1
|
Gibbons M, Pasquini E, Kowalewska A, Read E, Gibson S, Crump A, Solvi C, Versace E, Chittka L. Noxious stimulation induces self-protective behavior in bumblebees. iScience 2024; 27:110440. [PMID: 39104408 PMCID: PMC11298632 DOI: 10.1016/j.isci.2024.110440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/28/2024] [Accepted: 07/01/2024] [Indexed: 08/07/2024] Open
Abstract
It has been widely stated that insects do not show self-protective behavior toward noxiously-stimulated body parts, but this claim has never been empirically tested. Here, we tested whether an insect species displays a type of self-protective behavior: self-grooming a noxiously-stimulated site. We touched bumblebees (Bombus terrestris) on an antenna with a noxiously heated (65°C) probe and found that, in the first 2 min after this stimulus, bees groomed their touched antenna more than their untouched antenna, and more than bees that were touched with an unheated probe or not touched at all did. Our results present evidence that bumblebees display self-protective behavior. We discuss the potential neural mechanisms of this behavior and the implications for whether insects feel pain.
Collapse
Affiliation(s)
- Matilda Gibbons
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA
- School of Biological and Behavioral Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Elisa Pasquini
- Center for Mind/Brain Sciences, University of Trento, Rovereto 38068, Italy
| | - Amelia Kowalewska
- School of Biological and Behavioral Sciences, Queen Mary University of London, London E1 4NS, UK
- Academic Training Team, The Francis Crick Institute, London NW1 1AT, UK
| | - Eva Read
- Department of Philosophy, Logic and Scientific Method, London School of Economics, London WC2A 2AE, UK
| | - Sam Gibson
- Department of Philosophy, Logic and Scientific Method, London School of Economics, London WC2A 2AE, UK
| | - Andrew Crump
- Department of Philosophy, Logic and Scientific Method, London School of Economics, London WC2A 2AE, UK
- Department of Pathobiology & Population Sciences, Royal Veterinary College, London NW1 0TU, UK
| | - Cwyn Solvi
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou City, Guangdong Province 510515, China
| | - Elisabetta Versace
- School of Biological and Behavioral Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Lars Chittka
- School of Biological and Behavioral Sciences, Queen Mary University of London, London E1 4NS, UK
| |
Collapse
|
2
|
Karmakar S, Kesh A, Muniyandi M. Thermal illusions for thermal displays: a review. Front Hum Neurosci 2023; 17:1278894. [PMID: 38116235 PMCID: PMC10728301 DOI: 10.3389/fnhum.2023.1278894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/16/2023] [Indexed: 12/21/2023] Open
Abstract
Thermal illusions, a subset of haptic illusions, have historically faced technical challenges and limited exploration. They have been underutilized in prior studies related to thermal displays. This review paper primarily aims to comprehensively categorize thermal illusions, offering insights for diverse applications in thermal display design. Recent advancements in the field have spurred a fresh perspective on thermal and pain perception, specifically through the lens of thermal illusions.
Collapse
Affiliation(s)
- Subhankar Karmakar
- Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology Madras, Chennai, India
| | | | | |
Collapse
|
3
|
Cataldo A, Di Luca M, Deroy O, Hayward V. Touching with the eyes: Oculomotor self-touch induces illusory body ownership. iScience 2023; 26:106180. [PMID: 36895648 PMCID: PMC9988563 DOI: 10.1016/j.isci.2023.106180] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 11/22/2022] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Self-touch plays a central role in the construction and plasticity of the bodily self. But which mechanisms support this role? Previous accounts emphasize the convergence of proprioceptive and tactile signals from the touching and the touched body parts. Here, we hypothesise that proprioceptive information is not necessary for self-touch modulation of body-ownership. Because eye movements do not rely on proprioceptive signals as limb movements do, we developed a novel oculomotor self-touch paradigm where voluntary eye movements generated corresponding tactile sensations. We then compared the effectiveness of eye versus hand self-touch movements in generating an illusion of owning a rubber hand. Voluntary oculomotor self-touch was as effective as hand-driven self-touch, suggesting that proprioception does not contribute to body ownership during self-touch. Self-touch may contribute to a unified sense of bodily self by binding voluntary actions toward our own body with their tactile consequences.
Collapse
Affiliation(s)
- Antonio Cataldo
- Institute of Philosophy, School of Advanced Study, University of London, Senate House, London WC1E 7HU, UK.,Cognition, Values and Behaviour, Ludwig Maximilian University, 80333 München, Germany.,Institute of Cognitive Neuroscience, University College London, Alexandra House 17 Queen Square, London WC1N 3AZ, UK
| | - Massimiliano Di Luca
- Formerly with Facebook Reality Labs, Redmond, WA, USA.,School of Psychology, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Ophelia Deroy
- Institute of Philosophy, School of Advanced Study, University of London, Senate House, London WC1E 7HU, UK.,Cognition, Values and Behaviour, Ludwig Maximilian University, 80333 München, Germany
| | - Vincent Hayward
- Institute of Philosophy, School of Advanced Study, University of London, Senate House, London WC1E 7HU, UK.,Institut des Systèmes Intelligents et de Robotique, Sorbonne Université, 75005 Paris, France
| |
Collapse
|
4
|
An integrative perspective on the role of touch in the development of intersubjectivity. Brain Cogn 2022; 163:105915. [PMID: 36162247 DOI: 10.1016/j.bandc.2022.105915] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/23/2022]
Abstract
Touch concerns a fundamental component of sociality. In this review, we examine the hypothesis that somatomotor development constitutes a crucial psychophysiological element in the ontogeny of intersubjectivity. An interdisciplinary perspective is provided on how the communication channel of touch contributes to the sense of self and extends to the social self. During gestation, the transformation of random movements into organized sequences of actions with sensory consequences parallels the development of the brain's functional architecture. Brain subsystems shaped by the coordinated activity of somatomotor circuits to support these first body-environment interactions are the first brain functional arrangements to develop. We propose that tactile self-referring behaviour during gestation constitutes a prototypic mode of interpersonal exchange that supports the subsequent development of intersubjective exchange. The reviewed research suggests that touch constitutes a pivotal bodily experience that in early stages builds and later filters self-other interactions. This view is corroborated by the fact that aberrant social-affective touch experiences appear fundamentally associated with attachment anomalies, interpersonal trauma, and personality disorders. Given the centrality of touch for the development of intersubjectivity and for psychopathological conditions in the social domain, dedicated research is urged to elucidate the role of touch in the evolution of subjective self-other coding.
Collapse
|
5
|
Interplay of tactile and motor information in constructing spatial self-perception. Curr Biol 2022; 32:1301-1309.e3. [DOI: 10.1016/j.cub.2022.01.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/01/2021] [Accepted: 01/18/2022] [Indexed: 11/20/2022]
|
6
|
|
7
|
Hashiguchi S. Analysis of Hot-Cold Confusion on Fingers. JOURNAL OF ROBOTICS AND MECHATRONICS 2021. [DOI: 10.20965/jrm.2021.p1117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The thermosensory system may misidentify a temperature stimulus with different thermal properties. The mechanism of this hot-cold confusion has not been clarified; hence, it has not yet been applied. In this study, we created a wearable temperature presentation device that is closer to the application and analyzed the tendency and mechanism of temperature confusion by analyzing the hot-cold confusion of temperature sensation in the fingers, which are most frequently in contact with objects. Two experiments were performed. In the first experiment, we presented stimuli on the tips of three fingers (first, second, and third fingers). In the second experiment, we presented stimuli at the center of the distal phalanx, middle phalanx, and proximal phalanx of the first finger. The experimental results indicated the occurrence of hot-cold confusion. Domination, in which the center is dominated by both ends, and a mutual effect, in which the center interacts with both ends, were observed.
Collapse
|
8
|
Shin DA, Chang MC. A Review on Various Topics on the Thermal Grill Illusion. J Clin Med 2021; 10:jcm10163597. [PMID: 34441893 PMCID: PMC8396808 DOI: 10.3390/jcm10163597] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 11/16/2022] Open
Abstract
The thermal grill illusion (TGI) is a paradoxical perception of burning heat and pain resulting from the simultaneous application of interlaced warm and cold stimuli to the skin. The TGI is considered a type of chronic centralized pain and has been used to apply nociceptive stimuli without inflicting harm to human participants in the study of pain mechanisms. In addition, the TGI is an interesting phenomenon for researchers, and various topics related to the TGI have been investigated in several studies, which we will review here. According to previous studies, the TGI is generated by supraspinal interactions. To evoke the TGI, cold and warm cutaneous stimuli should be applied within the same dermatome or across dermatomes corresponding to adjacent spinal segments, and a significant difference between cold and warm temperatures is necessary. In addition, due the presence of chronic pain, genetic factors, and sexual differences, the intensity of the TGI can differ. In addition, cold noxious stimulation, topical capsaicin, analgesics, self-touch, and the presence of psychological diseases can decrease the intensity of the TGI. Because the TGI corresponds to chronic centralized pain, we believe that the findings of previous studies can be applied to future studies to identify chronic pain mechanisms and clinical practice for pain management.
Collapse
Affiliation(s)
- Dong Ah Shin
- Department of Neurosurgery, College of Medicine, Yonsei University, Seodaemun-gu, Seoul 03722, Korea;
| | - Min Cheol Chang
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Namku, Taegu 42415, Korea
- Correspondence: ; Tel.: +82-53-620-4682
| |
Collapse
|
9
|
Forstenpointner J, Berry D, Baron R, Borsook D. The cornucopia of central disinhibition pain - An evaluation of past and novel concepts. Neurobiol Dis 2020; 145:105041. [PMID: 32800994 DOI: 10.1016/j.nbd.2020.105041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/18/2020] [Accepted: 08/08/2020] [Indexed: 12/12/2022] Open
Abstract
Central disinhibition (CD), as applied to pain, decreases thresholds of endogenous systems. This provokes onset of spontaneous or evoked pain in an individual beyond the ability of the nervous system to inhibit pain resulting from a disease or tissue damage. The original CD concept as proposed by Craig entails a shift from the lateral pain pathway (i.e. discriminative pain processing) towards the medial pain pathway (i.e. emotional pain processing), within an otherwise neurophysiological intact environment. In this review, the original CD concept as proposed by Craig is extended by the primary "nociceptive pathway damage - CD" concept and the secondary "central pathway set point - CD". Thereby, the original concept may be transferred into anatomical and psychological non-functional conditions. We provide examples for either primary or secondary CD concepts within different clinical etiologies as well as present surrogate models, which directly mimic the underlying pathophysiology (A-fiber block) or modulate the CD pathway excitability (thermal grill). The thermal grill has especially shown promising advancements, which may be useful to examine CD pathway activation in the future. Therefore, within this topical review, a systematic review on the thermal grill illusion is intended to stimulate future research. Finally, the authors review different mechanism-based treatment approaches to combat CD pain.
Collapse
Affiliation(s)
- Julia Forstenpointner
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, 24105 Kiel, Germany; Center for Pain and the Brain, Boston Children's Hospital, Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, USA.
| | - Delany Berry
- Center for Pain and the Brain, Boston Children's Hospital, Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, USA
| | - Ralf Baron
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, 24105 Kiel, Germany
| | - David Borsook
- Center for Pain and the Brain, Boston Children's Hospital, Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Matiz A, Guzzon D, Crescentini C, Paschetto A, Fabbro F. The role of self body brushing vs mindfulness meditation on interoceptive awareness: A non-randomized pilot study on healthy participants with possible implications for body image disturbances. Eur J Integr Med 2020. [DOI: 10.1016/j.eujim.2020.101168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
11
|
The Cerebral Localization of Pain: Anatomical and Functional Considerations for Targeted Electrical Therapies. J Clin Med 2020; 9:jcm9061945. [PMID: 32580436 PMCID: PMC7355617 DOI: 10.3390/jcm9061945] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/18/2020] [Accepted: 06/18/2020] [Indexed: 12/18/2022] Open
Abstract
Millions of people in the United States are affected by chronic pain, and the financial cost of pain treatment is weighing on the healthcare system. In some cases, current pharmacological treatments may do more harm than good, as with the United States opioid crisis. Direct electrical stimulation of the brain is one potential non-pharmacological treatment with a long history of investigation. Yet brain stimulation has been far less successful than peripheral or spinal cord stimulation, perhaps because of our limited understanding of the neural circuits involved in pain perception. In this paper, we review the history of using electrical stimulation of the brain to treat pain, as well as contemporary studies identifying the structures involved in pain networks, such as the thalamus, insula, and anterior cingulate. We propose that the thermal grill illusion, an experimental pain model, can facilitate further investigation of these structures. Pairing this model with intracranial recording will provide insight toward disentangling the neural correlates from the described anatomic areas. Finally, the possibility of altering pain perception with brain stimulation in these regions could be highly informative for the development of novel brain stimulation therapies for chronic pain.
Collapse
|
12
|
Fardo F, Beck B, Allen M, Finnerup NB. Beyond labeled lines: A population coding account of the thermal grill illusion. Neurosci Biobehav Rev 2020; 108:472-479. [DOI: 10.1016/j.neubiorev.2019.11.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 10/25/2022]
|
13
|
Abstract
Post-amputation phantom limb pain (PLP) is highly prevalent and very difficult to treat. The high-prevalence, high-pain intensity levels, and decreased quality of life associated with PLP compel us to explore novel avenues to prevent, manage, and reverse this chronic pain condition. This narrative review focuses on recent advances in the treatment of PLP and reviews evidence of mechanism-based treatments from randomized controlled trials published over the past 5 years. We review recent evidence for the efficacy of targeted muscle reinnervation, repetitive transcranial magnetic stimulation, imaginal phantom limb exercises, mirror therapy, virtual and augmented reality, and eye movement desensitization and reprocessing therapy. The results indicate that not one of the above treatments is consistently better than a control condition. The challenge remains that there is little level 1 evidence of efficacy for PLP treatments and most treatment trials are underpowered (small sample sizes). The lack of efficacy likely speaks to the multiple mechanisms that contribute to PLP both between and within individuals who have sustained an amputation. Research approaches are called for to classify patients according to shared factors and evaluate treatment efficacy within classes. Subgroup analyses examining sex effects are recommended given the clear differences between males and females in pain mechanisms and outcomes. Use of novel data analytical approaches such as growth mixture modeling for multivariate latent classes may help to identify sub-clusters of patients with common outcome trajectories over time.
Collapse
Affiliation(s)
- Andrea Aternali
- Department of Psychology, York University, Toronto, Ontario, Canada
| | - Joel Katz
- Department of Psychology, York University, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Kannape OA, Smith EJ, Moseley P, Roy MP, Lenggenhager B. Experimentally induced limb-disownership in mixed reality. Neuropsychologia 2019; 124:161-170. [DOI: 10.1016/j.neuropsychologia.2018.12.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/27/2018] [Accepted: 12/17/2018] [Indexed: 01/08/2023]
|
15
|
Distinction of self-produced touch and social touch at cortical and spinal cord levels. Proc Natl Acad Sci U S A 2019; 116:2290-2299. [PMID: 30670645 PMCID: PMC6369791 DOI: 10.1073/pnas.1816278116] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The earliest way humans can learn what their body is and where the outside world begins is through the tactile sense, especially through touch between parent and baby. In this study, we demonstrated differential processing of touch from self and others at cortical and spinal levels. Our results support top-down modulation of dorsal horn somatosensory processing, as recently shown in animal studies. We provide evidence that the individual self-concept relates to differential self- vs. other-processing in the tactile domain. Self- vs. other-distinction is necessary for successful social interaction with others and for establishing a coherent self. Our results suggest an association between impaired somatosensory processing and a dysfunctional self-concept, as seen in many psychiatric disorders. Differentiation between self-produced tactile stimuli and touch by others is necessary for social interactions and for a coherent concept of “self.” The mechanisms underlying this distinction are unknown. Here, we investigated the distinction between self- and other-produced light touch in healthy volunteers using three different approaches: fMRI, behavioral testing, and somatosensory-evoked potentials (SEPs) at spinal and cortical levels. Using fMRI, we found self–other differentiation in somatosensory and sociocognitive areas. Other-touch was related to activation in several areas, including somatosensory cortex, insula, superior temporal gyrus, supramarginal gyrus, striatum, amygdala, cerebellum, and prefrontal cortex. During self-touch, we instead found deactivation in insula, anterior cingulate cortex, superior temporal gyrus, amygdala, parahippocampal gyrus, and prefrontal areas. Deactivation extended into brain areas encoding low-level sensory representations, including thalamus and brainstem. These findings were replicated in a second cohort. During self-touch, the sensorimotor cortex was functionally connected to the insula, and the threshold for detection of an additional tactile stimulus was elevated. Differential encoding of self- vs. other-touch during fMRI correlated with the individual self-concept strength. In SEP, cortical amplitudes were reduced during self-touch, while latencies at cortical and spinal levels were faster for other-touch. We thus demonstrated a robust self–other distinction in brain areas related to somatosensory, social cognitive, and interoceptive processing. Signs of this distinction were evident at the spinal cord. Our results provide a framework for future studies in autism, schizophrenia, and emotionally unstable personality disorder, conditions where symptoms include social touch avoidance and poor self-vs.-other discrimination.
Collapse
|
16
|
Fardo F, Finnerup NB, Haggard P. Organization of the Thermal Grill Illusion by Spinal Segments. Ann Neurol 2018; 84:463-472. [PMID: 30063258 PMCID: PMC6175302 DOI: 10.1002/ana.25307] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 07/23/2018] [Accepted: 07/25/2018] [Indexed: 12/31/2022]
Abstract
Objective A common symptom of neuropathy is the misperception of heat and pain from cold stimuli. Similar cold allodynic sensations can be experimentally induced using the thermal grill illusion (TGI) in humans. It is currently unclear whether this interaction between thermosensory and nociceptive signals depends on spinal or supraspinal integration mechanisms. To address this issue, we developed a noninvasive protocol to assess thermosensory integration across spinal segments. Methods We leveraged anatomical knowledge regarding dermatomes and their spinal projections to investigate potential contributions of spinal integration to the TGI. We simultaneously stimulated a pair of skin locations on the arm or lower back using 1 cold (∼20°C) and 1 warm thermode (∼40°C). The 2 thermodes were always separated by a fixed physical distance on the skin, but elicited neural activity across a varying number of spinal segments, depending on which dermatomal boundaries the 2 stimuli spanned. Results Participants consistently overestimated the actual cold temperature on the skin during combined cold and warm stimulation, confirming the TGI effect. The TGI was present when cold and warm stimuli were delivered within the same dermatome, or across dermatomes corresponding to adjacent spinal segments. In striking contrast, no TGI effect was found when cold and warm stimuli projected to nonadjacent spinal segments. Interpretation These results demonstrate that the strength of the illusion is modulated by the segmental distance between cold and warm afferents. This suggests that both temperature perception and thermal–nociceptive interactions depend upon low‐level convergence mechanisms operating within a single spinal segment and its immediate neighbors. Ann Neurol 2018;84:463–472
Collapse
Affiliation(s)
- Francesca Fardo
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom.,Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Interacting Minds Center, Aarhus University, Aarhus, Denmark
| | - Nanna Brix Finnerup
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Patrick Haggard
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| |
Collapse
|
17
|
Ferrè ER, Iannetti GD, van Dijk JA, Haggard P. Ineffectiveness of tactile gating shows cortical basis of nociceptive signaling in the Thermal Grill Illusion. Sci Rep 2018; 8:6584. [PMID: 29700407 PMCID: PMC5919908 DOI: 10.1038/s41598-018-24635-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 03/28/2018] [Indexed: 11/09/2022] Open
Abstract
Painful burning sensations can be elicited by a spatially-alternating pattern of warm and cold stimuli applied on the skin, the so called "Thermal Grill Illusion" (TGI). Here we investigated whether the TGI percept originates spinally or centrally. Since the inhibition of nociceptive input by concomitant non-nociceptive somatosensory input has a strong spinal component, we reasoned that, if the afferent input underlying the TGI originates at spinal level, then the TGI should be inhibited by a concomitant non-nociceptive somatosensory input. Conversely, if TGI is the result of supraspinal processing, then no effect of touch on TGI would be expected. We elicited TGI sensations in a purely thermal condition without tactile input, and found no evidence that tactile input affected the TGI. These results provide further evidence against a spinal mechanism generating the afferent input producing the TGI, and indicate that the peculiar burning sensation of the TGI results from supraspinal interactions between thermoceptive and nociceptive systems.
Collapse
Affiliation(s)
- E R Ferrè
- Institute of Cognitive Neuroscience, University College London, London, UK.,Department of Psychology, Royal Holloway University of London, London, UK
| | - G D Iannetti
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - J A van Dijk
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - P Haggard
- Institute of Cognitive Neuroscience, University College London, London, UK.
| |
Collapse
|
18
|
Derry S, Wiffen PJ, Kalso EA, Bell RF, Aldington D, Phillips T, Gaskell H, Moore RA. Topical analgesics for acute and chronic pain in adults - an overview of Cochrane Reviews. Cochrane Database Syst Rev 2017; 5:CD008609. [PMID: 28497473 PMCID: PMC6481750 DOI: 10.1002/14651858.cd008609.pub2] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Topical analgesic drugs are used for a variety of painful conditions. Some are acute, typically strains or sprains, tendinopathy, or muscle aches. Others are chronic, typically osteoarthritis of hand or knee, or neuropathic pain. OBJECTIVES To provide an overview of the analgesic efficacy and associated adverse events of topical analgesics (primarily nonsteroidal anti-inflammatory drugs (NSAIDs), salicylate rubefacients, capsaicin, and lidocaine) applied to intact skin for the treatment of acute and chronic pain in adults. METHODS We identified systematic reviews in acute and chronic pain published to February 2017 in the Cochrane Database of Systematic Reviews (the Cochrane Library). The primary outcome was at least 50% pain relief (participant-reported) at an appropriate duration. We extracted the number needed to treat for one additional beneficial outcome (NNT) for efficacy outcomes for each topical analgesic or formulation, and the number needed to treat for one additional harmful outcome (NNH) for adverse events. We also extracted information on withdrawals due to lack of efficacy or adverse events, systemic and local adverse events, and serious adverse events. We required information from at least 200 participants, in at least two studies. We judged that there was potential for publication bias if the addition of four studies of typical size (400 participants) with zero effect increased NNT compared with placebo to 10 (minimal clinical utility). We extracted GRADE assessment in the original papers, and made our own GRADE assessment. MAIN RESULTS Thirteen Cochrane Reviews (206 studies with around 30,700 participants) assessed the efficacy and harms from a range of topical analgesics applied to intact skin in a number of acute and chronic painful conditions. Reviews were overseen by several Review Groups, and concentrated on evidence comparing topical analgesic with topical placebo; comparisons of topical and oral analgesics were rare.For at least 50% pain relief, we considered evidence was moderate or high quality for several therapies, based on the underlying quality of studies and susceptibility to publication bias.In acute musculoskeletal pain (strains and sprains) with assessment at about seven days, therapies were diclofenac Emulgel (78% Emulgel, 20% placebo; 2 studies, 314 participants, NNT 1.8 (95% confidence interval 1.5 to 2.1)), ketoprofen gel (72% ketoprofen, 33% placebo, 5 studies, 348 participants, NNT 2.5 (2.0 to 3.4)), piroxicam gel (70% piroxicam, 47% placebo, 3 studies, 522 participants, NNT 4.4 (3.2 to 6.9)), diclofenac Flector plaster (63% Flector, 41% placebo, 4 studies, 1030 participants, NNT 4.7 (3.7 to 6.5)), and diclofenac other plaster (88% diclofenac plaster, 57% placebo, 3 studies, 474 participants, NNT 3.2 (2.6 to 4.2)).In chronic musculoskeletal pain (mainly hand and knee osteoarthritis) therapies were topical diclofenac preparations for less than six weeks (43% diclofenac, 23% placebo, 5 studies, 732 participants, NNT 5.0 (3.7 to 7.4)), ketoprofen over 6 to 12 weeks (63% ketoprofen, 48% placebo, 4 studies, 2573 participants, NNT 6.9 (5.4 to 9.3)), and topical diclofenac preparations over 6 to 12 weeks (60% diclofenac, 50% placebo, 4 studies, 2343 participants, NNT 9.8 (7.1 to 16)). In postherpetic neuralgia, topical high-concentration capsaicin had moderate-quality evidence of limited efficacy (33% capsaicin, 24% placebo, 2 studies, 571 participants, NNT 11 (6.1 to 62)).We judged evidence of efficacy for other therapies as low or very low quality. Limited evidence of efficacy, potentially subject to publication bias, existed for topical preparations of ibuprofen gels and creams, unspecified diclofenac formulations and diclofenac gel other than Emulgel, indomethacin, and ketoprofen plaster in acute pain conditions, and for salicylate rubefacients for chronic pain conditions. Evidence for other interventions (other topical NSAIDs, topical salicylate in acute pain conditions, low concentration capsaicin, lidocaine, clonidine for neuropathic pain, and herbal remedies for any condition) was very low quality and typically limited to single studies or comparisons with sparse data.We assessed the evidence on withdrawals as moderate or very low quality, because of small numbers of events. In chronic pain conditions lack of efficacy withdrawals were lower with topical diclofenac (6%) than placebo (9%) (11 studies, 3455 participants, number needed to treat to prevent (NNTp) 26, moderate-quality evidence), and topical salicylate (2% vs 7% for placebo) (5 studies, 501 participants, NNTp 21, very low-quality evidence). Adverse event withdrawals were higher with topical capsaicin low-concentration (15%) than placebo (3%) (4 studies, 477 participants, NNH 8, very low-quality evidence), topical salicylate (5% vs 1% for placebo) (7 studies, 735 participants, NNH 26, very low-quality evidence), and topical diclofenac (5% vs 4% for placebo) (12 studies, 3552 participants, NNH 51, very low-quality evidence).In acute pain, systemic or local adverse event rates with topical NSAIDs (4.3%) were no greater than with topical placebo (4.6%) (42 studies, 6740 participants, high quality evidence). In chronic pain local adverse events with topical capsaicin low concentration (63%) were higher than topical placebo (5 studies, 557 participants, number needed to treat for harm (NNH) 2.6), high quality evidence. Moderate-quality evidence indicated more local adverse events than placebo in chronic pain conditions with topical diclofenac (NNH 16) and local pain with topical capsaicin high-concentration (NNH 16). There was moderate-quality evidence of no additional local adverse events with topical ketoprofen over topical placebo in chronic pain. Serious adverse events were rare (very low-quality evidence).GRADE assessments of moderate or low quality in some of the reviews were considered by us to be very low because of small numbers of participants and events. AUTHORS' CONCLUSIONS There is good evidence that some formulations of topical diclofenac and ketoprofen are useful in acute pain conditions such as sprains or strains, with low (good) NNT values. There is a strong message that the exact formulation used is critically important in acute conditions, and that might also apply to other pain conditions. In chronic musculoskeletal conditions with assessments over 6 to 12 weeks, topical diclofenac and ketoprofen had limited efficacy in hand and knee osteoarthritis, as did topical high-concentration capsaicin in postherpetic neuralgia. Though NNTs were higher, this still indicates that a small proportion of people had good pain relief.Use of GRADE in Cochrane Reviews with small numbers of participants and events requires attention.
Collapse
Affiliation(s)
| | | | - Eija A Kalso
- Helsinki University and Helsinki University HospitalDepartment of Anaesthesia, Intensive Care and Pain MedicineHelsinkiFinland
| | - Rae Frances Bell
- Haukeland University HospitalRegional Centre of Excellence in Palliative CareBergenNorway
| | | | - Tudor Phillips
- University of OxfordPain Research and Nuffield Department of Clinical Neurosciences (Nuffield Division of Anaesthetics)Churchill HospitalOxfordUKOX3 7LJ
| | - Helen Gaskell
- University of OxfordPain Research and Nuffield Department of Clinical Neurosciences (Nuffield Division of Anaesthetics)Churchill HospitalOxfordUKOX3 7LJ
| | | | | |
Collapse
|
19
|
Jutzeler CR, Warner FM, Wanek J, Curt A, Kramer JLK. Thermal grill conditioning: Effect on contact heat evoked potentials. Sci Rep 2017; 7:40007. [PMID: 28079118 PMCID: PMC5228159 DOI: 10.1038/srep40007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 11/30/2016] [Indexed: 12/19/2022] Open
Abstract
The ‘thermal grill illusion’ (TGI) is a unique cutaneous sensation of unpleasantness, induced through the application of interlacing warm and cool stimuli. While previous studies have investigated optimal parameters and subject characteristics to evoke the illusion, our aim was to examine the modulating effect as a conditioning stimulus. A total of 28 healthy control individuals underwent three testing sessions on separate days. Briefly, 15 contact heat stimuli were delivered to the right hand dorsum, while the left palmar side of the hand was being conditioned with either neutral (32 °C), cool (20 °C), warm (40 °C), or TGI (20/40 °C). Rating of perception (numeric rating scale: 0–10) and evoked potentials (i.e., N1 and N2P2 potentials) to noxious contact heat stimuli were assessed. While cool and warm conditioning decreased cortical responses to noxious heat, TGI conditioning increased evoked potential amplitude (N1 and N2P2). In line with other modalities of unpleasant conditioning (e.g., sound, visual, and olfactory stimulation), cortical and possibly sub-cortical modulation may underlie the facilitation of contact heat evoked potentials.
Collapse
Affiliation(s)
- Catherine R Jutzeler
- Spinal Cord Injury Center, University Hospital Balgrist, University of Zurich, Zurich, Switzerland.,ICORD, University of British Columbia, Vancouver, BC, Canada.,School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
| | - Freda M Warner
- Spinal Cord Injury Center, University Hospital Balgrist, University of Zurich, Zurich, Switzerland.,ICORD, University of British Columbia, Vancouver, BC, Canada
| | - Johann Wanek
- Spinal Cord Injury Center, University Hospital Balgrist, University of Zurich, Zurich, Switzerland
| | - Armin Curt
- Spinal Cord Injury Center, University Hospital Balgrist, University of Zurich, Zurich, Switzerland
| | - John L K Kramer
- ICORD, University of British Columbia, Vancouver, BC, Canada.,School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
20
|
Thermal referral: evidence for a thermoceptive uniformity illusion without touch. Sci Rep 2016; 6:35286. [PMID: 27775034 PMCID: PMC5075768 DOI: 10.1038/srep35286] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 09/23/2016] [Indexed: 11/13/2022] Open
Abstract
When warm thermal stimulators are placed on the ring and index fingers of one hand, and a neutral-temperature stimulator on the middle finger, all three fingers feel warm. This illusion is known as thermal referral (TR). On one interpretation, the heterogenous thermal signals are overridden by homogenous tactile signals. This cross-modal thermo-tactile interaction could reflect a process of object recognition, based on the prior that many objects are thermally homogenous. Interestingly, the illusion was reported to disappear when the middle digit was lifted off the thermal stimulator, suggesting that tactile stimulation is necessary. However, no study has investigated whether purely thermal stimulation might induce TR, without any tactile object to which temperature can be attributed. We used radiant thermal stimulation to deliver purely thermal stimuli, which either were or were not accompanied by simultaneous touch. We found identical TR effects in both the original thermo-tactile condition, and in a purely thermoceptive condition where no tactile object was present. Control experiments ruled out explanations based on poor spatial discrimination of warm signals. Our purely thermoceptive results suggest that TR could reflect low-level organization of the thermoceptive pathway, rather than a cognitive intermodal modulation based on tactile object perception.
Collapse
|
21
|
A pilot randomised controlled trial (RCT) investigating the effectiveness of reflexology for managing pregnancy low back and/or pelvic pain. Complement Ther Clin Pract 2016; 23:117-24. [DOI: 10.1016/j.ctcp.2015.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 05/07/2015] [Accepted: 05/07/2015] [Indexed: 11/20/2022]
|
22
|
Seoane KJ. Parenting the Self with Self-Applied Touch: A Dance/Movement Therapy Approach to Self-Regulation. AMERICAN JOURNAL OF DANCE THERAPY 2016. [DOI: 10.1007/s10465-016-9207-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
23
|
Azañón E, Tamè L, Maravita A, Linkenauger S, Ferrè E, Tajadura-Jiménez A, Longo M. Multimodal Contributions to Body Representation. Multisens Res 2016. [DOI: 10.1163/22134808-00002531] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Our body is a unique entity by which we interact with the external world. Consequently, the way we represent our body has profound implications in the way we process and locate sensations and in turn perform appropriate actions. The body can be the subject, but also the object of our experience, providing information from sensations on the body surface and viscera, but also knowledge of the body as a physical object. However, the extent to which different senses contribute to constructing the rich and unified body representations we all experience remains unclear. In this review, we aim to bring together recent research showing important roles for several different sensory modalities in constructing body representations. At the same time, we hope to generate new ideas of how and at which level the senses contribute to generate the different levels of body representations and how they interact. We will present an overview of some of the most recent neuropsychological evidence about multisensory control of pain, and the way that visual, auditory, vestibular and tactile systems contribute to the creation of coherent representations of the body. We will focus particularly on some of the topics discussed in the symposium on Multimodal Contributions to Body Representation held on the 15th International Multisensory Research Forum (2015, Pisa, Italy).
Collapse
Affiliation(s)
- Elena Azañón
- Department of Psychological Sciences, Birkbeck, University of London, WC1E 7HX, London, UK
| | - Luigi Tamè
- Department of Psychological Sciences, Birkbeck, University of London, WC1E 7HX, London, UK
| | - Angelo Maravita
- Department of Psychology, Università degli studi di Milano-Bicocca, Italy
- Neuromi: Milan Center for Neuroscience, Milano, Italy
| | | | - Elisa R. Ferrè
- Institute of Cognitive Neuroscience, University College London, UK
- Department of Psychology, Royal Holloway University of London, UK
| | - Ana Tajadura-Jiménez
- Laboratorio de Neurociencia Humana, Departamento de Psicología, Universidad Loyola Andalucía, Spain
- UCL Interaction Centre, University College London, UK
| | - Matthew R. Longo
- Department of Psychological Sciences, Birkbeck, University of London, WC1E 7HX, London, UK
| |
Collapse
|
24
|
Hara M, Pozeg P, Rognini G, Higuchi T, Fukuhara K, Yamamoto A, Higuchi T, Blanke O, Salomon R. Voluntary self-touch increases body ownership. Front Psychol 2015; 6:1509. [PMID: 26617534 PMCID: PMC4621401 DOI: 10.3389/fpsyg.2015.01509] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 09/18/2015] [Indexed: 11/29/2022] Open
Abstract
Experimental manipulations of body ownership have indicated that multisensory integration is central to forming bodily self-representation. Voluntary self-touch is a unique multisensory situation involving corresponding motor, tactile and proprioceptive signals. Yet, even though self-touch is frequent in everyday life, its contribution to the formation of body ownership is not well understood. Here we investigated the role of voluntary self-touch in body ownership using a novel adaptation of the rubber hand illusion (RHI), in which a robotic system and virtual reality allowed participants self-touch of real and virtual hands. In the first experiment, active and passive self-touch were applied in the absence of visual feedback. In the second experiment, we tested the role of visual feedback in this bodily illusion. Finally, in the third experiment, we compared active and passive self-touch to the classical RHI in which the touch is administered by the experimenter. We hypothesized that active self-touch would increase ownership over the virtual hand through the addition of motor signals strengthening the bodily illusion. The results indicated that active self-touch elicited stronger illusory ownership compared to passive self-touch and sensory only stimulation, and show an important role for active self-touch in the formation of bodily self.
Collapse
Affiliation(s)
- Masayuki Hara
- Graduate School of Science and Engineering, Saitama University Saitama, Japan
| | - Polona Pozeg
- Center for Neuroprosthetics, École Polytechnique Fédérale de Lausanne Lausanne, Switzerland ; Neuroscience, Brain Mind Institute, École Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | - Giulio Rognini
- Center for Neuroprosthetics, École Polytechnique Fédérale de Lausanne Lausanne, Switzerland ; Neuroscience, Brain Mind Institute, École Polytechnique Fédérale de Lausanne Lausanne, Switzerland ; School of Engineering, École Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | - Takahiro Higuchi
- Department of Health Promotion Sciences, Tokyo Metropolitan University Tokyo, Japan
| | - Kazunobu Fukuhara
- Department of Health Promotion Sciences, Tokyo Metropolitan University Tokyo, Japan
| | - Akio Yamamoto
- Department of Precision Engineering, School of Engineering, The University of Tokyo Tokyo, Japan
| | - Toshiro Higuchi
- Department of Precision Engineering, School of Engineering, The University of Tokyo Tokyo, Japan
| | - Olaf Blanke
- Center for Neuroprosthetics, École Polytechnique Fédérale de Lausanne Lausanne, Switzerland ; Neuroscience, Brain Mind Institute, École Polytechnique Fédérale de Lausanne Lausanne, Switzerland ; Department of Neurology, University Hospital of Geneva Geneva, Switzerland
| | - Roy Salomon
- Center for Neuroprosthetics, École Polytechnique Fédérale de Lausanne Lausanne, Switzerland ; Neuroscience, Brain Mind Institute, École Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| |
Collapse
|
25
|
Hogendoorn H, Kammers M, Haggard P, Verstraten F. Self-touch modulates the somatosensory evoked P100. Exp Brain Res 2015; 233:2845-58. [PMID: 26105753 PMCID: PMC4575392 DOI: 10.1007/s00221-015-4355-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 06/09/2015] [Indexed: 11/28/2022]
Abstract
It has recently been shown that contact between one's own limbs (self-touch) reduces the perceived intensity of pain, over and above the well-known modulation of pain by simultaneous colocalized tactile input Kammers et al. (Curr Biol 20:1819-1822, 2010). Here, we investigate how self-touch modulates somatosensory evoked potentials (SEPs) evoked by afferent somatosensory input. We show that the P100 SEP component, which has previously been implicated in the conscious perception of a tactile stimulus, is enhanced during self-touch, as compared to when one is touching nothing, an inanimate object, or another person. A follow-up experiment showed that there was no effect of self-touch on SEPs when the body parts in contact were not symmetric. Altogether, our findings suggest the interpretation that the secondary somatosensory cortex might underlie the specific analgesic effect of self-touch.
Collapse
Affiliation(s)
- Hinze Hogendoorn
- Experimental Psychology Division, Helmholtz Institute, Universiteit Utrecht, Utrecht, The Netherlands.
| | - Marjolein Kammers
- Experimental Psychology Division, Helmholtz Institute, Universiteit Utrecht, Utrecht, The Netherlands
| | - Patrick Haggard
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Frans Verstraten
- Experimental Psychology Division, Helmholtz Institute, Universiteit Utrecht, Utrecht, The Netherlands.,Department of Psychology, University of Sydney, Sydney, Australia
| |
Collapse
|
26
|
Tsay A, Allen T, Proske U, Giummarra M. Sensing the body in chronic pain: A review of psychophysical studies implicating altered body representation. Neurosci Biobehav Rev 2015; 52:221-32. [DOI: 10.1016/j.neubiorev.2015.03.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 12/11/2014] [Accepted: 03/06/2015] [Indexed: 01/29/2023]
|
27
|
Transforming the Thermal Grill Effect by Crossing the Fingers. Curr Biol 2015; 25:1069-73. [DOI: 10.1016/j.cub.2015.02.055] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 02/02/2015] [Accepted: 02/19/2015] [Indexed: 11/20/2022]
|
28
|
Conson M, Errico D, Mazzarella E, De Bellis F, Grossi D, Trojano L. Impact of body posture on laterality judgement and explicit recognition tasks performed on self and others’ hands. Exp Brain Res 2015; 233:1331-8. [DOI: 10.1007/s00221-015-4210-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 01/16/2015] [Indexed: 10/24/2022]
|
29
|
Abstract
Manipulation of hand posture, such as crossing the hands, has been frequently used to study how the body and its immediately surrounding space are represented in the brain. Abundant data show that crossed arms posture impairs remapping of tactile stimuli from somatotopic to external space reference frame and deteriorates performance on several tactile processing tasks. Here we investigated how impaired tactile remapping affects the illusory self-touch, induced by the non-visual variant of the rubber hand illusion (RHI) paradigm. In this paradigm blindfolded participants (Experiment 1) had their hands either uncrossed or crossed over the body midline. The strength of illusory self-touch was measured with questionnaire ratings and proprioceptive drift. Our results showed that, during synchronous tactile stimulation, the strength of illusory self-touch increased when hands were crossed compared to the uncrossed posture. Follow-up experiments showed that the increase in illusion strength was not related to unfamiliar hand position (Experiment 2) and that it was equally strengthened regardless of where in the peripersonal space the hands were crossed (Experiment 3). However, while the boosting effect of crossing the hands was evident from subjective ratings, the proprioceptive drift was not modulated by crossed posture. Finally, in contrast to the illusion increase in the non-visual RHI, the crossed hand postures did not alter illusory ownership or proprioceptive drift in the classical, visuo-tactile version of RHI (Experiment 4). We argue that the increase in illusory self-touch is related to misalignment of somatotopic and external reference frames and consequently inadequate tactile-proprioceptive integration, leading to re-weighting of the tactile and proprioceptive signals.The present study not only shows that illusory self-touch can be induced by crossing the hands, but importantly, that this posture is associated with a stronger illusion.
Collapse
|
30
|
Harper DE, Hollins M. Coolness both underlies and protects against the painfulness of the thermal grill illusion. Pain 2014; 155:801-807. [DOI: 10.1016/j.pain.2014.01.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 01/15/2014] [Accepted: 01/16/2014] [Indexed: 10/25/2022]
|
31
|
Sumracki NM, Buisman-Pijlman FTA, Hutchinson MR, Gentgall M, Rolan P. Reduced Response to the Thermal Grill Illusion in Chronic Pain Patients. PAIN MEDICINE 2014; 15:647-60. [DOI: 10.1111/pme.12379] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
32
|
The influence of bubbles on the perception carbonation bite. PLoS One 2013; 8:e71488. [PMID: 23990956 PMCID: PMC3749224 DOI: 10.1371/journal.pone.0071488] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 06/28/2013] [Indexed: 11/19/2022] Open
Abstract
Although many people naively assume that the bite of carbonation is due to tactile stimulation of the oral cavity by bubbles, it has become increasingly clear that carbonation bite comes mainly from formation of carbonic acid in the oral mucosa. In Experiment 1, we asked whether bubbles were in fact required to perceive carbonation bite. Subjects rated oral pungency from several concentrations of carbonated water both at normal atmospheric pressure (at which bubbles could form) and at 2.0 atmospheres pressure (at which bubbles did not form). Ratings of carbonation bite under the two pressure conditions were essentially identical, indicating that bubbles are not required for pungency. In Experiment 2, we created controlled streams of air bubbles around the tongue in mildly pungent CO2 solutions to determine how tactile stimulation from bubbles affects carbonation bite. Since innocuous sensations like light touch and cooling often suppress pain, we predicted that bubbles might reduce rated bite. Contrary to prediction, air bubbles flowing around the tongue significantly enhanced rated bite, without inducing perceived bite in blank (un-carbonated) solutions. Accordingly, though bubbles are clearly not required for carbonation bite, they may well modulate perceived bite. More generally, the results show that innocuous tactile stimulation can enhance chemogenic pain. Possible physiological mechanisms are discussed.
Collapse
|
33
|
|
34
|
Kanaya S, Matsushima Y, Yokosawa K. Does seeing ice really feel cold? Visual-thermal interaction under an illusory body-ownership. PLoS One 2012; 7:e47293. [PMID: 23144814 PMCID: PMC3492393 DOI: 10.1371/journal.pone.0047293] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Accepted: 09/12/2012] [Indexed: 11/18/2022] Open
Abstract
Although visual information seems to affect thermal perception (e.g. red color is associated with heat), previous studies have failed to demonstrate the interaction between visual and thermal senses. However, it has been reported that humans feel an illusory thermal sensation in conjunction with an apparently-thermal visual stimulus placed on a prosthetic hand in the rubber hand illusion (RHI) wherein an individual feels that a prosthetic (rubber) hand belongs to him/her. This study tests the possibility that the ownership of the body surface on which a visual stimulus is placed enhances the likelihood of a visual-thermal interaction. We orthogonally manipulated three variables: induced hand-ownership, visually-presented thermal information, and tactically-presented physical thermal information. Results indicated that the sight of an apparently-thermal object on a rubber hand that is illusorily perceived as one's own hand affects thermal judgments about the object physically touching this hand. This effect was not observed without the RHI. The importance of ownership of a body part that is touched by the visual object on the visual-thermal interaction is discussed.
Collapse
Affiliation(s)
- Shoko Kanaya
- Department of Psychology, The University of Tokyo, Tokyo, Japan.
| | | | | |
Collapse
|
35
|
Watanabe N, Miyazaki S, Mukaino Y, Hotta H. Effect of gentle cutaneous stimulation on heat-induced autonomic response and subjective pain intensity in healthy humans. J Physiol Sci 2012; 62:343-50. [PMID: 22614394 PMCID: PMC10717059 DOI: 10.1007/s12576-012-0210-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 05/03/2012] [Indexed: 02/01/2023]
Abstract
The present study examined whether touch influences the autonomic responses and subjective pain intensity induced by noxious heat stimulation in humans. Heart rate and digital pulse wave were recorded. Heat stimulation was applied to the right plantar foot before, during, and after touch. Subjective pain intensity was evaluated using a visual analog scale (VAS). Touch was applied over the right medial malleolus for 10 min. Two types of touch were employed in a cross-over double-blinded randomized manner. When touch was applied with a soft elastomer brush, heat-induced autonomic responses attenuated significantly, while VAS scores were unchanged. In contrast, touch with a flat disc was ineffective for any measurement. Participants hardly perceived a difference in the texture of the touching materials. The present study result suggests there are mechanisms in conscious humans where some sort of touch inhibits nociceptive transmission into autonomic reflex pathways independent of sensation and cognition.
Collapse
Affiliation(s)
- Nobuhiro Watanabe
- Department of Autonomic Neuroscience, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015 Japan
| | - Shogo Miyazaki
- Department of Autonomic Neuroscience, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015 Japan
- Department of Acupuncture and Moxibustion, Faculty of Health Care, Teikyo Heisei University, 2-51-4 Higashi-ikebukuro, Toshima-ku, Tokyo, 170-8445 Japan
| | - Yoshito Mukaino
- Faculty of Sports and Health Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180 Japan
| | - Harumi Hotta
- Department of Autonomic Neuroscience, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015 Japan
| |
Collapse
|
36
|
Current world literature. Curr Opin Psychiatry 2012; 25:251-9. [PMID: 22456191 DOI: 10.1097/yco.0b013e328352dd8d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
van Stralen HE, van Zandvoort MJE, Dijkerman HC. The role of self-touch in somatosensory and body representation disorders after stroke. Philos Trans R Soc Lond B Biol Sci 2012; 366:3142-52. [PMID: 21969696 DOI: 10.1098/rstb.2011.0163] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Somatosensory impairments occur in about half of the cases of stroke. These impairments range from primary deficits in tactile detection and the perception of features, to higher order impairments in haptic object recognition and bodily experience. In this paper, we review the influence of active- and self-touch on somatosensory impairments after stroke. Studies have shown that self-touch improves tactile detection in patients with primary tactile deficits. A small number of studies concerned with the effect of self-touch on bodily experience in healthy individuals have demonstrated that self-touch influences the structural representation of one's own body. In order to better understand the effect of self-touch on body representations, we present an informal study of a stroke patient with somatoparaphrenia and misoplegia. The role of self-touch on body ownership was investigated by asking the patient to stroke the impaired left hand and foreign hands. The patient reported ownership and a change in affect over all presented hands through self-touch. The time it took to accomplish ownership varied, based on the resemblance of the foreign hand to the patient's own hand. Our findings suggest that self-touch can modulate impairments in body ownership and affect, perhaps by helping to reinstate the representation of the body.
Collapse
Affiliation(s)
- H E van Stralen
- Experimental Psychology, Helmholtz Institute, Department of Neurology, University Medical Centre Utrecht, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht, The Netherlands.
| | | | | |
Collapse
|
38
|
Pain while you are out of your body—A new approach to pain relief? Commentary on a paper by Hänsel et al. (2011). Eur J Pain 2012; 15:773-4. [DOI: 10.1016/j.ejpain.2011.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 07/04/2011] [Indexed: 11/17/2022]
|
39
|
Seckel E, Krause B, Ramachandran VS. Interpolation of Illusory Pain in the Human Somatosensory System. Perception 2012; 41:878-80. [DOI: 10.1068/p7019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Three coins are lined up with the middle coin at room temperature and flanking coins cooled down to 4° C. If digits 2 and 4 are placed on the outer coins and digit 3 on the middle coin, the latter also feels cold; a striking example of perceptual filling in of temperature. We show that if digits 2 and 4 are placed on a thermal grill with alternating hot and cold bars, while digit 3 is placed on cardboard, the sensation of pain will also spread to the middle finger.
Collapse
Affiliation(s)
- Elizabeth Seckel
- Center for Brain and Cognition, University of California at San Diego, La Jolla, CA 92093-0109, USA
| | - Beatrix Krause
- Center for Brain and Cognition, University of California at San Diego, La Jolla, CA 92093-0109, USA
| | - Vilayanur S Ramachandran
- Center for Brain and Cognition, University of California at San Diego, La Jolla, CA 92093-0109, USA
| |
Collapse
|
40
|
Lindstedt F, Johansson B, Martinsen S, Kosek E, Fransson P, Ingvar M. Evidence for thalamic involvement in the thermal grill illusion: an FMRI study. PLoS One 2011; 6:e27075. [PMID: 22096519 PMCID: PMC3214046 DOI: 10.1371/journal.pone.0027075] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 10/09/2011] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Perceptual illusions play an important role in untangling neural mechanisms underlying conscious phenomena. The thermal grill illusion (TGI) has been suggested as a promising model for exploring percepts involved in neuropathic pain, such as cold-allodynia (pain arising from contact with innocuous cold). The TGI is an unpleasant/painful sensation from touching juxtapositioned bars of cold and warm innocuous temperatures. AIM To develop an MRI-compatible TGI-unit and explore the supraspinal correlates of the illusion, using fMRI, in a group of healthy volunteers. METHODS We constructed a TGI-thermode allowing the rapid presentation of warm(41°C), cold(18°C) and interleaved(41°C+18°C = TGI) temperatures in an fMRI-environment. Twenty volunteers were tested. The affective-motivational ("unpleasantness") and sensory-disciminatory ("pain-intensity") dimensions of each respective stimulus were rated. Functional images were analyzed at a corrected α-level <0.05. RESULTS The TGI was rated as significantly more unpleasant and painful than stimulation with each of its constituent temperatures. Also, the TGI was rated as significantly more unpleasant than painful. Thermal stimulation versus neutral baseline revealed bilateral activations of the anterior insulae and fronto-parietal regions. Unlike its constituent temperatures the TGI displayed a strong activation of the right (contralateral) thalamus. Exploratory contrasts at a slightly more liberal threshold-level also revealed a TGI-activation of the right mid/anterior insula, correlating with ratings of unpleasantness (rho = 0.31). CONCLUSION/SIGNIFICANCE To the best of our knowledge, this is the first fMRI-study of the TGI. The activation of the anterior insula is consistent with this region's putative role in processing of homeostatically relevant feeling-states. Our results constitute the first neurophysiologic evidence of thalamic involvement in the TGI. Similar thalamic activity has previously been observed during evoked cold-allodynia in patients with central neuropathic pain. Our results further the understanding of the supraspinal correlates of the TGI-phenomenon and pave the way for future inquiries into if and how it may relate to neuropathic pain.
Collapse
Affiliation(s)
- Fredrik Lindstedt
- Department of Clinical Neuroscience, Osher Center for Integrative Medicine, Stockholm Brain Institute, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
41
|
Mancini F, Longo MR, Kammers MP, Haggard P. Visual Distortion of Body Size Modulates Pain Perception. Psychol Sci 2011; 22:325-30. [DOI: 10.1177/0956797611398496] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Pain is a complex subjective experience that is shaped by numerous contextual factors. For example, simply viewing the body reduces the reported intensity of acute physical pain. In this study, we investigated whether this visually induced analgesia is modulated by the visual size of the stimulated body part. We measured contact heat-pain thresholds while participants viewed either their own hand or a neutral object in three size conditions: reduced, actual size, or enlarged. Vision of the body was analgesic, increasing heat-pain thresholds by an average of 3.2 °C. We further found that visual enlargement of the viewed hand enhanced analgesia, whereas visual reduction of the hand decreased analgesia. These results demonstrate that pain perception depends on multisensory representations of the body and that visual distortions of body size modulate sensory components of pain.
Collapse
Affiliation(s)
- Flavia Mancini
- Institute of Cognitive Neuroscience, University College London
- Department of Psychology, University of Milano-Bicocca
| | - Matthew R. Longo
- Institute of Cognitive Neuroscience, University College London
- Department of Psychological Sciences, Birkbeck, University of London
| | | | - Patrick Haggard
- Institute of Cognitive Neuroscience, University College London
| |
Collapse
|