allowed mitochondria and chloroplasts to be placed in "quiet" germ line cells so that their DNA is not exposed to the oxidative stress produced by these organelles in "active" somatic cells. This advantage then provided Opportunity, a period of time during which novel processes arose for signaling within and between cells and (in animals) for cell-cell recognition molecules to evolve. Development then led to the enormous diversity of animals and plants. Implications The potency of a somatic stem cell is its potential to generate cell types other than itself, and this is a systems property. One of the biochemical properties required for stemness to emerge from a population of cells might be the metabolic quiescence that protects organellar DNA from oxidative stress. Reviewers This article was reviewed by John Logsdon, Arcady Mushegian, and Patrick Forterre.
Collapse
Affiliation(s)
- Arnold J Bendich
- Department of Biology, University of Washington, Seattle, WA 98195-5325, USA.
| |
Collapse
|
38
|
Kuzdzal-Fick JJ, Queller DC, Strassmann JE. An invitation to die: initiators of sociality in a social amoeba become selfish spores. Biol Lett 2010; 6:800-2. [PMID: 20504816 DOI: 10.1098/rsbl.2010.0257] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Greater size and strength are common attributes of contest winners. Even in social insects with high cooperation, the right to reproduce falls to the well-fed queens rather than to poorly fed workers. In Dictyostelium discoideum, formerly solitary amoebae aggregate when faced with starvation, and some cells die to form a stalk which others ride up to reach a better location to sporulate. The first cells to starve have lower energy reserves than those that starve later, and previous studies have shown that the better-fed cells in a mix tend to form disproportionately more reproductive spores. Therefore, one might expect that the first cells to starve and initiate the social stage should act altruistically and form disproportionately more of the sterile stalk, thereby enticing other better-fed cells into joining the aggregate. This would resemble caste determination in social insects, where altruistic workers are typically fed less than reproductive queens. However, we show that the opposite result holds: the first cells to starve become reproductive spores, presumably by gearing up for competition and outcompeting late starvers to become prespore first. These findings pose the interesting question of why others would join selfish organizers.
Collapse
Affiliation(s)
- Jennie J Kuzdzal-Fick
- Department of Ecology and Evolutionary Biology, Rice University, Houston, TX 77005-1892, USA.
| | | | | |
Collapse
|
39
|
Queller DC, Strassmann JE. Beyond society: the evolution of organismality. Philos Trans R Soc Lond B Biol Sci 2010; 364:3143-55. [PMID: 19805423 DOI: 10.1098/rstb.2009.0095] [Citation(s) in RCA: 177] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The evolution of organismality is a social process. All organisms originated from groups of simpler units that now show high cooperation among the parts and are nearly free of conflicts. We suggest that this near-unanimous cooperation be taken as the defining trait of organisms. Consistency then requires that we accept some unconventional organisms, including some social insect colonies, some microbial groups and viruses, a few sexual partnerships and a number of mutualistic associations. Whether we call these organisms or not, a major task is to explain such cooperative entities, and our survey suggests that many of the traits commonly used to define organisms are not essential. These non-essential traits include physical contiguity, indivisibility, clonality or high relatedness, development from a single cell, short-term and long-term genetic cotransmission, germ-soma separation and membership in the same species.
Collapse
Affiliation(s)
- David C Queller
- Department of Ecology and Evolutionary Biology, Rice University, 6100 Main Street, Houston, TX 777005, USA.
| | | |
Collapse
|
40
|
Abstract
African trypanosomes are devastating human and animal pathogens that cause significant human mortality and limit economic development in sub-Saharan Africa. Studies of trypanosome biology generally consider these protozoan parasites as individual cells in suspension cultures or in animal models of infection. Here we report that the procyclic form of the African trypanosome Trypanosoma brucei engages in social behavior when cultivated on semisolid agarose surfaces. This behavior is characterized by trypanosomes assembling into multicellular communities that engage in polarized migrations across the agarose surface and cooperate to divert their movements in response to external signals. These cooperative movements are flagellum-mediated, since they do not occur in trypanin knockdown parasites that lack normal flagellum motility. We term this behavior social motility based on features shared with social motility and other types of surface-induced social behavior in bacteria. Social motility represents a novel and unexpected aspect of trypanosome biology and offers new paradigms for considering host-parasite interactions. African trypanosomes, e.g. Trypanosoma brucei, and related kinetoplastid parasites cause morbidity and mortality in several million people worldwide. Trypanosomes are protists and are thus generally considered to behave as single-celled microorganisms. In other microorganisms, social interactions among individuals lead to development of multicellular communities with specialized and advantageous capabilities versus single cells. The concept of bacteria acting as groups of cells communicating and cooperating with one another has had a major impact on our understanding of bacterial physiology and pathogenesis, but this paradigm has not been applied to parasitic protozoa. Here we report that T. brucei is capable of social behavior when exposed to semisolid surfaces. This behavior, termed social motility, is characterized by the assembly of parasites into multicellular communities with emergent properties that are not evident in single cells. Parasites within communities exhibit polarized movements and cooperate to coordinate their movements in response to an external stimulus. Social motility offers many potential advantages, such as facilitating colonization and navigation through host tissues. The identification of social behavior in T. brucei reveals a novel and unexpected aspect of parasite biology and provides new concepts for considering host-parasite interactions.
Collapse
|
41
|
Benabentos R, Hirose S, Sucgang R, Curk T, Katoh M, Ostrowski EA, Strassmann JE, Queller DC, Zupan B, Shaulsky G, Kuspa A. Polymorphic members of the lag gene family mediate kin discrimination in Dictyostelium. Curr Biol 2009; 19:567-72. [PMID: 19285397 DOI: 10.1016/j.cub.2009.02.037] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 01/02/2009] [Accepted: 02/04/2009] [Indexed: 01/01/2023]
Abstract
Self and kin discrimination are observed in most kingdoms of life and are mediated by highly polymorphic plasma membrane proteins. Sequence polymorphism, which is essential for effective recognition, is maintained by balancing selection. Dictyostelium discoideum are social amoebas that propagate as unicellular organisms but aggregate upon starvation and form fruiting bodies with viable spores and dead stalk cells. Aggregative development exposes Dictyostelium to the perils of chimerism, including cheating, which raises questions about how the victims survive in nature and how social cooperation persists. Dictyostelids can minimize the cost of chimerism by preferential cooperation with kin, but the mechanisms of kin discrimination are largely unknown. Dictyostelium lag genes encode transmembrane proteins with multiple immunoglobulin (Ig) repeats that participate in cell adhesion and signaling. Here, we describe their role in kin discrimination. We show that lagB1 and lagC1 are highly polymorphic in natural populations and that their sequence dissimilarity correlates well with wild-strain segregation. Deleting lagB1 and lagC1 results in strain segregation in chimeras with wild-type cells, whereas elimination of the nearly invariant homolog lagD1 has no such consequences. These findings reveal an early evolutionary origin of kin discrimination and provide insight into the mechanism of social recognition and immunity.
Collapse
Affiliation(s)
- Rocio Benabentos
- Graduate Program in Cell and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Ostrowski EA, Katoh M, Shaulsky G, Queller DC, Strassmann JE. Kin discrimination increases with genetic distance in a social amoeba. PLoS Biol 2009; 6:e287. [PMID: 19067487 PMCID: PMC2586364 DOI: 10.1371/journal.pbio.0060287] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Accepted: 10/10/2008] [Indexed: 12/04/2022] Open
Abstract
In the social amoeba Dictyostelium discoideum, thousands of cells aggregate upon starvation to form a multicellular fruiting body, and approximately 20% of them die to form a stalk that benefits the others. The aggregative nature of multicellular development makes the cells vulnerable to exploitation by cheaters, and the potential for cheating is indeed high. Cells might avoid being victimized if they can discriminate among individuals and avoid those that are genetically different. We tested how widely social amoebae cooperate by mixing isolates from different localities that cover most of their natural range. We show here that different isolates partially exclude one another during aggregation, and there is a positive relationship between the extent of this exclusion and the genetic distance between strains. Our findings demonstrate that D. discoideum cells co-aggregate more with genetically similar than dissimilar individuals, suggesting the existence of a mechanism that discerns the degree of genetic similarity between individuals in this social microorganism. In social amoebae such as Dictyostelium discoideum, cells aggregate to form a multicellular slug that migrates and then forms a fruiting body, which contains live spores (which go on to make new amoebae) and dead stalk cells. Unlike animals where all the cells descend from one fertilized egg, social amoeba fruiting bodies can contain cells with different genotypes. This potential for chimerism creates a conceptual problem in that “cheater” cells could arise that preferentially become reproductive spores and force the victims to become stalk cells and die. One way that amoebae could avoid being cheated is if they recognize and preferentially aggregate with genetically similar cells while avoiding genetically distant cells—a process called kin discrimination. We tested whether cells of D. discoideum could discriminate in this way. We mixed cells from genetically distinct strains and found that they segregate during multicellular development. The degree of segregation increases in a graded fashion with the genetic distance between strains. Our results demonstrate the existence of kin discrimination in D. discoideum, an ability that is likely to reduce the potential for cheating and ensure that the death of the stalk cells provides a fitness advantage to related individuals. Genetically based discrimination in social amoebae may help these cells to avoid cheaters that take advantage of their altruistic behavior.
Collapse
Affiliation(s)
- Elizabeth A Ostrowski
- Department of Ecology and Evolutionary Biology, Rice University, Houston, Texas, USA.
| | | | | | | | | |
Collapse
|
43
|
Gaudet P, Fey P, Chisholm R. Dictyostelium discoideum: The Social Ameba. ACTA ACUST UNITED AC 2008; 2008:pdb.emo109. [PMID: 21356735 DOI: 10.1101/pdb.emo109] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
INTRODUCTIONDictyostelium discoideum is a unicellular eukaryote often referred to as a "social ameba" because it can form a multicellular structure when nutrient conditions are limiting. D. discoideum and related organisms, known as the Dictyostelia, have been studied for almost 150 years. The cellular and molecular aspects of their multicellular lifestyle have been studied in detail, and general principles for cell-to-cell communication, intracellular signaling, and cytoskeletal organization during cell motility have been derived from this work and have been found to be conserved across all eukaryotes. The bacteriovore nature of the unicellular stage provides an excellent model in which to study phagocytosis and the mechanisms of bacterial virulence. D. discoideum has also been used successfully to explore the molecular basis of various human diseases, as well as the mechanisms of drug action and the pathways that lead to resistance to certain therapeutic agents. The availability of a complete genome sequence has further widened the scope of studies using D. discoideum. A large potential for secondary metabolism has become apparent, which opens the door to discovering new compounds with potential medical applications. Numerous putative orthologs of genes responsible for diseases in humans, but whose molecular functions are still uncharacterized, are present in the D. discoideum genome. Finally, the availability of community resources, including the genome database dictyBase and the Dicty Stock Center, makes D. discoideum an easily accessible and powerful model organism to study.
Collapse
Affiliation(s)
- Pascale Gaudet
- dictyBase, Center for Genetic Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | |
Collapse
|
44
|
Urushihara H. Developmental biology of the social amoeba: history, current knowledge and prospects. Dev Growth Differ 2008; 50 Suppl 1:S277-81. [PMID: 18482401 DOI: 10.1111/j.1440-169x.2008.01013.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The cellular slime molds are known as the social amoebae because they conditionally construct multicellular forms in which cell differentiation takes place. Among them, Dictyostelium discoideum has many advantages as an experimental system and is widely used as a model organism. This review aims to reconsider how it has contributed to the understanding of developmental mechanisms and what should be done in the future. Chemotaxis, cell differentiation, genome and transcriptome, and the ecological and evolutionary implications of development are discussed.
Collapse
Affiliation(s)
- Hideko Urushihara
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8572, Japan.
| |
Collapse
|
45
|
Ghosh R, Chhabra A, Phatale PA, Samrat SK, Sharma J, Gosain A, Mohanty D, Saran S, Gokhale RS. Dissecting the functional role of polyketide synthases in Dictyostelium discoideum: biosynthesis of the differentiation regulating factor 4-methyl-5-pentylbenzene-1,3-diol. J Biol Chem 2008; 283:11348-54. [PMID: 18252726 DOI: 10.1074/jbc.m709588200] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dictyostelium discoideum exhibits the largest repository of polyketide synthase (PKS) proteins of all known genomes. However, the functional relevance of these proteins in the biology of this organism remains largely obscure. On the basis of computational, biochemical, and gene expression studies, we propose that the multifunctional Dictyostelium PKS (DiPKS) protein DiPKS1 could be involved in the biosynthesis of the differentiation regulating factor 4-methyl-5-pentylbenzene-1,3-diol (MPBD). Our cell-free reconstitution studies of a novel acyl carrier protein Type III PKS didomain from DiPKS1 revealed a crucial role of protein-protein interactions in determining the final biosynthetic product. Whereas the Type III PKS domain by itself primarily produces acyl pyrones, the presence of the interacting acyl carrier protein domain modulates the catalytic activity to produce the alkyl resorcinol scaffold of MPBD. Furthermore, we have characterized an O-methyltransferase (OMT12) from Dictyostelium with the capability to modify this resorcinol ring to synthesize a variant of MPBD. We propose that such a modification in vivo could in fact provide subtle variations in biological function and specificity. In addition, we have performed systematic computational analysis of 45 multidomain PKSs, which revealed several unique features in DiPKS proteins. Our studies provide a new perspective in understanding mechanisms by which metabolic diversity could be generated by combining existing functional scaffolds.
Collapse
Affiliation(s)
- Ratna Ghosh
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | | | | | | | | | | | | | | | | |
Collapse
|