1
|
Jiang L, Zhang K, Wei X, Li J, Wang S, Wang Z, Zhou Y, Zha L, Luo H, Song F. Developing a male-specific age predictive model based on Y-CpGs for forensic analysis. Forensic Sci Int 2023; 343:111566. [PMID: 36640536 DOI: 10.1016/j.forsciint.2023.111566] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/22/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
In forensic work, predicting the age of the criminal suspect or victim could provide beneficial clues for investigation. Epigenetic age estimation based on age-correlated DNA methylation has been one of the most widely studied methods of age estimation. However, almost all available epigenetic age prediction models are based on autosomal CpGs, which are only applicable to single-source DNA samples. In this study, we screened the available methylation data sets to identify loci with potential to meet the objectives of this study and then established a male-specific age prediction model based on 2 SNaPshot systems that contain 13 Y-CpGs and the mean absolute deviation (MAD) values were 4-6 years. The multiplex methylation SNaPshot systems and age-predictive model have been validated for sensitivity (the DNA input could be as low as 0.5 ng) and male specificity. They are supposed to have feasibility in forensic practice. In addition, it demonstrated that the method was also applicable to bloodstains, which were commonly found at crime scenes. The results showed good performance (the training set: R2 = 0.9341, MAD = 4.65 years; the test set: R2 = 0.8952, MAD = 5.73 years) in case investigation for predicting male age. For mixtures, when the male to female DNA ratio is 1:1, 1:10, the deviation between the actual age and the predicted age obtained by the model was less than 8 years, which offers great hope for future prediction of the age of males in mixtures and will be a powerful tool for special cases, such as sexual assault. Furthermore, the work provides a basis for the application of Y-CpGs in forensic science.
Collapse
Affiliation(s)
- Lanrui Jiang
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Ke Zhang
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan Province 610041, China; Public Security Bureau of Zhengzhou City, Zhengzhou, Henan Province 450003, China
| | - Xiaowen Wei
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Jiahang Li
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Shuangshuang Wang
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Zefei Wang
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Yuxiang Zhou
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Lagabaiyila Zha
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, No172. Tongzipo Road, Changsha, Hunan Province 410013, China
| | - Haibo Luo
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan Province 610041, China.
| | - Feng Song
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan Province 610041, China.
| |
Collapse
|
2
|
Maternal stress programs a demasculinization of glutamatergic transmission in stress-related brain regions of aged rats. GeroScience 2021; 44:1047-1069. [PMID: 33983623 PMCID: PMC8116647 DOI: 10.1007/s11357-021-00375-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 04/20/2021] [Indexed: 12/20/2022] Open
Abstract
Brain aging may be programmed by early-life stress. Aging affects males and females differently, but how perinatal stress (PRS) affects brain aging between sexes is unknown. We showed behavioral and neurobiological sex differences in non-stressed control rats that were strongly reduced or inverted in PRS rats. In particular, PRS decreased risk-taking behavior, spatial memory, exploratory behavior, and fine motor behavior in male aged rats. In contrast, female aged PRS rats displayed only increased risk-taking behavior and reduced exploratory behavior. PRS induced large reductions in the expression of glutamate receptors in the ventral and dorsal hippocampus and prefrontal cortex only in male rats. PRS also reduced the expression of synaptic vesicle-associated proteins, glucocorticoid receptors (GR), and mineralocorticoid receptors (MR) in the ventral hippocampus of aged male rats. In contrast, in female aged rats, PRS enhanced the expression of MRs and brain-derived neurotrophic factor (BDNF) in the ventral hippocampus and the expression of glial fibrillary acidic protein (GFAP) and BDNF in the prefrontal cortex. A common PRS effect in both sexes was a reduction in exploratory behavior and metabotropic glutamate (mGlu2/3) receptors in the ventral hippocampus and prefrontal cortex. A multidimensional analysis revealed that PRS induced a demasculinization profile in glutamate-related proteins in the ventral and dorsal hippocampus and prefrontal cortex, as well as a demasculinization profile of stress markers only in the dorsal hippocampus. In contrast, defeminization was observed only in the ventral hippocampus. Measurements of testosterone and 17-β-estradiol in the plasma and aromatase in the dorsal hippocampus were consistent with a demasculinizing action of PRS. These findings confirm that the brains of males and females differentially respond to PRS and aging suggesting that females might be more protected against early stress and age-related inflammation and neurodegeneration. Taken together, these results may contribute to understanding how early environmental factors shape vulnerability to brain aging in both sexes and may lay the groundwork for future studies aimed at identifying new treatment strategies to improve the quality of life of older individuals, which is of particular interest given that there is a high growth of aging in populations around the world.
Collapse
|
3
|
Vidaki A, Montiel González D, Planterose Jiménez B, Kayser M. Male-specific age estimation based on Y-chromosomal DNA methylation. Aging (Albany NY) 2021; 13:6442-6458. [PMID: 33744870 PMCID: PMC7993701 DOI: 10.18632/aging.202775] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 02/25/2021] [Indexed: 11/29/2022]
Abstract
Although DNA methylation variation of autosomal CpGs provides robust age predictive biomarkers, no male-specific age predictor exists based on Y-CpGs yet. Since sex chromosomes play an important role in aging, a Y-chromosome-based age predictor would allow studying male-specific aging effects and would also be useful in forensics. Here, we used blood-based DNA methylation microarray data of 1,057 males from six cohorts aged 15-87 and identified 75 Y-CpGs with an interquartile range of ≥0.1. Of these, 22 and six were significantly hyper- and hypomethylated with age (p(cor)<0.05, Bonferroni), respectively. Amongst several machine learning algorithms, a model based on support vector machines with radial kernel performed best in male-specific age prediction. We achieved a mean absolute deviation (MAD) between true and predicted age of 7.54 years (cor=0.81, validation) when using all 75 Y-CpGs, and a MAD of 8.46 years (cor=0.73, validation) based on the most predictive 19 Y-CpGs. The accuracies of both age predictors did not worsen with increased age, in contrast to autosomal CpG-based age predictors that are known to predict age with reduced accuracy in the elderly. Overall, we introduce the first-of-its-kind male-specific epigenetic age predictor for future applications in aging research and forensics.
Collapse
Affiliation(s)
- Athina Vidaki
- Department of Genetic Identification, Erasmus University Medical Center Rotterdam, Rotterdam 3000, CA, The Netherlands
| | - Diego Montiel González
- Department of Genetic Identification, Erasmus University Medical Center Rotterdam, Rotterdam 3000, CA, The Netherlands
| | - Benjamin Planterose Jiménez
- Department of Genetic Identification, Erasmus University Medical Center Rotterdam, Rotterdam 3000, CA, The Netherlands
| | - Manfred Kayser
- Department of Genetic Identification, Erasmus University Medical Center Rotterdam, Rotterdam 3000, CA, The Netherlands
| |
Collapse
|
4
|
Dowling DK, Adrian RE. Challenges and Prospects for Testing the Mother's Curse Hypothesis. Integr Comp Biol 2020; 59:875-889. [PMID: 31225591 DOI: 10.1093/icb/icz110] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Maternal inheritance of mitochondrial DNA (mtDNA) renders selection blind to mutations whose effects are limited to males. Evolutionary theory predicts this will lead to the accumulation of a male-specific genetic load within the mitochondrial genomes of populations; that is, a pool of mutations that negatively affects male, but not female, fitness components. This principle has been termed the Mother's Curse hypothesis. While the hypothesis has received some empirical support, its relevance to natural populations of metazoans remains unclear, and these ambiguities are compounded by the lack of a clear predictive framework for studies attempting to test Mother's Curse. Here, we seek to redress this by outlining the core predictions of the hypothesis, as well as the key features of the experimental designs that are required to enable direct testing of the predictions. Our goal is to provide a roadmap for future research seeking to elucidate the evolutionary significance of the Mother's Curse hypothesis.
Collapse
Affiliation(s)
- Damian K Dowling
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Rebecca E Adrian
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
5
|
Lund JB, Li S, Christensen K, Mengel‐From J, Soerensen M, Marioni RE, Starr J, Pattie A, Deary IJ, Baumbach J, Tan Q. Age-dependent DNA methylation patterns on the Y chromosome in elderly males. Aging Cell 2020; 19:e12907. [PMID: 30793472 PMCID: PMC6996942 DOI: 10.1111/acel.12907] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 01/02/2019] [Indexed: 12/17/2022] Open
Abstract
The Y chromosome, a sex chromosome that only exists in males, has been ignored in traditional epigenetic association studies for multiple reasons. However, sex differences in aging-related phenotypes and mortality could suggest a critical role of the sex chromosomes in the aging process. We obtained blood-based DNA methylation data on the Y chromosome for 624 men from four cohorts and performed a chromosome-wide epigenetic association analysis to detect Y-linked CpGs differentially methylated over age and cross-validated the significant CpGs in the four cohorts. We identified 40-219 significant CpG sites (false discovery rate <0.05) with >82% of them hypermethylated with increasing age, which is in strong contrast to the patterns reported on the autosomal chromosomes. Comparing the rate of change in the Y-linked DNA methylation across cohorts that represent different age intervals revealed a trend of acceleration in DNA methylation with increasing age. The age-dependent DNA methylation patterns on the Y chromosome were further examined for their association with all-cause mortality with results suggesting that the predominant pattern of age-related hypermethylation on the Y chromosome is associated with reduced risk of death.
Collapse
Affiliation(s)
- Jesper B. Lund
- Epidemiology and Biostatistics, Department of Public HealthUniversity of Southern DenmarkOdenseDenmark
| | - Shuxia Li
- Unit of Human Genetics, Department of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark
| | - Kaare Christensen
- Epidemiology and Biostatistics, Department of Public HealthUniversity of Southern DenmarkOdenseDenmark
- Unit of Human Genetics, Department of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark
| | - Jonas Mengel‐From
- Epidemiology and Biostatistics, Department of Public HealthUniversity of Southern DenmarkOdenseDenmark
| | - Mette Soerensen
- Epidemiology and Biostatistics, Department of Public HealthUniversity of Southern DenmarkOdenseDenmark
| | - Riccardo E. Marioni
- Centre for Genomic and Experimental MedicineUniversity of EdinburghEdinburghUK
- Centre for Cognitive Aging and Cognitive EpidemiologyUniversity of EdinburghEdinburghUK
| | - John Starr
- Centre for Cognitive Aging and Cognitive EpidemiologyUniversity of EdinburghEdinburghUK
- Alzheimer Scotland Dementia Research CentreUniversity of EdinburghEdinburghUK
| | - Alison Pattie
- Department of PsychologyUniversity of EdinburghEdinburghUK
| | - Ian J. Deary
- Centre for Cognitive Aging and Cognitive EpidemiologyUniversity of EdinburghEdinburghUK
- Department of PsychologyUniversity of EdinburghEdinburghUK
| | - Jan Baumbach
- Chair of Experimental Bioinformatics, TUM School of Life Sciences WeihenstephanTechnical University of MunichMunichGermany
| | - Qihua Tan
- Epidemiology and Biostatistics, Department of Public HealthUniversity of Southern DenmarkOdenseDenmark
- Unit of Human Genetics, Department of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark
| |
Collapse
|
6
|
Behringer V, Stevens JMG, Deschner T, Sonnweber R, Hohmann G. Aging and sex affect soluble alpha klotho levels in bonobos and chimpanzees. Front Zool 2018; 15:35. [PMID: 30250491 PMCID: PMC6146871 DOI: 10.1186/s12983-018-0282-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/07/2018] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Throughout life, physiological homeostasis is challenged and the capacity to cope with such challenges declines with increasing age. In many species, sex differences exist in life expectancy. Sex-specific differences have been related to extrinsic factors like mate competition and/or intrinsic proximate mechanisms such as hormonal changes. In humans, an intrinsic factor related to aging is soluble alpha klotho (α-Kl). Both sexes show an age-related decline in α-Kl, but throughout life women have higher levels than men of the same age. Sex differences in α-Kl have been linked to a shorter lifespan, as well as to specific morbidity factors such as atherosclerosis and arteries calcifications. In non-human animals, information on α-Kl levels is rare and restricted to experimental work. Our cross-sectional study is the first on α-Kl levels in two long-lived species: bonobos (Pan paniscus) and chimpanzees (Pan troglodytes). As in most mammals, female bonobos and chimpanzees have longer life expectancy than males. METHODS We measured serum α-Kl levels of 140 subjects from 16 zoos with an ELISA to examine if α-Kl levels reflect this difference in life expectancy. RESULTS In both species and in both sexes, α-Kl levels declined with age suggesting that this marker has potential for aging studies beyond humans. We also found species-specific differences. Adult female bonobos had higher α-Kl levels than males, a difference that corresponds to the pattern found in humans. In chimpanzees, we found the opposite: males had higher α-Kl levels than females. CONCLUSION We suggest that contrasting sex differences in adult α-Kl levels mirror the dominance relations between females and males of the two Pan species; and that this might be related to corresponding sex differences in their exposure to stress. In humans, higher cortisol levels were found to be related to lower α-Kl levels. We conclude that there is great potential for studying aging processes in hominoids, and perhaps also in other non-human primates, by measuring α-Kl levels. To better understand the causes for sex differences in this aging marker, consideration of behavioural parameters such as competition and stress exposure will be required as well as other physiological markers.
Collapse
Affiliation(s)
- V. Behringer
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - J. M. G. Stevens
- Antwerp Zoo Centre for Research and Conservation, Royal Zoological Society of Antwerp, K. Astridplein 26, 2018 Antwerp, Belgium
- Behavioral Ecology and Ecophysiology, Department of Biology, University of Antwerp, 2610 Wilrijk, Belgium
| | - T. Deschner
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - R. Sonnweber
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - G. Hohmann
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| |
Collapse
|
7
|
Ancell H, Pires-daSilva A. Sex-specific lifespan and its evolution in nematodes. Semin Cell Dev Biol 2017; 70:122-129. [PMID: 28554570 DOI: 10.1016/j.semcdb.2017.05.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/03/2017] [Accepted: 05/18/2017] [Indexed: 12/22/2022]
Abstract
Differences between sexes of the same species in lifespan and aging rate are widespread. While the proximal and evolutionary causes of aging are well researched, the factors that contribute to sex differences in these traits have been less studied. The striking diversity of nematodes provides ample opportunity to study variation in sex-specific lifespan patterns associated with shifts in life history and mating strategy. Although the plasticity of these sex differences will make it challenging to generalize from invertebrate to vertebrate systems, studies in nematodes have enabled empirical evaluation of predictions regarding the evolution of lifespan. These studies have highlighted how natural and sexual selection can generate divergent patterns of lifespan if the sexes are subject to different rates or sources of mortality, or if trade-offs between complex traits and longevity are resolved differently in each sex. Here, we integrate evidence derived mainly from nematodes that addresses the molecular and evolutionary basis of sex-specific aging and lifespan. Ultimately, we hope to generate a clearer picture of current knowledge in this area, and also highlight the limitations of our understanding.
Collapse
Affiliation(s)
- Henry Ancell
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | | |
Collapse
|