1
|
Rajagopal V, Seiler J, Nasa I, Cantarella S, Theiss J, Herget F, Kaifer B, Schneider M, Helm D, König J, Zarnack K, Diederichs S, Kettenbach AN, Caudron-Herger M. An atlas of RNA-dependent proteins in cell division reveals the riboregulation of mitotic protein-protein interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.614981. [PMID: 39386702 PMCID: PMC11463612 DOI: 10.1101/2024.09.25.614981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Ribonucleoprotein complexes are dynamic assemblies of RNA with RNA-binding proteins (RBPs), which can modulate the fate of the RNA molecules from transcription to degradation. Vice versa, RNA can regulate the interactions and functions of the associated proteins. Dysregulation of RBPs is linked to diseases such as cancer and neurological disorders. RNA and RBPs are present in mitotic structures like the centrosomes and spindle microtubules, but their influence on mitotic spindle integrity remains unknown. Thus, we applied the R-DeeP strategy for the proteome-wide identification of RNA-dependent proteins and complexes to cells synchronized in mitosis versus interphase. The resulting atlas of RNA-dependent proteins in cell division can be accessed through the R-DeeP 3.0 database (R-DeeP3.dkfz.de). It revealed key mitotic factors as RNA-dependent such as AURKA, KIFC1 and TPX2 that were linked to RNA despite their lack of canonical RNA-binding domains. KIFC1 was identified as a new interaction partner and phosphorylation substrate of AURKA at S349 and T359. In addition, KIFC1 interacted with both, AURKA and TPX2, in an RNA-dependent manner. Our data suggest a riboregulation of mitotic protein-protein interactions during spindle assembly, offering new perspectives on the control of cell division processes by RNA-protein complexes.
Collapse
Affiliation(s)
- Varshni Rajagopal
- Research Group "RNA-Protein Complexes & Cell Proliferation", German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jeanette Seiler
- Research Group "RNA-Protein Complexes & Cell Proliferation", German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Isha Nasa
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Simona Cantarella
- Research Group "RNA-Protein Complexes & Cell Proliferation", German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jana Theiss
- Research Group "RNA-Protein Complexes & Cell Proliferation", German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Franziska Herget
- Research Group "RNA-Protein Complexes & Cell Proliferation", German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bianca Kaifer
- Research Group "RNA-Protein Complexes & Cell Proliferation", German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Schneider
- Proteomics Core Facility, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dominic Helm
- Proteomics Core Facility, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Julian König
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Kathi Zarnack
- Buchmann Institute for Molecular Life Sciences, Frankfurt, Germany
- Department of Bioinformatics, University of Würzburg, Würzburg, Germany
| | - Sven Diederichs
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), partner site Freiburg, a partnership between DKFZ and University Medical Center Freiburg, Freiburg, Germany
| | - Arminja N Kettenbach
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Maïwen Caudron-Herger
- Research Group "RNA-Protein Complexes & Cell Proliferation", German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
2
|
Pena GE, Zhou X, Slevin L, Brownlee C, Heald R. Identification of a motif in TPX2 that regulates spindle architecture in Xenopus egg extracts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.10.579770. [PMID: 38370704 PMCID: PMC10871311 DOI: 10.1101/2024.02.10.579770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
A bipolar spindle composed of microtubules and many associated proteins functions to segregate chromosomes during cell division in all eukaryotes, yet spindle size and architecture varies dramatically across different species and cell types. Targeting protein for Xklp2 (TPX2) is one candidate factor for modulating spindle microtubule organization through its roles in branching microtubule nucleation, activation of the mitotic kinase Aurora A, and association with the kinesin-5 (Eg5) motor. Here we identify a conserved nuclear localization sequence (NLS) motif, 123 KKLK 126 in X. laevis TPX2, which regulates astral microtubule formation and spindle pole morphology in Xenopus egg extracts. Addition of recombinant TPX2 with this sequence mutated to AALA dramatically increased spontaneous formation of microtubule asters and recruitment of phosphorylated Aurora A, pericentrin, and Eg5 to meiotic spindle poles. We propose that TPX2 is a linchpin spindle assembly factor whose regulation contributes to the recruitment and activation of multiple microtubule polymerizing and organizing proteins, generating distinct spindle architectures.
Collapse
|
3
|
Kiyomitsu A, Nishimura T, Hwang SJ, Ansai S, Kanemaki MT, Tanaka M, Kiyomitsu T. Ran-GTP assembles a specialized spindle structure for accurate chromosome segregation in medaka early embryos. Nat Commun 2024; 15:981. [PMID: 38302485 PMCID: PMC10834446 DOI: 10.1038/s41467-024-45251-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 01/19/2024] [Indexed: 02/03/2024] Open
Abstract
Despite drastic cellular changes during cleavage, a mitotic spindle assembles in each blastomere to accurately segregate duplicated chromosomes. Mechanisms of mitotic spindle assembly have been extensively studied using small somatic cells. However, mechanisms of spindle assembly in large vertebrate embryos remain little understood. Here, we establish functional assay systems in medaka (Oryzias latipes) embryos by combining CRISPR knock-in with auxin-inducible degron technology. Live imaging reveals several unexpected features of microtubule organization and centrosome positioning that achieve rapid, accurate cleavage. Importantly, Ran-GTP assembles a dense microtubule network at the metaphase spindle center that is essential for chromosome segregation in early embryos. This unique spindle structure is remodeled into a typical short, somatic-like spindle after blastula stages, when Ran-GTP becomes dispensable for chromosome segregation. We propose that despite the presence of centrosomes, the chromosome-derived Ran-GTP pathway has essential roles in functional spindle assembly in large, rapidly dividing vertebrate early embryos, similar to acentrosomal spindle assembly in oocytes.
Collapse
Affiliation(s)
- Ai Kiyomitsu
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| | - Toshiya Nishimura
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan
- Hokkaido University Fisheries Sciences, 3-1-1, Minato-cho, Hakodate, Hokkaido, 041-8611, Japan
| | - Shiang Jyi Hwang
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| | - Satoshi Ansai
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, 980-8577, Japan
- Laboratory of Genome Editing Breeding, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Masato T Kanemaki
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), and Graduate Institute for Advanced Studies, SOKENDAI, Yata 1111, Mishima, Shizuoka, 411-8540, Japan
- Department of Biological Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Minoru Tanaka
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Tomomi Kiyomitsu
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan.
| |
Collapse
|
4
|
Kraus J, Travis SM, King MR, Petry S. Augmin is a Ran-regulated spindle assembly factor. J Biol Chem 2023; 299:104736. [PMID: 37086784 DOI: 10.1016/j.jbc.2023.104736] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 04/24/2023] Open
Abstract
Mitotic spindles are composed of microtubules (MTs) that must nucleate at the right place and time. Ran regulates this process by directly controlling the release of spindle assembly factors (SAFs) from nucleocytoplasmic shuttle proteins importin-αβ and subsequently forms a biochemical gradient of SAFs localized around chromosomes. The majority of spindle MTs are generated by branching MT nucleation, which has been shown to require an eight-subunit protein complex known as augmin. InXenopus laevis, Ran can control branching through a canonical SAF, TPX2, which is non-essential in Drosophila melanogaster embryos and HeLa cells. Thus, how Ran regulates branching MT nucleation when TPX2 is not required remains unknown. Here, we use in vitro pulldowns and TIRF microscopy to show that augmin is a Ran-regulated SAF. We demonstrate that augmin directly interacts with both importin-α and importin-β through two nuclear localization sequences on the Haus8 subunit, which overlap with the MT binding site. Moreover, we show Ran controls localization of augmin to MTs in both Xenopus egg extract and in vitro. Our results demonstrate that RanGTP directly regulates augmin, which establishes a new way by which Ran controls branching MT nucleation and spindle assembly both in the absence and presence of TPX2.
Collapse
Affiliation(s)
- Jodi Kraus
- Department of Molecular Biology; Princeton University; Princeton, NJ, 08544; USA
| | - Sophie M Travis
- Department of Molecular Biology; Princeton University; Princeton, NJ, 08544; USA
| | - Matthew R King
- Department of Molecular Biology; Princeton University; Princeton, NJ, 08544; USA
| | - Sabine Petry
- Department of Molecular Biology; Princeton University; Princeton, NJ, 08544; USA.
| |
Collapse
|
5
|
Shen CH, Jin L, Fu KY, Guo WC, Li GQ. RNA interference targeting Ras GTPase gene Ran causes larval and adult lethality in Leptinotarsa decemlineata. PEST MANAGEMENT SCIENCE 2022; 78:3849-3858. [PMID: 35104039 DOI: 10.1002/ps.6822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/06/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND RNA interference (RNAi) is a breakthrough technology in pest control. It is highly efficient to Coleopteran pests such as the Colorado potato beetle Leptinotarsa decemlineata, a serious pest defoliator mainly attacking potatoes worldwide. The first step for effective pest control by RNAi is the development of effective and reliable target genes. RESULTS Our results revealed that continuous ingestion of dsLdRan for 3 days successfully silenced the target gene, inhibited larval growth and killed 100% L. decemlineata larvae. When the bioassay began at the second-, third/fourth-instar larval stages, the larval lethality mainly occurred at the fourth larval instar and prepupal stages, respectively. Importantly, consumption of dsLdRan for 3 days by the newly-emerged males and females effectively knocked down the target transcript, reduced fresh weights and caused 100% of lethality within a week. The LdRan females possessed underdeveloped ovaries. CONCLUSION Considering that the larvae, adults and eggs are simultaneously sited on the potato plants, bacterially-expressed dsLdRan is a potential RNAi-based strategy for managing L. decemlineata in the potato field. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chen-Hui Shen
- Agriculture Ministry Key Laboratory of Integrated Pest Management on Crops in East China/State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Lin Jin
- Agriculture Ministry Key Laboratory of Integrated Pest Management on Crops in East China/State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Kai-Yun Fu
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, China
- Key Laboratory of Intergraded Management of Harmful Crop Vermin of China North-western Oasis, Ministry of Agriculture, Urumqi, China
| | - Wen-Chao Guo
- Institute of Microbiological Application, Xinjiang Academy of Agricultural Science, Urumqi, China
| | - Guo-Qing Li
- Agriculture Ministry Key Laboratory of Integrated Pest Management on Crops in East China/State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
6
|
Wei YL, Fan XJ, Diao YY, She ZY, Wang XR. Kinesin-14 KIFC1 modulates spindle assembly and chromosome segregation in mouse spermatocytes. Exp Cell Res 2022; 414:113095. [DOI: 10.1016/j.yexcr.2022.113095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 11/04/2022]
|
7
|
Ems-McClung SC, Walczak CE. Using FLIM-FRET for Characterizing Spatial Interactions in the Spindle. Methods Mol Biol 2022; 2415:221-243. [PMID: 34972958 PMCID: PMC8740612 DOI: 10.1007/978-1-0716-1904-9_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Proper spindle assembly and the attachment of chromosomes to the spindle are key for the accurate segregation of chromosomes to daughter cells. Errors in these processes can lead to aneuploidy, which is a hallmark of cancer. Understanding the mechanisms that drive spindle assembly will provide fundamental insights into how accurate chromosome segregation is achieved. One challenge in elucidating the complexities of spindle assembly is to visualize protein interactions in space and time. The Xenopus egg extract system has been a valuable tool to probe protein function during spindle assembly in vitro. Tagging proteins with fluorescent proteins and utilizing fluorescence-based approaches, such as Förster resonance energy transfer (FRET) and fluorescence lifetime imaging microscopy (FLIM), have provided visual clues about the mechanics of spindle assembly and its regulators. However, elucidating how spindle assembly factors are spatially regulated is still challenging. Combining the egg extract system and visual FRET approaches provides a powerful tool to probe the processes involved in spindle assembly. Here we describe how a FLIM-FRET biosensor can be used to study protein-protein interactions in spindles assembled in Xenopus egg extracts. This approach should be readily adaptable to a wide variety of proteins to allow for new insights into the regulation of spindle assembly.
Collapse
|
8
|
Cutillas V, Johnston CA. Mud binds the kinesin-14 Ncd in Drosophila. Biochem Biophys Rep 2021; 26:101016. [PMID: 34027137 PMCID: PMC8134030 DOI: 10.1016/j.bbrep.2021.101016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 04/13/2021] [Accepted: 05/05/2021] [Indexed: 11/03/2022] Open
Abstract
Maintenance of proper mitotic spindle structure is necessary for error-free chromosome segregation and cell division. Spindle assembly is controlled by force-generating kinesin motors that contribute to its geometry and bipolarity, and balancing motor-dependent forces between opposing kinesins is critical to the integrity of this process. Non-claret dysjunctional (Ncd), a Drosophila kinesin-14 member, crosslinks and slides microtubule minus-ends to focus spindle poles and sustain bipolarity. However, mechanisms that regulate Ncd activity during mitosis are underappreciated. Here, we identify Mushroom body defect (Mud), the fly ortholog of human NuMA, as a direct Ncd binding partner. We demonstrate this interaction involves a short coiled-coil domain within Mud (MudCC) binding the N-terminal, non-motor microtubule-binding domain of Ncd (NcdnMBD). We further show that the C-terminal ATPase motor domain of Ncd (NcdCTm) directly interacts with NcdnMBD as well. Mud binding competes against this self-association and also increases NcdnMBD microtubule binding in vitro. Our results describe an interaction between two spindle-associated proteins and suggest a potentially new mode of minus-end motor protein regulation at mitotic spindle poles.
Collapse
Affiliation(s)
- Vincent Cutillas
- Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | | |
Collapse
|
9
|
Tsuchiya K, Hayashi H, Nishina M, Okumura M, Sato Y, Kanemaki MT, Goshima G, Kiyomitsu T. Ran-GTP Is Non-essential to Activate NuMA for Mitotic Spindle-Pole Focusing but Dynamically Polarizes HURP Near Chromosomes. Curr Biol 2021; 31:115-127.e3. [DOI: 10.1016/j.cub.2020.09.091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/25/2020] [Accepted: 09/30/2020] [Indexed: 12/27/2022]
|
10
|
Ems-McClung SC, Emch M, Zhang S, Mahnoor S, Weaver LN, Walczak CE. RanGTP induces an effector gradient of XCTK2 and importin α/β for spindle microtubule cross-linking. J Cell Biol 2020; 219:133528. [PMID: 31865374 PMCID: PMC7041689 DOI: 10.1083/jcb.201906045] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/21/2019] [Accepted: 11/08/2019] [Indexed: 01/04/2023] Open
Abstract
High RanGTP around chromatin is important for governing spindle assembly during meiosis and mitosis by releasing the inhibitory effects of importin α/β. Here we examine how the Ran gradient regulates Kinesin-14 function to control spindle organization. We show that Xenopus Kinesin-14, XCTK2, and importin α/β form an effector gradient that is highest at the poles and diminishes toward the chromatin, which is opposite the RanGTP gradient. Importin α and β preferentially inhibit XCTK2 antiparallel microtubule cross-linking and sliding by decreasing the microtubule affinity of the XCTK2 tail domain. This change in microtubule affinity enables RanGTP to target endogenous XCTK2 to the spindle. We propose that these combined actions of the Ran pathway are critical to promote Kinesin-14 parallel microtubule cross-linking to help focus spindle poles for efficient bipolar spindle assembly. Furthermore, our work illustrates that RanGTP regulation in the spindle is not simply a switch, but rather generates effector gradients where importins α and β gradually tune the activities of spindle assembly factors.
Collapse
Affiliation(s)
| | - Mackenzie Emch
- Department of Biology, Indiana University, Bloomington, IN
| | | | - Serena Mahnoor
- Indiana University International Summer Undergraduate Research Program, Bloomington, IN
| | | | | |
Collapse
|
11
|
Guilloux G, Gibeaux R. Mechanisms of spindle assembly and size control. Biol Cell 2020; 112:369-382. [PMID: 32762076 DOI: 10.1111/boc.202000065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/03/2020] [Accepted: 08/03/2020] [Indexed: 01/09/2023]
Abstract
The spindle is crucial for cell division by allowing the faithful segregation of replicated chromosomes to daughter cells. Proper segregation is ensured only if microtubules (MTs) and hundreds of other associated factors interact to assemble this complex structure with the appropriate architecture and size. In this review, we describe the latest view of spindle organisation as well as the molecular gradients and mechanisms underlying MT nucleation and spindle assembly. We then discuss the overlapping physical and molecular constraints that dictate spindle morphology, concluding with a focus on spindle size regulation.
Collapse
Affiliation(s)
- Gabriel Guilloux
- Univ Rennes, CNRS, IGDR [(Institute of Genetics and Development of Rennes)] - UMR 6290, F-35000 Rennes, France
| | - Romain Gibeaux
- Univ Rennes, CNRS, IGDR [(Institute of Genetics and Development of Rennes)] - UMR 6290, F-35000 Rennes, France
| |
Collapse
|
12
|
Kinesin-14 motor protein KIFC1 participates in DNA synthesis and chromatin maintenance. Cell Death Dis 2019; 10:402. [PMID: 31127080 PMCID: PMC6534603 DOI: 10.1038/s41419-019-1619-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/02/2019] [Accepted: 04/29/2019] [Indexed: 11/09/2022]
Abstract
The nuclear localization signal (NLS) in kinesin-14 KIFC1 is associated with nuclear importins and Ran gradient, but detailed mechanism remains unknown. In this study, we found that KIFC1 proteins have specific transport characteristics during cell cycle. In the absence of KIFC1, cell cycle kinetics decrease significantly with a prolonged S phase. After KIFC1 overexpression, the duration of S phase becomes shorten. KIFC1 may transport the recombinant/replicate-related proteins into the nucleus, meanwhile avoiding excessive KIFC1 in the cytoplasm, which results in aberrant microtubule bundling. Interestingly, the deletion of kifc1 in human cells results in a higher ratio of aberrant nuclear membrane, and the degradation of lamin B and lamin A/C. We also found that kifc1 deletion leads to defects in metaphase mitotic spindle assembly, and then results in chromosome structural abnormality. The kifc1-/- cells finally form micronuclei in daughter cells, and results in aneuploidy and chromosome loss in cell cycle. In this study, we demonstrate that kinesin-14 KIFC1 proteins involve in regulating DNA synthesis in S phase, and chromatin maintenance in mitosis, and maintain cell growth in a nuclear transport-independent way.
Collapse
|
13
|
Mitotic Motor KIFC1 Is an Organizer of Microtubules in the Axon. J Neurosci 2019; 39:3792-3811. [PMID: 30804089 DOI: 10.1523/jneurosci.3099-18.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/30/2019] [Accepted: 02/18/2019] [Indexed: 11/21/2022] Open
Abstract
KIFC1 (also called HSET or kinesin-14a) is best known as a multifunctional motor protein essential for mitosis. The present studies are the first to explore KIFC1 in terminally postmitotic neurons. Using RNA interference to partially deplete KIFC1 from rat neurons (from animals of either gender) in culture, pharmacologic agents that inhibit KIFC1, and expression of mutant KIFC1 constructs, we demonstrate critical roles for KIFC1 in regulating axonal growth and retraction as well as growth cone morphology. Experimental manipulations of KIFC1 elicit morphological changes in the axon as well as changes in the organization, distribution, and polarity orientation of its microtubules. Together, the results indicate a mechanism by which KIFC1 binds to microtubules in the axon and slides them into alignment in an ATP-dependent fashion and then cross-links them in an ATP-independent fashion to oppose their subsequent sliding by other motors.SIGNIFICANCE STATEMENT Here, we establish that KIFC1, a molecular motor well characterized in mitosis, is robustly expressed in neurons, where it has profound influence on the organization of microtubules in a number of different functional contexts. KIFC1 may help answer long-standing questions in cellular neuroscience such as, mechanistically, how growth cones stall and how axonal microtubules resist forces that would otherwise cause the axon to retract. Knowledge about KIFC1 may help researchers to devise strategies for treating disorders of the nervous system involving axonal retraction given that KIFC1 is expressed in adult neurons as well as developing neurons.
Collapse
|
14
|
Yokoyama H, Moreno-Andres D, Astrinidis SA, Hao Y, Weberruss M, Schellhaus AK, Lue H, Haramoto Y, Gruss OJ, Antonin W. Chromosome alignment maintenance requires the MAP RECQL4, mutated in the Rothmund-Thomson syndrome. Life Sci Alliance 2019; 2:2/1/e201800120. [PMID: 30718377 PMCID: PMC6362308 DOI: 10.26508/lsa.201800120] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 01/25/2019] [Accepted: 01/25/2019] [Indexed: 12/21/2022] Open
Abstract
RECQL4, which is mutated in the Rothmund–Thomson syndrome characterized by premature aging and cancer susceptibility, is a microtubule-associated protein required for mitotic chromosome alignment. RecQ-like helicase 4 (RECQL4) is mutated in patients suffering from the Rothmund–Thomson syndrome, a genetic disease characterized by premature aging, skeletal malformations, and high cancer susceptibility. Known roles of RECQL4 in DNA replication and repair provide a possible explanation of chromosome instability observed in patient cells. Here, we demonstrate that RECQL4 is a microtubule-associated protein (MAP) localizing to the mitotic spindle. RECQL4 depletion in M-phase–arrested frog egg extracts does not affect spindle assembly per se, but interferes with maintaining chromosome alignment at the metaphase plate. Low doses of nocodazole depolymerize RECQL4-depleted spindles more easily, suggesting abnormal microtubule–kinetochore interaction. Surprisingly, inter-kinetochore distance of sister chromatids is larger in depleted extracts and patient fibroblasts. Consistent with a role to maintain stable chromosome alignment, RECQL4 down-regulation in HeLa cells causes chromosome misalignment and delays mitotic progression. Importantly, these chromosome alignment defects are independent from RECQL4’s reported roles in DNA replication and damage repair. Our data elucidate a novel function of RECQL4 in mitosis, and defects in mitotic chromosome alignment might be a contributing factor for the Rothmund–Thomson syndrome.
Collapse
Affiliation(s)
- Hideki Yokoyama
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany .,Institute of Biochemistry and Molecular Cell Biology, Medical School, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany.,ID Pharma Co. Ltd., Tsukuba, Japan
| | - Daniel Moreno-Andres
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany.,Institute of Biochemistry and Molecular Cell Biology, Medical School, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany
| | | | - Yuqing Hao
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Deutsches Krebsforschungszentrum-ZMBH Alliance, Heidelberg, Germany
| | - Marion Weberruss
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany.,Institute of Biochemistry and Molecular Cell Biology, Medical School, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany
| | - Anna K Schellhaus
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany.,Institute of Biochemistry and Molecular Cell Biology, Medical School, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany
| | - Hongqi Lue
- Institute of Biochemistry and Molecular Cell Biology, Medical School, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany
| | - Yoshikazu Haramoto
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Oliver J Gruss
- Institute of Genetics, Rheinische Friedrich-Wilhelms Universität Bonn, Bonn, Germany
| | - Wolfram Antonin
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany .,Institute of Biochemistry and Molecular Cell Biology, Medical School, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany
| |
Collapse
|
15
|
Marlow FL. Recent advances in understanding oogenesis: interactions with the cytoskeleton, microtubule organization, and meiotic spindle assembly in oocytes. F1000Res 2018; 7. [PMID: 29755732 PMCID: PMC5911934 DOI: 10.12688/f1000research.13837.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/12/2018] [Indexed: 01/16/2023] Open
Abstract
Maternal control of development begins with production of the oocyte during oogenesis. All of the factors necessary to complete oocyte maturation, meiosis, fertilization, and early development are produced in the transcriptionally active early oocyte. Active transcription of the maternal genome is a mechanism to ensure that the oocyte and development of the early embryo begin with all of the factors needed for successful embryonic development. To achieve the maximum maternal store, only one functional cell is produced from the meiotic divisions that produce the oocyte. The oocyte receives the bulk of the maternal cytoplasm and thus is significantly larger than its sister cells, the tiny polar bodies, which receive a copy of the maternal genome but essentially none of the maternal cytoplasm. This asymmetric division is accomplished by an enormous cell that is depleted of centrosomes in early oogenesis; thus, meiotic divisions in oocytes are distinct from those of mitotic cells. Therefore, these cells must partition the chromosomes faithfully to ensure euploidy by using mechanisms that do not rely on a conventional centrosome-based mitotic spindle. Several mechanisms that contribute to assembly and maintenance of the meiotic spindle in oocytes have been identified; however, none is fully understood. In recent years, there have been many exciting and significant advances in oogenesis, contributed by studies using a myriad of systems. Regrettably, I cannot adequately cover all of the important advances here and so I apologize to those whose beautiful work has not been included. This review focuses on a few of the most recent studies, conducted by several groups, using invertebrate and vertebrate systems, that have provided mechanistic insight into how microtubule assembly and meiotic spindle morphogenesis are controlled in the absence of centrosomes.
Collapse
Affiliation(s)
- Florence L Marlow
- Department of Cell Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
16
|
She ZY, Pan MY, Tan FQ, Yang WX. Minus end-directed kinesin-14 KIFC1 regulates the positioning and architecture of the Golgi apparatus. Oncotarget 2018; 8:36469-36483. [PMID: 28430595 PMCID: PMC5482669 DOI: 10.18632/oncotarget.16863] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/27/2017] [Indexed: 11/25/2022] Open
Abstract
The Golgi apparatus is the central organelle along the eukaryotic secretory and endocytic pathway. In non-polarized mammalian cells, the Golgi complex is usually located proximal to the nucleus at the cell center and is closely associated with the microtubule organizing center. Microtubule networks are essential in the organization and central localization of the Golgi apparatus, but the molecular basis underlying these processes are poorly understood. Here we reveal that minus end-directed kinesin-14 KIFC1 proteins are required for the structural integrity and positioning of the Golgi complex in non-polarized mammalian cells. Remarkably, we found that the motor domain of kinesin-14 KIFC1 regulates the recognition and binding of the Golgi and KIFC1 also statically binds to the microtubules via its tail domain. These findings reveal a new stationary binding model that kinesin-14 KIFC1 proteins function as crosslinkers between the Golgi apparatus and the microtubules and contribute to the central positioning and structural maintenance of the Golgi apparatus.
Collapse
Affiliation(s)
- Zhen-Yu She
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Meng-Ying Pan
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fu-Qing Tan
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
17
|
Importin-β Directly Regulates the Motor Activity and Turnover of a Kinesin-4. Dev Cell 2018; 44:642-651.e5. [DOI: 10.1016/j.devcel.2018.01.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 11/10/2017] [Accepted: 01/29/2018] [Indexed: 12/26/2022]
|
18
|
Mchedlishvili N, Matthews HK, Corrigan A, Baum B. Two-step interphase microtubule disassembly aids spindle morphogenesis. BMC Biol 2018; 16:14. [PMID: 29361957 PMCID: PMC5778756 DOI: 10.1186/s12915-017-0478-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 12/22/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Entry into mitosis triggers profound changes in cell shape and cytoskeletal organisation. Here, by studying microtubule remodelling in human flat mitotic cells, we identify a two-step process of interphase microtubule disassembly. RESULTS First, a microtubule-stabilising protein, Ensconsin/MAP7, is inactivated in prophase as a consequence of its phosphorylation downstream of Cdk1/cyclin B. This leads to a reduction in interphase microtubule stability that may help to fuel the growth of centrosomally nucleated microtubules. The peripheral interphase microtubules that remain are then rapidly lost as the concentration of tubulin heterodimers falls following dissolution of the nuclear compartment boundary. Finally, we show that a failure to destabilise microtubules in prophase leads to the formation of microtubule clumps, which interfere with spindle assembly. CONCLUSIONS This analysis highlights the importance of the step-wise remodelling of the microtubule cytoskeleton and the significance of permeabilisation of the nuclear envelope in coordinating the changes in cellular organisation and biochemistry that accompany mitotic entry.
Collapse
Affiliation(s)
- Nunu Mchedlishvili
- MRC Laboratory of Molecular Cell Biology and the IPLS, University College London, Gower Street, London, WC1E 6BT, UK
| | - Helen K Matthews
- MRC Laboratory of Molecular Cell Biology and the IPLS, University College London, Gower Street, London, WC1E 6BT, UK
| | - Adam Corrigan
- MRC Laboratory of Molecular Cell Biology and the IPLS, University College London, Gower Street, London, WC1E 6BT, UK
| | - Buzz Baum
- MRC Laboratory of Molecular Cell Biology and the IPLS, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
19
|
Abstract
Dasso discusses work from Beaven et al. on the regulation of Ncd in the meiotic spindle by 14-3-3 proteins. During Drosophila melanogaster oogenesis, spindle assembly occurs without centrosomes and relies on signals from chromosomes. Beaven et al. (2017. J. Cell. Biol.https://doi.org/10.1083/jcb.201704120) show that 14-3-3 proteins bind and inhibit a key microtubule motor, Ncd, during oogenesis, but Aurora B releases Ncd inhibition near chromosomes, allowing Ncd to work in the right time and place.
Collapse
Affiliation(s)
- Mary Dasso
- Division of Molecular and Cellular Biology, National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, MD
| |
Collapse
|
20
|
She ZY, Yang WX. Molecular mechanisms of kinesin-14 motors in spindle assembly and chromosome segregation. J Cell Sci 2017; 130:2097-2110. [DOI: 10.1242/jcs.200261] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
ABSTRACT
During eukaryote cell division, molecular motors are crucial regulators of microtubule organization, spindle assembly, chromosome segregation and intracellular transport. The kinesin-14 motors are evolutionarily conserved minus-end-directed kinesin motors that occur in diverse organisms from simple yeasts to higher eukaryotes. Members of the kinesin-14 motor family can bind to, crosslink or slide microtubules and, thus, regulate microtubule organization and spindle assembly. In this Commentary, we present the common subthemes that have emerged from studies of the molecular kinetics and mechanics of kinesin-14 motors, particularly with regard to their non-processive movement, their ability to crosslink microtubules and interact with the minus- and plus-ends of microtubules, and with microtubule-organizing center proteins. In particular, counteracting forces between minus-end-directed kinesin-14 and plus-end-directed kinesin-5 motors have recently been implicated in the regulation of microtubule nucleation. We also discuss recent progress in our current understanding of the multiple and fundamental functions that kinesin-14 motors family members have in important aspects of cell division, including the spindle pole, spindle organization and chromosome segregation.
Collapse
Affiliation(s)
- Zhen-Yu She
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
21
|
Xiao YX, Yang WX. KIFC1: a promising chemotherapy target for cancer treatment? Oncotarget 2016; 7:48656-48670. [PMID: 27102297 PMCID: PMC5217046 DOI: 10.18632/oncotarget.8799] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 04/10/2016] [Indexed: 01/10/2023] Open
Abstract
The kinesin motor KIFC1 has been suggested as a potential chemotherapy target due to its critical role in clustering of the multiple centrosomes found in cancer cells. In this regard, KIFC1 seems to be non-essential in normal somatic cells which usually possess only two centrosomes. Moreover, KIFC1 is also found to initiatively drive tumor malignancy and metastasis by stabilizing a certain degree of genetic instability, delaying cell cycle and protecting cancer cell surviving signals. However, that KIFC1 also plays roles in other specific cell types complicates the question of whether it is a promising chemotherapy target for cancer treatment. For example, KIFC1 is found functionally significant in vesicular and organelle trafficking, spermiogenesis, oocyte development, embryo gestation and double-strand DNA transportation. In this review we summarize a recent collection of information so as to provide a generalized picture of ideas and mechanisms against and in favor of KIFC1 as a chemotherapy target. And we also drew the conclusion that KIFC1 is a promising chemotherapy target for some types of cancers, because the side-effects of inhibiting KIFC1 mentioned in this review are theoretically easy to avoid, while KIFC1 is functionally indispensable during mitosis and malignancy of multi-centrosome cancer cells. Further investigations of how KIFC1 is regulated throughout the mitosis in cancer cells are needed for the understanding of the pathways where KIFC1 is involved and for further exploitation of indirect KIFC1 inhibitors.
Collapse
Affiliation(s)
- Yu-Xi Xiao
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
22
|
Heald R, Khodjakov A. Thirty years of search and capture: The complex simplicity of mitotic spindle assembly. J Cell Biol 2015; 211:1103-11. [PMID: 26668328 PMCID: PMC4687881 DOI: 10.1083/jcb.201510015] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 11/02/2015] [Indexed: 12/19/2022] Open
Abstract
Cell division is enacted by a microtubule-based, self-assembling macromolecular machine known as the mitotic spindle. In 1986, Kirschner and Mitchison proposed that by undergoing dynamic cycles of growth and disassembly, microtubules search for chromosomes. Capture of microtubules by the kinetochores progressively connects chromosomes to the bipolar spindle. 30 years later, “search and capture” remains the cornerstone of spindle assembly. However, a variety of facilitating mechanisms such as regulation of microtubule dynamics by diffusible gradients, spatially selective motor activities, and adaptive changes in chromosome architecture have been discovered. We discuss how these mechanisms ensure that the spindle assembles rapidly and with a minimal number of errors.
Collapse
Affiliation(s)
- Rebecca Heald
- Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Alexey Khodjakov
- Wadsworth Center, New York State Department of Health, Albany, NY 12201 Rensselaer Polytechnic Institute, Troy, NY 12180
| |
Collapse
|
23
|
Chen JWC, Barker AR, Wakefield JG. The Ran Pathway in Drosophila melanogaster Mitosis. Front Cell Dev Biol 2015; 3:74. [PMID: 26636083 PMCID: PMC4659922 DOI: 10.3389/fcell.2015.00074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 11/09/2015] [Indexed: 11/29/2022] Open
Abstract
Over the last two decades, the small GTPase Ran has emerged as a central regulator of both mitosis and meiosis, particularly in the generation, maintenance, and regulation of the microtubule (MT)-based bipolar spindle. Ran-regulated pathways in mitosis bear many similarities to the well-characterized functions of Ran in nuclear transport and, as with transport, the majority of these mitotic effects are mediated through affecting the physical interaction between karyopherins and Spindle Assembly Factors (SAFs)—a loose term describing proteins or protein complexes involved in spindle assembly through promoting nucleation, stabilization, and/or depolymerization of MTs, through anchoring MTs to specific structures such as centrosomes, chromatin or kinetochores, or through sliding MTs along each other to generate the force required to achieve bipolarity. As such, the Ran-mediated pathway represents a crucial functional module within the wider spindle assembly landscape. Research into mitosis using the model organism Drosophila melanogaster has contributed substantially to our understanding of centrosome and spindle function. However, in comparison to mammalian systems, very little is known about the contribution of Ran-mediated pathways in Drosophila mitosis. This article sets out to summarize our understanding of the roles of the Ran pathway components in Drosophila mitosis, focusing on the syncytial blastoderm embryo, arguing that it can provide important insights into the conserved functions on Ran during spindle formation.
Collapse
Affiliation(s)
- Jack W C Chen
- Biosciences, College of Life and Environmental Sciences, University of Exeter Exeter, UK
| | - Amy R Barker
- Biosciences, College of Life and Environmental Sciences, University of Exeter Exeter, UK ; Centre for Microvascular Research, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London London, UK
| | - James G Wakefield
- Biosciences, College of Life and Environmental Sciences, University of Exeter Exeter, UK
| |
Collapse
|
24
|
Meunier S, Vernos I. Acentrosomal Microtubule Assembly in Mitosis: The Where, When, and How. Trends Cell Biol 2015; 26:80-87. [PMID: 26475655 DOI: 10.1016/j.tcb.2015.09.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 08/31/2015] [Accepted: 09/01/2015] [Indexed: 01/08/2023]
Abstract
In mitosis the cell assembles the bipolar spindle, a microtubule (MT)-based apparatus that segregates the duplicated chromosomes into two daughter cells. Most animal cells enter mitosis with duplicated centrosomes that provide an active source of dynamic MTs. However, it is now established that spindle assembly relies on the nucleation of acentrosomal MTs occurring around the chromosomes after nuclear envelope breakdown, and on pre-existing microtubules. Where chromosome-dependent MT nucleation occurs, when MT amplification takes place and how the two pathways function are still key questions that generate some controversies. We reconcile the data and present an integrated model accounting for acentrosomal microtubule assembly in the dividing cell.
Collapse
Affiliation(s)
- Sylvain Meunier
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), Doctor Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Isabelle Vernos
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), Doctor Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Doctor Aiguader 88, 08003 Barcelona, Spain; Institució Catalana de Recerca I Estudis Avançats (ICREA), Passeig de Lluis Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|