1
|
Pamula MC, Lehmann R. How germ granules promote germ cell fate. Nat Rev Genet 2024; 25:803-821. [PMID: 38890558 DOI: 10.1038/s41576-024-00744-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 06/20/2024]
Abstract
Germ cells are the only cells in the body capable of giving rise to a new organism, and this totipotency hinges on their ability to assemble membraneless germ granules. These specialized RNA and protein complexes are hallmarks of germ cells throughout their life cycle: as embryonic germ granules in late oocytes and zygotes, Balbiani bodies in immature oocytes, and nuage in maturing gametes. Decades of developmental, genetic and biochemical studies have identified protein and RNA constituents unique to germ granules and have implicated these in germ cell identity, genome integrity and gamete differentiation. Now, emerging research is defining germ granules as biomolecular condensates that achieve high molecular concentrations by phase separation, and it is assigning distinct roles to germ granules during different stages of germline development. This organization of the germ cell cytoplasm into cellular subcompartments seems to be critical not only for the flawless continuity through the germline life cycle within the developing organism but also for the success of the next generation.
Collapse
Affiliation(s)
| | - Ruth Lehmann
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
2
|
Haig D. Germline ecology: Managed herds, tolerated flocks, and pest control. J Hered 2024; 115:643-659. [PMID: 38447039 DOI: 10.1093/jhered/esae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 03/04/2024] [Indexed: 03/08/2024] Open
Abstract
Multicopy sequences evolve adaptations for increasing their copy number within nuclei. The activities of multicopy sequences under constraints imposed by cellular and organismal selection result in a rich intranuclear ecology in germline cells. Mitochondrial and ribosomal DNA are managed as domestic herds subject to selective breeding by the genes of the single-copy genome. Transposable elements lead a peripatetic existence in which they must continually move to new sites to keep ahead of inactivating mutations at old sites and undergo exponential outbreaks when the production of new copies exceeds the rate of inactivation of old copies. Centromeres become populated by repeats that do little harm. Organisms with late sequestration of germ cells tend to evolve more "junk" in their genomes than organisms with early sequestration of germ cells.
Collapse
Affiliation(s)
- David Haig
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States
| |
Collapse
|
3
|
Barton LJ, Roa-de la Cruz L, Lehmann R, Lin B. The journey of a generation: advances and promises in the study of primordial germ cell migration. Development 2024; 151:dev201102. [PMID: 38607588 PMCID: PMC11165723 DOI: 10.1242/dev.201102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
The germline provides the genetic and non-genetic information that passes from one generation to the next. Given this important role in species propagation, egg and sperm precursors, called primordial germ cells (PGCs), are one of the first cell types specified during embryogenesis. In fact, PGCs form well before the bipotential somatic gonad is specified. This common feature of germline development necessitates that PGCs migrate through many tissues to reach the somatic gonad. During their journey, PGCs must respond to select environmental cues while ignoring others in a dynamically developing embryo. The complex multi-tissue, combinatorial nature of PGC migration is an excellent model for understanding how cells navigate complex environments in vivo. Here, we discuss recent findings on the migratory path, the somatic cells that shepherd PGCs, the guidance cues somatic cells provide, and the PGC response to these cues to reach the gonad and establish the germline pool for future generations. We end by discussing the fate of wayward PGCs that fail to reach the gonad in diverse species. Collectively, this field is poised to yield important insights into emerging reproductive technologies.
Collapse
Affiliation(s)
- Lacy J. Barton
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
| | - Lorena Roa-de la Cruz
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
| | - Ruth Lehmann
- Whitehead Institute and Department of Biology, MIT, 455 Main Street, Cambridge, MA 02142, USA
| | - Benjamin Lin
- Department of Biochemistry & Cell Biology, Stony Brook University, Stony Brook, NY, 11794, USA
| |
Collapse
|
4
|
Heikes KL, Game M, Smith FW, Goldstein B. The embryonic origin of primordial germ cells in the tardigrade Hypsibius exemplaris. Dev Biol 2023; 497:42-58. [PMID: 36893882 DOI: 10.1016/j.ydbio.2023.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/16/2023] [Accepted: 02/26/2023] [Indexed: 03/09/2023]
Abstract
Primordial germ cells (PGCs) give rise to gametes - cells necessary for the propagation and fertility of diverse organisms. Current understanding of PGC development is limited to the small number of organisms whose PGCs have been identified and studied. Expanding the field to include little-studied taxa and emerging model organisms is important to understand the full breadth of the evolution of PGC development. In the phylum Tardigrada, no early cell lineages have been identified to date using molecular markers. This includes the PGC lineage. Here, we describe PGC development in the model tardigrade Hypsibius exemplaris. The four earliest-internalizing cells (EICs) exhibit PGC-like behavior and nuclear morphology. The location of the EICs is enriched for mRNAs of conserved PGC markers wiwi1 (water bear piwi 1) and vasa. At early stages, both wiwi1 and vasa mRNAs are detectable uniformly in embryos, which suggests that these mRNAs do not serve as localized determinants for PGC specification. Only later are wiwi1 and vasa enriched in the EICs. Finally, we traced the cells that give rise to the four PGCs. Our results reveal the embryonic origin of the PGCs of H. exemplaris and provide the first molecular characterization of an early cell lineage in the tardigrade phylum. We anticipate that these observations will serve as a basis for characterizing the mechanisms of PGC development in this animal.
Collapse
Affiliation(s)
- Kira L Heikes
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mandy Game
- Biology Department, University of North Florida, Jacksonville, FL, USA
| | - Frank W Smith
- Biology Department, University of North Florida, Jacksonville, FL, USA
| | - Bob Goldstein
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
5
|
Heikes KL, Game M, Smith FW, Goldstein B. The Embryonic Origin of Primordial Germ Cells in the Tardigrade Hypsibius exemplaris. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.02.522500. [PMID: 36824831 PMCID: PMC9948961 DOI: 10.1101/2023.01.02.522500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Primordial germ cells (PGCs) give rise to gametes â€" cells necessary for the propagation and fertility of diverse organisms. Current understanding of PGC development is limited to the small number of organisms whose PGCs have been identified and studied. Expanding the field to include little-studied taxa and emerging model organisms is important to understand the full breadth of the evolution of PGC development. In the phylum Tardigrada, no early cell lineages have been identified to date using molecular markers. This includes the PGC lineage. Here, we describe PGC development in the model tardigrade Hypsibius exemplaris . The four earliest-internalizing cells (EICs) exhibit PGC-like behavior and nuclear morphology. The location of the EICs is enriched for mRNAs of conserved PGC markers wiwi1 (water bear piwi 1) and vasa . At early stages, both wiwi1 and vasa mRNAs are detectable uniformly in embryos, which suggests that these mRNAs do not serve as localized determinants for PGC specification. Only later are wiwi1 and vasa enriched in the EICs. Finally, we traced the cells that give rise to the four PGCs. Our results reveal the embryonic origin of the PGCs of H. exemplaris and provide the first molecular characterization of an early cell lineage in the tardigrade phylum. We anticipate that these observations will serve as a basis for characterizing the mechanisms of PGC development in this animal.
Collapse
Affiliation(s)
- Kira L. Heikes
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mandy Game
- Biology Department, University of North Florida, Jacksonville, FL, USA
| | - Frank W. Smith
- Biology Department, University of North Florida, Jacksonville, FL, USA
| | - Bob Goldstein
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
6
|
Sekula M, Tworzydlo W, Bilinski SM. Morphology and ultrastructure of the Balbiani body in the oocytes of closely related bush cricket species. Shared features reveal important aspect of functioning. ZOOLOGY 2022; 155:126051. [PMID: 36108419 DOI: 10.1016/j.zool.2022.126051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 01/25/2023]
Abstract
Balbiani bodies (Bbs) are female germline-specific organelle assemblages usually composed of mitochondria, Golgi complexes, elements of endoplasmic reticulum and accumulations of fine granular material, termed the nuage. Here we present results of morphological and ultrastructural analysis of the Bb of four bush crickets nested in four subfamilies of the family Tettigonidae. This study has revealed that Bbs of closely related species (belonging to the defined evolutionary line) are morphologically rather different. In two species (Meconema meridionale and Pholidoptera griseoaptera) the Bb has the form of a hollow hemisphere that covers a part of the germinal vesicle surface. In contrast, the Bb of Conocephalus fuscus and Leptophyes albovittata is less distinct and surrounds the whole or the majority of the germinal vesicle surface. Aside from this difference, the Bbs of all four studied species are built of identical sets of organelles and, most importantly, share one significant feature: close association of mitochondria and nuage accumulations. We show additionally that mitochondria remaining in direct contact with the nuage are characterized by distinct morphologies e.g. elongated, dumbbell shaped or bifurcated. In the light of our results and literature survey, the ancestral function of the Bb is discussed.
Collapse
Affiliation(s)
- Malgorzata Sekula
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Gronostajowa 9, 30-387 Krakow, Poland.
| | - Waclaw Tworzydlo
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Gronostajowa 9, 30-387 Krakow, Poland
| | - Szczepan M Bilinski
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Gronostajowa 9, 30-387 Krakow, Poland
| |
Collapse
|
7
|
Atsuta Y, Suzuki K, Iikawa H, Yaguchi H, Saito D. Prime editing in chicken fibroblasts and primordial germ cells. Dev Growth Differ 2022; 64:548-557. [PMID: 36374008 DOI: 10.1111/dgd.12823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/28/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022]
Abstract
CRISPR/Cas9-based genome editing technologies are revolutionizing developmental biology. One of the advanced CRISPR-based techniques is prime editing (PE), which enables precise gene modification in multiple model organisms. However, there has been no report of taking advantage of the PE system for gene editing in primordial germ cells (PGCs) thus far. In the current study, we describe a method to apply PE to the genome of chicken fibroblasts and PGCs. By combining PE with a transposon-mediated genomic integration, drug selection, and the single-cell culture method, we successfully generated prime-edited chicken fibroblasts and PGCs. The chicken PGC is widely used as an experimental model to study germ cell formation and as a vector for gene transfer to produce transgenic chickens. Such experimental models are useful in the developmental biology field and as potential bioreactors to produce pharmaceutical and nutritious proteins. Thus, the method presented here will provide not only a powerful tool to investigate gene function in germ cell development but also a basis for generating prime-edited transgenic birds.
Collapse
Affiliation(s)
- Yuji Atsuta
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Katsuya Suzuki
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Hiroko Iikawa
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Haruna Yaguchi
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Daisuke Saito
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
8
|
Lin GW, Chung CY, Cook CE, Lin MD, Lee WC, Chang CC. Germline specification and axis determination in viviparous and oviparous pea aphids: conserved and divergent features. Dev Genes Evol 2022; 232:51-65. [PMID: 35678925 PMCID: PMC9329388 DOI: 10.1007/s00427-022-00690-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/19/2022] [Indexed: 01/06/2023]
Abstract
Aphids are hemimetabolous insects that undergo incomplete metamorphosis without pupation. The annual life cycle of most aphids includes both an asexual (viviparous) and a sexual (oviparous) phase. Sexual reproduction only occurs once per year and is followed by many generations of asexual reproduction, during which aphids propagate exponentially with telescopic development. Here, we discuss the potential links between viviparous embryogenesis and derived developmental features in the pea aphid Acyrthosiphon pisum, particularly focusing on germline specification and axis determination, both of which are key events of early development in insects. We also discuss potential evolutionary paths through which both viviparous and oviparous females might have come to utilize maternal germ plasm to drive germline specification. This developmental strategy, as defined by germline markers, has not been reported in other hemimetabolous insects. In viviparous females, furthermore, we discuss whether molecules that in other insects characterize germ plasm, like Vasa, also participate in posterior determination and how the anterior localization of the hunchback orthologue Ap-hb establishes the anterior-posterior axis. We propose that the linked chain of developing oocytes and embryos within each ovariole and the special morphology of early embryos might have driven the formation of evolutionary novelties in germline specification and axis determination in the viviparous aphids. Moreover, based upon the finding that the endosymbiont Buchnera aphidicola is closely associated with germ cells throughout embryogenesis, we propose presumptive roles for B. aphidicola in aphid development, discussing how it might regulate germline migration in both reproductive modes of pea aphids. In summary, we expect that this review will shed light on viviparous as well as oviparous development in aphids.
Collapse
Affiliation(s)
- Gee-Way Lin
- Laboratory for Genomics and Development, College of Bio-Resources and Agriculture, Department of Entomology, National Taiwan University (NTU), No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chen-Yo Chung
- Laboratory for Genomics and Development, College of Bio-Resources and Agriculture, Department of Entomology, National Taiwan University (NTU), No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, NTU, Taipei, Taiwan
| | - Charles E Cook
- Laboratory for Genomics and Development, College of Bio-Resources and Agriculture, Department of Entomology, National Taiwan University (NTU), No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan
| | - Ming-Der Lin
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| | - Wen-Chih Lee
- Research Center for Global SDGs Challenges, Office of Research and Development, Tzu Chi University, Hualien, Taiwan
| | - Chun-Che Chang
- Laboratory for Genomics and Development, College of Bio-Resources and Agriculture, Department of Entomology, National Taiwan University (NTU), No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan.
- Research Center for Developmental Biology and Regenerative Medicine, NTU, Taipei, Taiwan.
- Institute of Biotechnology, College of Bio-Resources and Agriculture, NTU, Taipei, Taiwan.
- Genome and Systems Biology Degree Program, NTU, Taipei, Taiwan.
- International Graduate Program of Molecular Science and Technology, NTU, Taipei, Taiwan.
| |
Collapse
|
9
|
Nuclear speed and cycle length co-vary with local density during syncytial blastoderm formation in a cricket. Nat Commun 2022; 13:3889. [PMID: 35794113 PMCID: PMC9259616 DOI: 10.1038/s41467-022-31212-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/09/2022] [Indexed: 12/20/2022] Open
Abstract
The blastoderm is a broadly conserved stage of early animal development, wherein cells form a layer at the embryo’s periphery. The cellular behaviors underlying blastoderm formation are varied and poorly understood. In most insects, the pre-blastoderm embryo is a syncytium: nuclei divide and move throughout the shared cytoplasm, ultimately reaching the cortex. In Drosophila melanogaster, some early nuclear movements result from pulsed cytoplasmic flows that are coupled to synchronous divisions. Here, we show that the cricket Gryllus bimaculatus has a different solution to the problem of creating a blastoderm. We quantified nuclear dynamics during blastoderm formation in G. bimaculatus embryos, finding that: (1) cytoplasmic flows are unimportant for nuclear movement, and (2) division cycles, nuclear speeds, and the directions of nuclear movement are not synchronized, instead being heterogeneous in space and time. Moreover, nuclear divisions and movements co-vary with local nuclear density. We show that several previously proposed models for nuclear movements in D. melanogaster cannot explain the dynamics of G. bimaculatus nuclei. We introduce a geometric model based on asymmetric pulling forces on nuclei, which recapitulates the patterns of nuclear speeds and orientations of both unperturbed G. bimaculatus embryos, and of embryos physically manipulated to have atypical nuclear densities. Early in insect embryo development, many nuclei share one large cell, travel varied paths and self-organize into a single layer. Donoughe et al. illuminate this process with live-imaging, modeling, and experimental changes to the embryo’s shape.
Collapse
|
10
|
Kemph A, Lynch JA. Evolution of germ plasm assembly and function among the insects. CURRENT OPINION IN INSECT SCIENCE 2022; 50:100883. [PMID: 35123121 PMCID: PMC9133133 DOI: 10.1016/j.cois.2022.100883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/13/2022] [Accepted: 01/24/2022] [Indexed: 05/04/2023]
Abstract
Germ plasm is a substance capable of driving naive cells toward the germ cell fate. Germ plasm has had multiple independent origins, and takes on diverse forms and functions throughout animals, including in insects. We describe here recent advances in the understanding of the evolution of germ plasm in insects. A major theme that has emerged is the complex and convoluted interactions of germ plasm with symbiotic bacteria within the germline, including at the very origin of oskar, the gene required for assembling germ plasm in insects. Major advancements have also been made in understanding the basic molecular arrangement of germ plasm in insects. These advances demonstrate that further analysis of insect germ plasm will be fruitful in illuminating diverse aspects of evolutionary and developmental biology.
Collapse
|
11
|
Post-transcriptional regulation of factors important for the germ line. Curr Top Dev Biol 2022; 146:49-78. [PMID: 35152986 DOI: 10.1016/bs.ctdb.2021.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Echinoderms are a major model system for many general aspects of biology, including mechanisms of gene regulation. Analysis of transcriptional regulation (Gene regulatory networks, direct DNA-binding of proteins to specific cis-elements, and transgenesis) has contributed to our understanding of how an embryo works. This chapter looks at post-transcriptional gene regulation in the context of how the primordial germ cells are formed, and how the factors essential for this process are regulated. Important in echinoderms, as in many embryos, is that key steps of fate determination are made post-transcriptionally. This chapter highlights these steps uncovered in sea urchins and sea stars, and links them to a general theme of how the germ line may regulate its fate differently than many of the embryo's somatic cell lineages.
Collapse
|
12
|
Aramaki S, Kagiwada S, Wu G, Obridge D, Adachi K, Kutejova E, Lickert H, Hübner K, Schöler HR. Residual pluripotency is required for inductive germ cell segregation. EMBO Rep 2021; 22:e52553. [PMID: 34156139 PMCID: PMC8344911 DOI: 10.15252/embr.202152553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 12/31/2022] Open
Abstract
Fine‐tuned dissolution of pluripotency is critical for proper cell differentiation. Here we show that the mesodermal transcription factor, T, globally affects the properties of pluripotency through binding to Oct4 and to the loci of other pluripotency regulators. Strikingly, lower T levels coordinately affect naïve pluripotency, thereby directly activating the germ cell differentiation program, in contrast to the induction of germ cell fate of primed models. Contrary to the effect of lower T levels, higher T levels more severely affect the pluripotency state, concomitantly enhancing the somatic differentiation program and repressing the germ cell differentiation program. Consistent with such in vitro findings, nascent germ cells in vivo are detected in the region of lower T levels at the posterior primitive streak. Furthermore, T and core pluripotency regulators co‐localize at the loci of multiple germ cell determinants responsible for germ cell development. In conclusion, our findings indicate that residual pluripotency establishes the earliest and fundamental regulatory mechanism for inductive germline segregation from somatic lineages.
Collapse
Affiliation(s)
- Shinya Aramaki
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Saya Kagiwada
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Guangming Wu
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - David Obridge
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Kenjiro Adachi
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Eva Kutejova
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Heiko Lickert
- Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
| | - Karin Hübner
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Hans R Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany.,Medical Faculty, University of Münster, Münster, Germany
| |
Collapse
|
13
|
Raz AA, Yamashita YM. Molding immortality from a plastic germline. Curr Opin Cell Biol 2021; 73:1-8. [PMID: 34091218 PMCID: PMC9255434 DOI: 10.1016/j.ceb.2021.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022]
Abstract
Germ cells are uniquely capable of maintaining cellular immortality, allowing them to give rise to new individuals in generation after generation. Recent studies have identified that the germline state is plastic, with frequent interconversion between germline differentiation states and across the germline/soma border. Therefore, features that grant germline immortality must be inducible, with other cells undergoing some form of rejuvenation to a germline state. In this review, we summarize the breadth of our current interpretations of germline plasticity and the ways in which these fate conversion events can aid our understanding of the underlying hallmarks of germline immortality.
Collapse
Affiliation(s)
- Amelie A Raz
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA; Howard Hughes Medical Institute, Cambridge, MA, USA.
| | - Yukiko M Yamashita
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA; Howard Hughes Medical Institute, Cambridge, MA, USA; Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
14
|
Kulkarni A, Lopez DH, Extavour CG. Shared Cell Biological Functions May Underlie Pleiotropy of Molecular Interactions in the Germ Lines and Nervous Systems of Animals. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
15
|
Blondel L, Jones TEM, Extavour CG. Bacterial contribution to genesis of the novel germ line determinant oskar. eLife 2020; 9:e45539. [PMID: 32091394 PMCID: PMC7250577 DOI: 10.7554/elife.45539] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 02/23/2020] [Indexed: 12/20/2022] Open
Abstract
New cellular functions and developmental processes can evolve by modifying existing genes or creating novel genes. Novel genes can arise not only via duplication or mutation but also by acquiring foreign DNA, also called horizontal gene transfer (HGT). Here we show that HGT likely contributed to the creation of a novel gene indispensable for reproduction in some insects. Long considered a novel gene with unknown origin, oskar has evolved to fulfil a crucial role in insect germ cell formation. Our analysis of over 100 insect Oskar sequences suggests that oskar arose de novo via fusion of eukaryotic and prokaryotic sequences. This work shows that highly unusual gene origin processes can give rise to novel genes that may facilitate evolution of novel developmental mechanisms.
Collapse
Affiliation(s)
- Leo Blondel
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | - Tamsin EM Jones
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Cassandra G Extavour
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| |
Collapse
|
16
|
DuBuc TQ, Schnitzler CE, Chrysostomou E, McMahon ET, Febrimarsa, Gahan JM, Buggie T, Gornik SG, Hanley S, Barreira SN, Gonzalez P, Baxevanis AD, Frank U. Transcription factor AP2 controls cnidarian germ cell induction. Science 2020; 367:757-762. [PMID: 32054756 PMCID: PMC7025884 DOI: 10.1126/science.aay6782] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 12/06/2019] [Indexed: 12/18/2022]
Abstract
Clonal animals do not sequester a germ line during embryogenesis. Instead, they have adult stem cells that contribute to somatic tissues or gametes. How germ fate is induced in these animals, and whether this process is related to bilaterian embryonic germline induction, is unknown. We show that transcription factor AP2 (Tfap2), a regulator of mammalian germ lines, acts to commit adult stem cells, known as i-cells, to the germ cell fate in the clonal cnidarian Hydractinia symbiolongicarpus Tfap2 mutants lacked germ cells and gonads. Transplanted wild-type cells rescued gonad development but not germ cell induction in Tfap2 mutants. Forced expression of Tfap2 in i-cells converted them to germ cells. Therefore, Tfap2 is a regulator of germ cell commitment across germ line-sequestering and germ line-nonsequestering animals.
Collapse
Affiliation(s)
- Timothy Q DuBuc
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Christine E Schnitzler
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32080, USA
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Eleni Chrysostomou
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Emma T McMahon
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Febrimarsa
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - James M Gahan
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Tara Buggie
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Sebastian G Gornik
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Shirley Hanley
- National Centre for Biomedical Engineering Science, National University of Ireland Galway, Galway, Ireland
| | - Sofia N Barreira
- Computational and Statistical Genomics Branch, Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paul Gonzalez
- Computational and Statistical Genomics Branch, Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andreas D Baxevanis
- Computational and Statistical Genomics Branch, Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Uri Frank
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
17
|
Hox genes limit germ cell formation in the short germ insect Gryllus bimaculatus. Proc Natl Acad Sci U S A 2019; 116:16430-16435. [PMID: 31346080 DOI: 10.1073/pnas.1816024116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hox genes are conserved transcription factor-encoding genes that specify the identity of body regions in bilaterally symmetrical animals. In the cricket Gryllus bimaculatus, a member of the hemimetabolous insect group Orthoptera, the induction of a subset of mesodermal cells to form the primordial germ cells (PGCs) is restricted to the second through the fourth abdominal segments (A2 to A4). In numerous insect species, the Hox genes Sex-combs reduced (Scr), Antennapedia (Antp), Ultrabithorax (Ubx), and abdominal-A (abd-A) jointly regulate the identities of middle and posterior body segments, suggesting that these genes may restrict PGC formation to specific abdominal segments in G. bimaculatus Here we show that reducing transcript levels of some or all of these Hox genes results in supernumerary and/or ectopic PGCs, either individually or in segment-specific combinations, suggesting that the role of these Hox genes is to limit PGC development with respect to their number, segmental location, or both. These data provide evidence of a role for this ancient group of genes in PGC development.
Collapse
|
18
|
Abstract
Primordial germ cells (PGCs) must complete a complex and dynamic developmental program during embryogenesis to establish the germline. This process is highly conserved and involves a diverse array of tasks required of PGCs, including migration, survival, sex differentiation, and extensive epigenetic reprogramming. A common theme across many organisms is that PGC success is heterogeneous: only a portion of all PGCs complete all these steps while many other PGCs are eliminated from further germline contribution. The differences that distinguish successful PGCs as a population are not well understood. Here, we examine variation that exists in PGCs as they navigate the many stages of this developmental journey. We explore potential sources of PGC heterogeneity and their potential implications in affecting germ cell behaviors. Lastly, we discuss the potential for PGC development to function as a multistage selection process that assesses heterogeneity in PGCs to refine germline quality.
Collapse
Affiliation(s)
- Daniel H Nguyen
- Department of Obstetrics, Gynecology and Reproductive Science, Center for Reproductive Sciences, Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, United States
| | - Rebecca G Jaszczak
- Department of Obstetrics, Gynecology and Reproductive Science, Center for Reproductive Sciences, Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, United States
| | - Diana J Laird
- Department of Obstetrics, Gynecology and Reproductive Science, Center for Reproductive Sciences, Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, United States.
| |
Collapse
|
19
|
Whittle CA, Extavour CG. Contrasting patterns of molecular evolution in metazoan germ line genes. BMC Evol Biol 2019; 19:53. [PMID: 30744572 PMCID: PMC6371493 DOI: 10.1186/s12862-019-1363-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 01/14/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Germ lines are the cell lineages that give rise to the sperm and eggs in animals. The germ lines first arise from primordial germ cells (PGCs) during embryogenesis: these form from either a presumed derived mode of preformed germ plasm (inheritance) or from an ancestral mechanism of inductive cell-cell signalling (induction). Numerous genes involved in germ line specification and development have been identified and functionally studied. However, little is known about the molecular evolutionary dynamics of germ line genes in metazoan model systems. RESULTS Here, we studied the molecular evolution of germ line genes within three metazoan model systems. These include the genus Drosophila (N=34 genes, inheritance), the fellow insect Apis (N=30, induction), and their more distant relative Caenorhabditis (N=23, inheritance). Using multiple species and established phylogenies in each genus, we report that germ line genes exhibited marked variation in the constraint on protein sequence divergence (dN/dS) and codon usage bias (CUB) within each genus. Importantly, we found that de novo lineage-specific inheritance (LSI) genes in Drosophila (osk, pgc) and in Caenorhabditis (pie-1, pgl-1), which are essential to germ plasm functions under the derived inheritance mode, displayed rapid protein sequence divergence relative to the other germ line genes within each respective genus. We show this may reflect the evolution of specialized germ plasm functions and/or low pleiotropy of LSI genes, features not shared with other germ line genes. In addition, we observed that the relative ranking of dN/dS and of CUB between genera were each more strongly correlated between Drosophila and Caenorhabditis, from different phyla, than between Drosophila and its insect relative Apis, suggesting taxonomic differences in how germ line genes have evolved. CONCLUSIONS Taken together, the present results advance our understanding of the evolution of animal germ line genes within three well-known metazoan models. Further, the findings provide insights to the molecular evolution of germ line genes with respect to LSI status, pleiotropy, adaptive evolution as well as PGC-specification mode.
Collapse
Affiliation(s)
- Carrie A Whittle
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA, 02138, USA
| | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA, 02138, USA.
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA, 02138, USA.
| |
Collapse
|
20
|
Bilinski SM, Jaglarz MK, Tworzydlo W. Organelle assemblages implicated in the transfer of oocyte components to the embryo: an insect perspective. CURRENT OPINION IN INSECT SCIENCE 2019; 31:1-7. [PMID: 31109662 DOI: 10.1016/j.cois.2018.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 05/09/2018] [Indexed: 06/09/2023]
Abstract
Besides reserve materials (yolk spheres, lipid droplets), ribosomes and various mRNA species, insect oocytes contain large easily morphologically recognizable organelle assemblages: the Balbiani body and the oosome (pole plasm). These assemblages are implicated in the transfer of oocyte components (mitochondria, polar granules) to the embryo that is to offspring. Here, we review present knowledge of morphology, morphogenesis, molecular composition and function/s of these assemblages. We discuss also the morphogenesis and presumed function of unconventional organelle assemblages, dormant stacks of endoplasmic reticulum, recently described in the oocytes and early embryos of a viviparous dermapteran, Hemimerus talpoides.
Collapse
Affiliation(s)
- Szczepan M Bilinski
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland.
| | - Mariusz K Jaglarz
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Waclaw Tworzydlo
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| |
Collapse
|
21
|
Issigonis M, Newmark PA. From worm to germ: Germ cell development and regeneration in planarians. Curr Top Dev Biol 2019; 135:127-153. [DOI: 10.1016/bs.ctdb.2019.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
22
|
Kulkarni A, Extavour CG. The Cricket Gryllus bimaculatus: Techniques for Quantitative and Functional Genetic Analyses of Cricket Biology. Results Probl Cell Differ 2019; 68:183-216. [PMID: 31598857 DOI: 10.1007/978-3-030-23459-1_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
All extant species are an outcome of nature's "experiments" during evolution, and hence multiple species need to be studied and compared to gain a thorough understanding of evolutionary processes. The field of evolutionary developmental biology (evo-devo) aspires to expand the number of species studied, because most functional genetic studies in animals have been limited to a small number of "traditional" model organisms, many of which belong to the same phylum (Chordata). The phylum Arthropoda, and particularly its component class Insecta, possesses many important characteristics that are considered favorable and attractive for evo-devo research, including an astonishing diversity of extant species and a wide disparity in body plans. The development of the most thoroughly investigated insect genetic model system to date, the fruit fly Drosophila melanogaster (a holometabolous insect), appears highly derived with respect to other insects and indeed with respect to most arthropods. In comparison, crickets (a basally branching hemimetabolous insect lineage compared to the Holometabola) are thought to embody many developmental features that make them more representative of insects. Here we focus on crickets as emerging models to study problems in a wide range of biological areas and summarize the currently available molecular, genomic, forward and reverse genetic, imaging and computational tool kit that has been established or adapted for cricket research. With an emphasis on the cricket species Gryllus bimaculatus, we highlight recent efforts made by the scientific community in establishing this species as a laboratory model for cellular biology and developmental genetics. This broad toolkit has the potential to accelerate many traditional areas of cricket research, including studies of adaptation, evolution, neuroethology, physiology, endocrinology, regeneration, and reproductive behavior. It may also help to establish newer areas, for example, the use of crickets as animal infection model systems and human food sources.
Collapse
Affiliation(s)
- Arpita Kulkarni
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
23
|
Aduma N, Izumi H, Mizushima S, Kuroiwa A. Knockdown of DEAD-box helicase 4 (DDX4) decreases the number of germ cells in male and female chicken embryonic gonads. Reprod Fertil Dev 2019; 31:847-854. [DOI: 10.1071/rd18266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 11/27/2018] [Indexed: 11/23/2022] Open
Abstract
DEAD-box helicase 4 (DDX4; also known as vasa) is essential for the proper formation and maintenance of germ cells. Although DDX4 is conserved in a variety of vertebrates and invertebrates, its roles differ between species. This study investigated the function of DDX4 in chicken embryos by knocking down its expression using retroviral vectors that encoded DDX4-targeting microRNAs. DDX4 was effectively depleted invitro and invivo via this approach. Male and female gonads of DDX4-knockdown embryos contained a decreased number of primordial germ cells, indicating that DDX4 is essential to maintain a normal level of these cells in chicken embryos of both sexes. Expression of doublesex and mab-3 related transcription factor 1 (DMRT1) and sex determining region Y-box 9 (SOX9), which are involved in testis determination and differentiation, was normal in male gonads of DDX4-knockdown embryos. In contrast, expression of cytochrome P450 family 19 subfamily A member 1 (CYP19A1), which encodes aromatase and is essential for ovary development, was significantly decreased in female gonads of DDX4-knockdown embryos. Expression of forkhead box L2 (FOXL2), which plays an important role in ovary differentiation, was also slightly reduced in DDX4-knockdown embryos, but not significantly. Based on several pieces of evidence FOXL2 was hypothesised to regulate aromatase expression. The results of this study indicate that aromatase expression is also regulated by several additional pathways.
Collapse
|
24
|
Chung CY, Hsiao YM, Huang TY, Chang TH, Chang CC. Germline expression of the hunchback orthologues in the asexual viviparous aphids: a conserved feature within the Aphididae. INSECT MOLECULAR BIOLOGY 2018; 27:752-765. [PMID: 29892979 DOI: 10.1111/imb.12514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In animals, differentiation of germline from soma usually takes place during embryogenesis. Genes and their products that are preferentially expressed in the embryonic germ cells are regarded as candidates for maintaining germline fate or promoting germline identity. In Drosophila, for example, the protein encoded by the germline gene vasa is specifically restricted to the germ cells, while products of the gap gene hunchback (hb), a somatic gene, are preferentially expressed in the neuroblasts. In this study, we report the expression of both messenger RNA and protein encoded by Aphb, an hb orthologue in the asexual viviparous pea aphid Acyrthosiphon pisum, in germ cells as well as in neuroblasts. We infer that expression of Aphb messenger RNA in the germ cells during the formation of germaria is required for the anterior localization of Aphb in the protruding oocytes. Germarial expression and anterior localization of ApKrüppel was also identified but, unlike Aphb, its expression was not detected in the migrating germ cells. Very similar patterns of hb expression were also identified in the green peach aphid Myzus persicae, suggesting that germline expression of hb is conserved within the Aphididae. To date, this pattern of hb germline expression has not been reported in other insects.
Collapse
Affiliation(s)
- C-Y Chung
- Laboratory for Genetics and Development, Department of Entomology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| | - Y-M Hsiao
- Laboratory for Genetics and Development, Department of Entomology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - T-Y Huang
- Laboratory for Genetics and Development, Department of Entomology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - T-H Chang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan
| | - C-C Chang
- Laboratory for Genetics and Development, Department of Entomology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
25
|
Causes and evolutionary consequences of primordial germ-cell specification mode in metazoans. Proc Natl Acad Sci U S A 2018; 114:5784-5791. [PMID: 28584112 DOI: 10.1073/pnas.1610600114] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
In animals, primordial germ cells (PGCs) give rise to the germ lines, the cell lineages that produce sperm and eggs. PGCs form in embryogenesis, typically by one of two modes: a likely ancestral mode wherein germ cells are induced during embryogenesis by cell-cell signaling (induction) or a derived mechanism whereby germ cells are specified by using germ plasm-that is, maternally specified germ-line determinants (inheritance). The causes of the shift to germ plasm for PGC specification in some animal clades remain largely unknown, but its repeated convergent evolution raises the question of whether it may result from or confer an innate selective advantage. It has been hypothesized that the acquisition of germ plasm confers enhanced evolvability, resulting from the release of selective constraint on somatic gene networks in embryogenesis, thus leading to acceleration of an organism's protein-sequence evolution, particularly for genes expressed at early developmental stages, and resulting in high speciation rates in germ plasm-containing lineages (denoted herein as the "PGC-specification hypothesis"). Although that hypothesis, if supported, could have major implications for animal evolution, our recent large-scale coding-sequence analyses from vertebrates and invertebrates provided important examples of genera that do not support the hypothesis of liberated constraint under germ plasm. Here, we consider reasons why germ plasm might be neither a direct target of selection nor causally linked to accelerated animal evolution. We explore alternate scenarios that could explain the repeated evolution of germ plasm and propose potential consequences of the inheritance and induction modes to animal evolutionary biology.
Collapse
|
26
|
Shonouda M, Osman W. Ultrastructural alterations in sperm formation of the beetle, Blaps polycresta (Coleoptera: Tenebrionidae) as a biomonitor of heavy metal soil pollution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:7896-7906. [PMID: 29299863 DOI: 10.1007/s11356-017-1172-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 12/26/2017] [Indexed: 06/07/2023]
Abstract
Little is known about ultrastructural alterations induced by heavy metals pollution in insects. Therefore, the main objective of the present study is to elucidate ultrastructural changes in sperm formation of the tenebrionid beetle, Blaps polycresta as a biomonitor of heavy metal soil pollution. Metal percentages in testicular tissues of adult insects collected from reference and polluted sites were estimated using energy-dispersive X-ray microanalysis (EDX). Only cadmium, among eight detected metals, showed significantly higher percentages in the polluted testes compared with the reference ones. Ultrastructure investigation revealed severe alterations both in spermatogenic and spermiogenic stages of the polluted insects. Some cells were totally eroded. No spermatozoa were observed in all the examined cysts. Most degenerations were confined to the flagella of spermatids having enlarged vacuolated cytoplasm and malformed mitochondrial derivatives. Groups of multiple axial filaments were appeared in the form of bi-and tetra-flagellate spermatids. Electron dense vesicles were observed in almost all stages of the polluted testes. It is a novel trend in which ultrastructural alterations in sperm formation of insects could be used as a promising biomonitoring and risk assessment tool for heavy metal soil pollution.
Collapse
Affiliation(s)
- Mourad Shonouda
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Wafaa Osman
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
27
|
Fresques TM, Wessel GM. Nodal induces sequential restriction of germ cell factors during primordial germ cell specification. Development 2018; 145:dev155663. [PMID: 29358213 PMCID: PMC5825842 DOI: 10.1242/dev.155663] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 12/18/2017] [Indexed: 12/30/2022]
Abstract
Specification of the germ cell lineage is required for sexual reproduction in animals. The mechanism of germ cell specification varies among animals but roughly clusters into either inherited or inductive mechanisms. The inductive mechanism, the use of cell-cell interactions for germ cell specification, appears to be the ancestral mechanism in animal phylogeny, yet the pathways responsible for this process are only recently surfacing. Here, we show that germ cell factors in the sea star initially are present broadly, then become restricted dorsally and then in the left side of the embryo where the germ cells form a posterior enterocoel. We find that Nodal signaling is required for the restriction of two germ cell factors, Nanos and Vasa, during the early development of this animal. We learned that Nodal inhibits germ cell factor accumulation in three ways including: inhibition of specific transcription, degradation of specific mRNAs and inhibition of tissue morphogenesis. These results document a signaling mechanism required for the sequential restriction of germ cell factors, which causes a specific set of embryonic cells to become the primordial germ cells.
Collapse
Affiliation(s)
- Tara M Fresques
- Department of Molecular and Cell Biology and Biochemistry, Brown University, 185 Meeting St., Providence, RI 02912, USA
| | - Gary M Wessel
- Department of Molecular and Cell Biology and Biochemistry, Brown University, 185 Meeting St., Providence, RI 02912, USA
| |
Collapse
|
28
|
Bilinski SM, Jaglarz MK, Tworzydlo W. The Pole (Germ) Plasm in Insect Oocytes. Results Probl Cell Differ 2017; 63:103-126. [PMID: 28779315 DOI: 10.1007/978-3-319-60855-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Animal germline cells are specified either through zygotic induction or cytoplasmic inheritance. Zygotic induction takes place in mid- or late embryogenesis and requires cell-to-cell signaling leading to the acquisition of germline fate de novo. In contrast, cytoplasmic inheritance involves formation of a specific, asymmetrically localized oocyte region, termed the germ (pole) plasm. This region contains maternally provided germline determinants (mRNAs, proteins) that are capable of inducing germline fate in a subset of embryonic cells. Recent data indicate that among insects, the zygotic induction represents an ancestral condition, while the cytoplasmic inheritance evolved at the base of Holometabola or in the last common ancestor of Holometabola and its sister taxon, Paraneoptera.In this chapter, we first describe subsequent stages of morphogenesis of the pole plasm and polar granules in the model organism, Drosophila melanogaster. Then, we present an overview of morphology and cytoarchitecture of the pole plasm in various holometabolan and paraneopteran insect species. Finally, we focus on phylogenetic hypotheses explaining the known distribution of two different strategies of germline specification among insects.
Collapse
Affiliation(s)
- Szczepan M Bilinski
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland.
| | - Mariusz K Jaglarz
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Waclaw Tworzydlo
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| |
Collapse
|
29
|
Abstract
The germ cell lineage originates early in development and undergoes a series of complex developmental processes that culminate in the generation of fully matured gametes, the spermatozoa and the oocytes. Remarkably, researchers have been recapitulating these developmental pathways using mouse and human pluripotent stem cells (PSCs). With further studies, including those involving non-human primate models, human gametogenesis may be fully reconstituted from PSCs, which would profoundly facilitate our understanding of human germ cell development and infertility. Here we discuss groundbreaking studies that lay the foundation for this achievement, the current state of the field, and challenges for deriving gametes from hPSCs.
Collapse
Affiliation(s)
- Mitinori Saitou
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; JST, ERATO, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Center for Induced Pluripotent Stem Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan; Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Hidetaka Miyauchi
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
30
|
Chipman AD. Oncopeltus fasciatus
as an evo-devo research organism. Genesis 2017; 55. [DOI: 10.1002/dvg.23020] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/29/2016] [Accepted: 01/15/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Ariel D. Chipman
- The Department of Ecology; Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus; Givat Ram Jerusalem 91904 Israel
| |
Collapse
|
31
|
Nunes-da-Fonseca R, Berni M, Tobias-Santos V, Pane A, Araujo HM. Rhodnius prolixus: From classical physiology to modern developmental biology. Genesis 2017; 55. [DOI: 10.1002/dvg.22995] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/10/2016] [Accepted: 11/10/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Rodrigo Nunes-da-Fonseca
- Laboratório Integrado de Ciências Morfofuncionais; Núcleo em Ecologia e Desenvolvimento Socio-Ambiental de Macaé, Campus Macaé, Federal University of Rio de Janeiro; Rio de Janeiro Brazil
- Laboratório de Biologia Molecular do Desenvolvimento Instituto de Ciências Biomédicas, Federal University of Rio de Janeiro; Rio de Janeiro Brazil
| | - Mateus Berni
- Institute of Molecular Entomology; INCT-EM
- Laboratório de Biologia Molecular do Desenvolvimento Instituto de Ciências Biomédicas, Federal University of Rio de Janeiro; Rio de Janeiro Brazil
| | - Vitória Tobias-Santos
- Laboratório Integrado de Ciências Morfofuncionais; Núcleo em Ecologia e Desenvolvimento Socio-Ambiental de Macaé, Campus Macaé, Federal University of Rio de Janeiro; Rio de Janeiro Brazil
- Institute of Molecular Entomology; INCT-EM
| | - Attilio Pane
- Institute of Molecular Entomology; INCT-EM
- Laboratório de Biologia Molecular do Desenvolvimento Instituto de Ciências Biomédicas, Federal University of Rio de Janeiro; Rio de Janeiro Brazil
| | - Helena Marcolla Araujo
- Institute of Molecular Entomology; INCT-EM
- Laboratório de Biologia Molecular do Desenvolvimento Instituto de Ciências Biomédicas, Federal University of Rio de Janeiro; Rio de Janeiro Brazil
| |
Collapse
|
32
|
Kumar DL, DeFalco T. Of Mice and Men: In Vivo and In Vitro Studies of Primordial Germ Cell Specification. Semin Reprod Med 2017; 35:139-146. [PMID: 28278531 DOI: 10.1055/s-0037-1599085] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Specification of mouse primordial germ cells (PGCs), the precursors of sperm and eggs, involves three major molecular events: repression of the somatic program, reacquisition of pluripotency, and reprogramming to a unique epigenetic ground state. Gene knockout studies in mouse models, along with global transcriptome analyses, have revealed the key signaling pathways and transcription factors essential for PGC specification. Knowledge obtained from these studies has been utilized extensively to develop robust in vitro PGC induction models not only in mice but also in humans. These models have, in turn, formed the basis for a detailed understanding of the signaling pathways and epigenetic dynamics during in vivo PGC specification and development. Recapitulation of human PGC specification in culture is of tremendous significance for understanding the mechanisms of human germ cell development in normal and disease states and has implications for addressing germ-cell-based causes of infertility.
Collapse
Affiliation(s)
- Deepti Lava Kumar
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Tony DeFalco
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
33
|
Taylor L, Carlson DF, Nandi S, Sherman A, Fahrenkrug SC, McGrew MJ. Efficient TALEN-mediated gene targeting of chicken primordial germ cells. Development 2017; 144:928-934. [PMID: 28174243 PMCID: PMC5374353 DOI: 10.1242/dev.145367] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 01/12/2017] [Indexed: 12/28/2022]
Abstract
In this work we use TALE nucleases (TALENs) to target a reporter construct to the DDX4 (vasa) locus in chicken primordial germ cells (PGCs). Vasa is a key germ cell determinant in many animal species and is posited to control avian germ cell formation. We show that TALENs mediate homology-directed repair of the DDX4 locus on the Z sex chromosome at high (8.1%) efficiencies. Large genetic deletions of 30 kb encompassing the entire DDX4 locus were also created using a single TALEN pair. The targeted PGCs were germline competent and were used to produce DDX4 null offspring. In DDX4 knockout chickens, PGCs are initially formed but are lost during meiosis in the developing ovary, leading to adult female sterility. TALEN-mediated gene targeting in avian PGCs is therefore an efficient process. Summary: TALE nucleases are used to target the DDX4 (vasa) locus in chicken primordial germ cells and generate DDX4 knockouts, which provide insights into DDX4 function in early chick development.
Collapse
Affiliation(s)
- Lorna Taylor
- The Roslin Institute and Royal Dick School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Daniel F Carlson
- Recombinetics Inc, 1246 University Avenue West, Suite 300, Saint Paul, MN 55104, USA
| | - Sunil Nandi
- The Roslin Institute and Royal Dick School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Adrian Sherman
- The Roslin Institute and Royal Dick School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Scott C Fahrenkrug
- Recombinetics Inc, 1246 University Avenue West, Suite 300, Saint Paul, MN 55104, USA
| | - Michael J McGrew
- The Roslin Institute and Royal Dick School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| |
Collapse
|
34
|
Whittle CA, Extavour CG. Refuting the hypothesis that the acquisition of germ plasm accelerates animal evolution. Nat Commun 2016; 7:12637. [PMID: 27577604 PMCID: PMC5013649 DOI: 10.1038/ncomms12637] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 07/20/2016] [Indexed: 02/04/2023] Open
Abstract
Primordial germ cells (PGCs) give rise to the germ line in animals. PGCs are specified during embryogenesis either by an ancestral mechanism of cell-cell signalling (induction) or by a derived mechanism of maternally provided germ plasm (preformation). Recently, a hypothesis was set forth purporting that germ plasm liberates selective constraint and accelerates an organism's protein sequence evolution, especially for genes from early developmental stages, thereby leading to animal species radiations; empirical validation has been claimed in vertebrates. Here we present findings from global rates of protein evolution in vertebrates and invertebrates refuting this hypothesis. Contrary to assertions of the hypothesis, we find no effect of preformation on protein sequence evolution, the evolutionary rates of early-stage developmental genes, or on species diversification. We conclude that the hypothesis is mechanistically implausible, and our multi-faceted analysis shows no empirical support for any of its predictions.
Collapse
Affiliation(s)
- Carrie A. Whittle
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, Massachusetts 02138, USA
| | - Cassandra G. Extavour
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, Massachusetts 02138, USA
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
35
|
Tang WWC, Kobayashi T, Irie N, Dietmann S, Surani MA. Specification and epigenetic programming of the human germ line. Nat Rev Genet 2016; 17:585-600. [DOI: 10.1038/nrg.2016.88] [Citation(s) in RCA: 274] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
36
|
Martindale MQ. The onset of regenerative properties in ctenophores. Curr Opin Genet Dev 2016; 40:113-119. [PMID: 27420173 DOI: 10.1016/j.gde.2016.06.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 06/18/2016] [Accepted: 06/24/2016] [Indexed: 12/18/2022]
Abstract
Ctenophores are a clade of animals that branch off at the base of the animal tree. They have a unique and delicate body plan, and distinct pattern forming mechanisms at different life history stages. They have a stereotyped embryonic cell lineage and are highly 'mosaic' as embryos, but most have amazing capacity to regenerate as adults. Unfortunately, only a handful of ctenophore species have been studied in detail. This review summarizes the key features of the regenerative properties of adults, and the characteristics of the embryological onset of regenerative abilities. The genomes of several ctenophore species have already been sequenced, and these resources set the stage for more detailed cellular and molecular analysis of body plan patterning in this group.
Collapse
Affiliation(s)
- Mark Q Martindale
- Whitney Lab for Marine Bioscience, University of Florida, 9505 Oceanshore Blvd, St. Augustine, FL 32080, United States.
| |
Collapse
|
37
|
Fresques T, Swartz SZ, Juliano C, Morino Y, Kikuchi M, Akasaka K, Wada H, Yajima M, Wessel GM. The diversity of nanos expression in echinoderm embryos supports different mechanisms in germ cell specification. Evol Dev 2016; 18:267-78. [PMID: 27402572 PMCID: PMC4943673 DOI: 10.1111/ede.12197] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Specification of the germ cell lineage is required for sexual reproduction in all animals. However, the timing and mechanisms of germ cell specification is remarkably diverse in animal development. Echinoderms, such as sea urchins and sea stars, are excellent model systems to study the molecular and cellular mechanisms that contribute to germ cell specification. In several echinoderm embryos tested, the germ cell factor Vasa accumulates broadly during early development and is restricted after gastrulation to cells that contribute to the germ cell lineage. In the sea urchin, however, the germ cell factor Vasa is restricted to a specific lineage by the 32-cell stage. We therefore hypothesized that the germ cell specification program in the sea urchin/Euechinoid lineage has evolved to an earlier developmental time point. To test this hypothesis we determined the expression pattern of a second germ cell factor, Nanos, in four out of five extant echinoderm clades. Here we find that Nanos mRNA does not accumulate until the blastula stage or later during the development of all other echinoderm embryos except those that belong to the Echinoid lineage. Instead, Nanos is expressed in a restricted domain at the 32-128 cell stage in Echinoid embryos. Our results support the model that the germ cell specification program underwent a heterochronic shift in the Echinoid lineage. A comparison of Echinoid and non-Echinoid germ cell specification mechanisms will contribute to our understanding of how these mechanisms have changed during animal evolution.
Collapse
Affiliation(s)
- Tara Fresques
- Department of Molecular Biology, Cell Biology and Biochemistry, 185 Meeting Street, Brown University, Providence RI 02912
| | - S. Zachary Swartz
- Department of Molecular Biology, Cell Biology and Biochemistry, 185 Meeting Street, Brown University, Providence RI 02912
| | - Celina Juliano
- Department of Molecular Biology, Cell Biology and Biochemistry, 185 Meeting Street, Brown University, Providence RI 02912
- Department of Molecular and Cellular Biology, College of Biological Sciences, One Shields Avenue, University of California, Davis, Davis CA 95616
| | - Yoshiaki Morino
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Mani Kikuchi
- Misaki Marine Biological Station, Graduate School of Science, University of Tokyo, Koajiro 1024, Misaki, Miura 238-0225, Japan
| | - Koji Akasaka
- Misaki Marine Biological Station, Graduate School of Science, University of Tokyo, Koajiro 1024, Misaki, Miura 238-0225, Japan
| | - Hiroshi Wada
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Mamiko Yajima
- Department of Molecular Biology, Cell Biology and Biochemistry, 185 Meeting Street, Brown University, Providence RI 02912
| | - Gary M. Wessel
- Department of Molecular Biology, Cell Biology and Biochemistry, 185 Meeting Street, Brown University, Providence RI 02912
| |
Collapse
|
38
|
Tworzydlo W, Kisiel E, Jankowska W, Witwicka A, Bilinski SM. Exclusion of dysfunctional mitochondria from Balbiani body during early oogenesis of Thermobia. Cell Tissue Res 2016; 366:191-201. [PMID: 27164893 PMCID: PMC5031756 DOI: 10.1007/s00441-016-2414-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 04/12/2016] [Indexed: 01/08/2023]
Abstract
Oocytes of many invertebrate and vertebrate species contain a characteristic organelle complex known as the Balbiani body (Bb). Until now, three principal functions have been ascribed to this complex: delivery of germ cell determinants and localized RNAs to the vegetal cortex/posterior pole of the oocyte, transport of the mitochondria towards the germ plasm, and participation in the formation of lipid droplets. Here, we present the results of a computer-aided 3D reconstruction of the Bb in the growing oocytes of an insect, Thermobia domestica. Our analyses have shown that, in Thermobia, the central part of each fully developed Bb comprises a single intricate mitochondrial network. This “core” network is surrounded by several isolated bean-shaped mitochondrial units that display lowered membrane potential and clear signs of degeneration. In light of the above results and recent theoretical models of mitochondrial quality control, the role of the Bb is discussed. We suggest that, in addition to the aforementioned functions, the Bb is implicated in the selective elimination of dysfunctional mitochondria during oogenesis.
Collapse
Affiliation(s)
- Waclaw Tworzydlo
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology, Jagiellonian University, Krakow, Poland.
| | - Elzbieta Kisiel
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | - Wladyslawa Jankowska
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | - Alicja Witwicka
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | - Szczepan M Bilinski
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
39
|
Quan H, Lynch JA. The evolution of insect germline specification strategies. CURRENT OPINION IN INSECT SCIENCE 2016; 13:99-105. [PMID: 27088076 PMCID: PMC4827259 DOI: 10.1016/j.cois.2016.02.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The establishment of the germline is essential for sexually reproducing organisms. In animals, there are two major strategies to specify the germline: maternal provision and zygotic induction. The molecular basis of the maternal provision mode has been well characterized in several model organisms (fly, frog, fish, and nematode), while that of the zygotic induction mode has mainly been studied in mammalian models such as the mouse. Shifts in germline determination modes occur unexpectedly frequently and many such shifts have occurred several times among insects. Given their general tractability and rapidly increasing genomic and genetic tools applicable to many species, the insects present a uniquely powerful model system for understanding major transitions in reproductive strategies, and developmental processes in general.
Collapse
Affiliation(s)
- Honghu Quan
- Department of Biological Sciences, University of Illinois at Chicago, United States
| | - Jeremy A Lynch
- Department of Biological Sciences, University of Illinois at Chicago, United States.
| |
Collapse
|
40
|
Nakamura T, Extavour CG. The transcriptional repressor Blimp-1 acts downstream of BMP signaling to generate primordial germ cells in the cricket Gryllus bimaculatus. Development 2016; 143:255-63. [DOI: 10.1242/dev.127563] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Segregation of the germ line from the soma is an essential event for transmission of genetic information across generations in all sexually reproducing animals. Although some well-studied systems such as Drosophila and Xenopus use maternally inherited germ determinants to specify germ cells, most animals, including mice, appear to utilize zygotic inductive cell signals to specify germ cells during later embryogenesis. Such inductive germ cell specification is thought to be an ancestral trait of Bilateria, but major questions remain as to the nature of an ancestral mechanism to induce germ cells, and how that mechanism evolved. We previously reported that BMP signaling-based germ cell induction is conserved in both the mouse Mus musculus and the cricket Gryllus bimaculatus, which is an emerging model organism for functional studies of induction-based germ cell formation. In order to gain further insight into the functional evolution of germ cell specification, here we examined the Gryllus ortholog of the transcription factor Blimp-1 (also known as Prdm1), which is a widely conserved bilaterian gene known to play a crucial role in the specification of germ cells in mice. Our functional analyses of the Gryllus Blimp-1 ortholog revealed that it is essential for Gryllus primordial germ cell development, and is regulated by upstream input from the BMP signaling pathway. This functional conservation of the epistatic relationship between BMP signaling and Blimp-1 in inductive germ cell specification between mouse and cricket supports the hypothesis that this molecular mechanism regulated primordial germ cell specification in a last common bilaterian ancestor.
Collapse
Affiliation(s)
- Taro Nakamura
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Cassandra G. Extavour
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
41
|
Abstract
Primordial germ cells are the progenitor cells that give rise to the gametes. In some animals, the germline is induced by zygotic transcription factors, whereas in others, primordial germ cell specification occurs via inheritance of maternally provided gene products known as germ plasm. Once specified, the primordial germ cells of some animals must acquire motility and migrate to the gonad in order to survive. In all animals examined, perinuclear structures called germ granules form within germ cells. This review focuses on some of the recent studies, conducted by several groups using diverse systems, from invertebrates to vertebrates, which have provided mechanistic insight into the molecular regulation of germ cell specification and migration.
Collapse
Affiliation(s)
- Florence Marlow
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, 10461, USA; Department of Neuroscience, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, 10461, USA
| |
Collapse
|
42
|
Carter JM, Gibbs M, Breuker CJ. Divergent RNA Localisation Patterns of Maternal Genes Regulating Embryonic Patterning in the Butterfly Pararge aegeria. PLoS One 2015; 10:e0144471. [PMID: 26633019 PMCID: PMC4669120 DOI: 10.1371/journal.pone.0144471] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 11/18/2015] [Indexed: 12/19/2022] Open
Abstract
The maternal effect genes responsible for patterning the embryo along the antero-posterior (AP) axis are broadly conserved in insects. The precise function of these maternal effect genes is the result of the localisation of their mRNA in the oocyte. The main developmental mechanisms involved have been elucidated in Drosophila melanogaster, but recent studies have shown that other insect orders often diverge in RNA localisation patterns. A recent study has shown that in the butterfly Pararge aegeria the distinction between blastodermal embryonic (i.e. germ band) and extra-embryonic tissue (i.e. serosa) is already specified in the oocyte during oogenesis in the ovariole, long before blastoderm cellularisation. To examine the extent by which a female butterfly specifies and patterns the AP axis within the region fated to be the germ band, and whether she specifies a germ plasm, we performed in situ hybridisation experiments on oocytes in P. aegeria ovarioles and on early embryos. RNA localisation of the following key maternal effect genes were investigated: caudal (cad), orthodenticle (otd), hunchback (hb) and four nanos (nos) paralogs, as well as TDRD7 a gene containing a key functional domain (OST-HTH/LOTUS) shared with oskar. TDRD7 was mainly confined to the follicle cells, whilst hb was exclusively zygotically transcribed. RNA of some of the nos paralogs, otd and cad revealed complex localisation patterns within the cortical region prefiguring the germ band (i.e. germ cortex). Rather interestingly, otd was localised within and outside the anterior of the germ cortex. Transcripts of nos-O formed a distinct granular ring in the middle of the germ cortex possibly prefiguring the region where germline stem cells form. These butterfly RNA localisation patterns are highly divergent with respect to other insects, highlighting the diverse ways in which different insect orders maternally regulate early embryogenesis of their offspring.
Collapse
Affiliation(s)
- Jean-Michel Carter
- Evolutionary Developmental Biology Research Group, Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford, OX3 0BP, United Kingdom
| | - Melanie Gibbs
- NERC Centre for Ecology & Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire, OX10 8BB, United Kingdom
| | - Casper J. Breuker
- Evolutionary Developmental Biology Research Group, Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford, OX3 0BP, United Kingdom
- * E-mail:
| |
Collapse
|
43
|
Lim RSM, Kai T. A piece of the pi(e): The diverse roles of animal piRNAs and their PIWI partners. Semin Cell Dev Biol 2015; 47-48:17-31. [PMID: 26582251 DOI: 10.1016/j.semcdb.2015.10.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Small non-coding RNAs are indispensable to many biological processes. A class of endogenous small RNAs, termed PIWI-interacting RNAs (piRNAs) because of their association with PIWI proteins, has known roles in safeguarding the genome against inordinate transposon mobilization, embryonic development, and stem cell regulation, among others. This review discusses the biogenesis of animal piRNAs and their diverse functions together with their PIWI protein partners, both in the germline and in somatic cells, and highlights the evolutionarily conserved aspects of these molecular players in animal biology.
Collapse
Affiliation(s)
- Robyn S M Lim
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.
| | - Toshie Kai
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.
| |
Collapse
|
44
|
Pauchet Y, Wielsch N, Wilkinson PA, Sakaluk SK, Svatoš A, ffrench-Constant RH, Hunt J, Heckel DG. What's in the Gift? Towards a Molecular Dissection of Nuptial Feeding in a Cricket. PLoS One 2015; 10:e0140191. [PMID: 26439494 PMCID: PMC4595131 DOI: 10.1371/journal.pone.0140191] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 09/22/2015] [Indexed: 01/11/2023] Open
Abstract
Nuptial gifts produced by males and transferred to females during copulation are common in insects. Yet, their precise composition and subsequent physiological effects on the female recipient remain unresolved. Male decorated crickets Gryllodes sigillatus transfer a spermatophore to the female during copulation that is composed of an edible gift, the spermatophylax, and the ampulla that contains the ejaculate. After transfer of the spermatophore, the female detaches the spermatophylax and starts to eat it while sperm from the ampulla are evacuated into the female reproductive tract. When the female has finished consuming the spermatophylax, she detaches the ampulla and terminates sperm transfer. Hence, one simple function of the spermatophylax is to ensure complete sperm transfer by distracting the female from prematurely removing the ampulla. However, the majority of orally active components of the spermatophylax itself and their subsequent effects on female behavior have not been identified. Here, we report the first analysis of the proteome of the G. sigillatus spermatophylax and the transcriptome of the male accessory glands that make these proteins. The accessory gland transcriptome was assembled into 17,691 transcripts whilst about 30 proteins were detected within the mature spermatophylax itself. Of these 30 proteins, 18 were encoded by accessory gland encoded messages. Most spermatophylax proteins show no similarity to proteins with known biological functions and are therefore largely novel. A spermatophylax protein shows similarity to protease inhibitors suggesting that it may protect the biologically active components from digestion within the gut of the female recipient. Another protein shares similarity with previously characterized insect polypeptide growth factors suggesting that it may play a role in altering female reproductive physiology concurrent with fertilization. Characterization of the spermatophylax proteome provides the first step in identifying the genes encoding these proteins in males and in understanding their biological functions in the female recipient.
Collapse
Affiliation(s)
- Yannick Pauchet
- Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
- * E-mail:
| | - Natalie Wielsch
- Mass spectrometry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Paul A. Wilkinson
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Cornwall Campus, Penryn, United Kingdom
| | - Scott K. Sakaluk
- Behavior, Ecology, Evolution & Systematics Section, School of Biological Sciences, Illinois State University, Normal, IL, United States of America
| | - Aleš Svatoš
- Mass spectrometry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Richard H. ffrench-Constant
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Cornwall Campus, Penryn, United Kingdom
| | - John Hunt
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Cornwall Campus, Penryn, United Kingdom
| | - David G. Heckel
- Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
45
|
Abstract
Germ cells are the special cells in the body that undergo meiosis to generate gametes and subsequently entire new organisms after fertilization, a process that continues generation after generation. Recent studies have expanded our understanding of the factors and mechanisms that specify germ cell fate, including the partitioning of maternally supplied 'germ plasm', inheritance of epigenetic memory and expression of transcription factors crucial for primordial germ cell (PGC) development. Even after PGCs are specified, germline fate is labile and thus requires protective mechanisms, such as global transcriptional repression, chromatin state alteration and translation of only germline-appropriate transcripts. Findings from diverse species continue to provide insights into the shared and divergent needs of these special reproductive cells.
Collapse
Affiliation(s)
- Susan Strome
- Molecular, Cell &Developmental Biology, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Dustin Updike
- Kathryn W. Davis Center for Regenerative Biology &Medicine, Mount Desert Island Biological Laboratory, Bar Harbor, Maine 04672, USA
| |
Collapse
|
46
|
Abstract
With few exceptions, all animals acquire the ability to produce eggs or sperm at some point in their life cycle. Despite this near-universal requirement for sexual reproduction, there exists an incredible diversity in germ line development. For example, animals exhibit a vast range of differences in the timing at which the germ line, which retains reproductive potential, separates from the soma, or terminally differentiated, nonreproductive cells. This separation may occur during embryonic development, after gastrulation, or even in adults, depending on the organism. The molecular mechanisms of germ line segregation are also highly diverse, and intimately intertwined with the overall transition from a fertilized egg to an embryo. The earliest embryonic stages of many species are largely controlled by maternally supplied factors. Later in development, patterning control shifts to the embryonic genome and, concomitantly with this transition, the maternally supplied factors are broadly degraded. This chapter attempts to integrate these processes--germ line segregation, and how the divergence of germ line and soma may utilize the egg to embryo transitions differently. In some embryos, this difference is subtle or maybe lacking altogether, whereas in other embryos, this difference in utilization may be a key step in the divergence of the two lineages. Here, we will focus our discussion on the echinoderms, and in particular the sea urchins, in which recent studies have provided mechanistic understanding in germ line determination. We propose that the germ line in sea urchins requires an acquisition of maternal factors from the egg and, when compared to other members of the taxon, this appears to be a derived mechanism. The acquisition is early--at the 32-cell stage--and involves active protection of maternal mRNAs, which are instead degraded in somatic cells with the maternal-to-embryonic transition. We collectively refer to this model as the Time Capsule method for germ line determination.
Collapse
Affiliation(s)
- S Zachary Swartz
- Department of Molecular and Cellular Biology, Brown University, Providence, Rhode Island, USA
| | - Gary M Wessel
- Department of Molecular and Cellular Biology, Brown University, Providence, Rhode Island, USA.
| |
Collapse
|
47
|
Günesdogan U, Magnúsdóttir E, Surani MA. Primordial germ cell specification: a context-dependent cellular differentiation event [corrected]. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0543. [PMID: 25349452 PMCID: PMC4216466 DOI: 10.1098/rstb.2013.0543] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
During embryonic development, the foundation of the germline is laid by the specification of primordial germ cells (PGCs) from the postimplantation epiblast via bone morphogenetic protein (BMP) and WNT signalling. While the majority of epiblast cells undergo differentiation towards somatic cell lineages, PGCs initiate a unique cellular programme driven by the cooperation of the transcription factors BLIMP1, PRDM14 and AP2γ. These factors synergistically suppress the ongoing somatic differentiation and drive the re-expression of pluripotency and germ cell-specific genes accompanied by global epigenetic changes. However, an unresolved question is how postimplantation epiblast cells acquire the developmental competence for the PGC fate downstream of BMP/WNT signalling. One emerging concept is that transcriptional enhancers might play a central role in the establishment of developmental competence and the execution of cell fate determination. Here, we discuss recent advances on the specification and reprogramming of PGCs thereby highlighting the concept of enhancer function.
Collapse
Affiliation(s)
- Ufuk Günesdogan
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK Department of Physiology, Development and Neuroscience, University of Cambridge, Downing St., Cambridge CB2 3DY, UK Wellcome Trust Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Erna Magnúsdóttir
- Department of Biochemistry and Molecular Biology, BioMedical Center, University of Iceland, 101 Reykjavík, Iceland
| | - M Azim Surani
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK Department of Physiology, Development and Neuroscience, University of Cambridge, Downing St., Cambridge CB2 3DY, UK Wellcome Trust Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| |
Collapse
|
48
|
Donoughe S, Extavour CG. Embryonic development of the cricket Gryllus bimaculatus. Dev Biol 2015; 411:140-56. [PMID: 25907229 DOI: 10.1016/j.ydbio.2015.04.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 04/10/2015] [Accepted: 04/11/2015] [Indexed: 12/22/2022]
Abstract
Extensive research into Drosophila melanogaster embryogenesis has improved our understanding of insect developmental mechanisms. However, Drosophila development is thought to be highly divergent from that of the ancestral insect and arthropod in many respects. We therefore need alternative models for arthopod development that are likely to be more representative of basally-branching clades. The cricket Gryllus bimaculatus is such a model, and currently has the most sophisticated functional genetic toolkit of any hemimetabolous insect. The existing cricket embryonic staging system is fragmentary, and it is based on morphological landmarks that are not easily visible on a live, undissected egg. To address this problem, here we present a complementary set of "egg stages" that serve as a guide for identifying the developmental progress of a cricket embryo from fertilization to hatching, based solely on the external appearance of the egg. These stages were characterized using a combination of brightfield timelapse microscopy, timed brightfield micrographs, confocal microscopy, and measurements of egg dimensions. These egg stages are particularly useful in experiments that involve egg injection (including RNA interference, targeted genome modification, and transgenesis), as injection can alter the speed of development, even in control treatments. We also use 3D reconstructions of fixed embryo preparations to provide a comprehensive description of the morphogenesis and anatomy of the cricket embryo during embryonic rudiment assembly, germ band formation, elongation, segmentation, and appendage formation. Finally, we aggregate and schematize a variety of published developmental gene expression patterns. This work will facilitate further studies on G. bimaculatus development, and serve as a useful point of reference for other studies of wild type and experimentally manipulated insect development in fields from evo-devo to disease vector and pest management.
Collapse
Affiliation(s)
- Seth Donoughe
- Department of Organismic & Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, United States
| | - Cassandra G Extavour
- Department of Organismic & Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, United States; Department of Molecular & Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, United States.
| |
Collapse
|
49
|
Kumano G. Evolution of germline segregation processes in animal development. Dev Growth Differ 2015; 57:324-32. [DOI: 10.1111/dgd.12211] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 03/05/2015] [Accepted: 03/05/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Gaku Kumano
- Asamushi Research Center for Marine Biology; Graduate School of Life Science; Tohoku University; 9 Sakamoto Asamushi Aomori 039-3501 Japan
| |
Collapse
|
50
|
Dias G, Lino-Neto J, Mercati D, Dallai R. The sperm ultrastructure and spermiogenesis of Tribolium castaneum (Coleoptera: Tenebrionidae) with evidence of cyst degeneration. Micron 2015; 73:21-7. [PMID: 25867758 DOI: 10.1016/j.micron.2015.03.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 02/11/2015] [Accepted: 03/06/2015] [Indexed: 10/23/2022]
Abstract
Previous studies on the spermatogenesis of tenebrionid beetles showed the unusual formation of two antiparallel sperm bundles per cyst. In this work we reported this feature also in Tribolium castaneum using light and transmission electron microscopy. The sperm structure of T. castaneum, similar to other tenebrionids, consists of a three-layered acrosome, an elongated nucleus and a flagellum with a 9+9+2 axoneme, two accessory bodies and two asymmetric mitochondrial derivatives. The presence of two antiparallel sperm bundles per cyst also in Meloidae and Rhipiphoridae suggests that it is a strong trait synapomorphic for Tenebrionoidea. The huge degeneration of whole sperm cells in several cysts of testes during spermiogenesis is also described.
Collapse
Affiliation(s)
- Glenda Dias
- Laboratório de Biologia Estrutural, Departamento de Biologia Geral, UFV, 36570-900 Viçosa, Minas Gerais, Brazil; Dipartimento Scienze della Vita, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy.
| | - José Lino-Neto
- Laboratório de Biologia Estrutural, Departamento de Biologia Geral, UFV, 36570-900 Viçosa, Minas Gerais, Brazil.
| | - David Mercati
- Dipartimento Scienze della Vita, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy.
| | - Romano Dallai
- Dipartimento Scienze della Vita, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy.
| |
Collapse
|