1
|
Couto A, Marty S, Dawson EH, d'Ettorre P, Sandoz JC, Montgomery SH. Evolution of the neuronal substrate for kin recognition in social Hymenoptera. Biol Rev Camb Philos Soc 2023; 98:2226-2242. [PMID: 37528574 DOI: 10.1111/brv.13003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 08/03/2023]
Abstract
In evolutionary terms, life is about reproduction. Yet, in some species, individuals forgo their own reproduction to support the reproductive efforts of others. Social insect colonies for example, can contain up to a million workers that actively cooperate in tasks such as foraging, brood care and nest defence, but do not produce offspring. In such societies the division of labour is pronounced, and reproduction is restricted to just one or a few individuals, most notably the queen(s). This extreme eusocial organisation exists in only a few mammals, crustaceans and insects, but strikingly, it evolved independently up to nine times in the order Hymenoptera (including ants, bees and wasps). Transitions from a solitary lifestyle to an organised society can occur through natural selection when helpers obtain a fitness benefit from cooperating with kin, owing to the indirect transmission of genes through siblings. However, this process, called kin selection, is vulnerable to parasitism and opportunistic behaviours from unrelated individuals. An ability to distinguish kin from non-kin, and to respond accordingly, could therefore critically facilitate the evolution of eusociality and the maintenance of non-reproductive workers. The question of how the hymenopteran brain has adapted to support this function is therefore a fundamental issue in evolutionary neuroethology. Early neuroanatomical investigations proposed that social Hymenoptera have expanded integrative brain areas due to selection for increased cognitive capabilities in the context of processing social information. Later studies challenged this assumption and instead pointed to an intimate link between higher social organisation and the existence of developed sensory structures involved in recognition and communication. In particular, chemical signalling of social identity, known to be mediated through cuticular hydrocarbons (CHCs), may have evolved hand in hand with a specialised chemosensory system in Hymenoptera. Here, we compile the current knowledge on this recognition system, from emitted identity signals, to the molecular and neuronal basis of chemical detection, with particular emphasis on its evolutionary history. Finally, we ask whether the evolution of social behaviour in Hymenoptera could have driven the expansion of their complex olfactory system, or whether the early origin and conservation of an olfactory subsystem dedicated to social recognition could explain the abundance of eusocial species in this insect order. Answering this question will require further comparative studies to provide a comprehensive view on lineage-specific adaptations in the olfactory pathway of Hymenoptera.
Collapse
Affiliation(s)
- Antoine Couto
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
- Evolution, Genomes, Behaviour and Ecology (UMR 9191), IDEEV, Université Paris-Saclay, CNRS, IRD, 12 route 128, Gif-sur-Yvette, 91190, France
| | - Simon Marty
- Evolution, Genomes, Behaviour and Ecology (UMR 9191), IDEEV, Université Paris-Saclay, CNRS, IRD, 12 route 128, Gif-sur-Yvette, 91190, France
| | - Erika H Dawson
- Laboratory of Experimental and Comparative Ethology, UR 4443 (LEEC), Université Sorbonne Paris Nord, 99 avenue J.-B. Clément, Villetaneuse, 93430, France
| | - Patrizia d'Ettorre
- Laboratory of Experimental and Comparative Ethology, UR 4443 (LEEC), Université Sorbonne Paris Nord, 99 avenue J.-B. Clément, Villetaneuse, 93430, France
- Institut Universitaire de France (IUF), 103 Boulevard Saint-Michel, Paris, 75005, France
| | - Jean-Christophe Sandoz
- Evolution, Genomes, Behaviour and Ecology (UMR 9191), IDEEV, Université Paris-Saclay, CNRS, IRD, 12 route 128, Gif-sur-Yvette, 91190, France
| | - Stephen H Montgomery
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| |
Collapse
|
2
|
da Silva RC, Oi CA, do Nascimento FS. Chemical Resemblance of Egg Surface Compounds and Dufour's Gland in Two Neotropical Polistinae Wasps Polistes versicolor (Olivier) and Mischocyttarus metathoracicus (de Saussure, 1854). NEOTROPICAL ENTOMOLOGY 2023; 52:1041-1056. [PMID: 37861965 DOI: 10.1007/s13744-023-01089-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/29/2023] [Indexed: 10/21/2023]
Abstract
Chemical communication plays a major role in regulating social dynamics in social insect colonies. The most studied class of chemical compounds are the cuticular hydrocarbons (CHCs), compounds with high molecular weight that cover the insect body. CHCs are used in nestmate recognition and to signal reproductive status. Brood, in the form of larvae and eggs, is known to participate in chemical communication and social dynamics by performing hunger behaviour and inducing interaction with adults and conferring nest and maternity identity. CHCs of adults and egg surface compounds are similar in composition in social insect species. The main source of egg compounds is proposed to be Dufour's gland, an accessory reproductive gland found in several Hymenoptera females. There is still a lack of information about the level of similarity among CHCs, compounds of egg surface and Dufour's gland for several wasp species, which could provide correlational evidence about the origins of egg-marking compounds. Thus, we investigated whether egg surface compounds were more similar to CHCs or Dufour's gland secretions in two Neotropical primitively eusocial wasp species, Polistes versicolor (Olivier) and Mischocyttarus metathoracicus (de Saussure, 1854). As expected, there was a higher chemical similarity between eggs and Dufour's gland secretions in both studied species, supporting the hypothesis that this gland is the source of chemical compounds found over the eggs in these two primitively eusocial species.
Collapse
Affiliation(s)
- Rafael Carvalho da Silva
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Depto de Biologia, Univ de São Paulo - USP, Ribeirão Preto, SP, Brazil.
| | - Cintia Akemi Oi
- Univ College London, London, UK
- Univ of Leuven, KU Leuven, Louvain, Belgium
| | - Fabio Santos do Nascimento
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Depto de Biologia, Univ de São Paulo - USP, Ribeirão Preto, SP, Brazil
| |
Collapse
|
3
|
Ge J, Shalem Y, Ge Z, Liu J, Wang X, Bloch G. Integration of information from multiple sources drives and maintains the division of labor in bumble bee colonies. CURRENT OPINION IN INSECT SCIENCE 2023; 60:101115. [PMID: 37704097 DOI: 10.1016/j.cois.2023.101115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/12/2023] [Accepted: 09/08/2023] [Indexed: 09/15/2023]
Abstract
Bumble bees are eusocial bees in which the division of labor (DoL) in reproduction and in task performance changes during their annual lifecycle. The queen monopolizes reproduction in young colonies, but at later stages, some workers start to challenge the queen and lay their own unfertilized eggs. The division of colony maintenance and growth tasks relates to worker body size. Reproduction and task performance are regulated by multiple social signals of the queen, the workers, and the brood. Here, we review recent studies suggesting that bumble bees use multiple sources of information to establish and maintain DoL in both reproduction and in task performance. Juvenile hormone (JH) is an important neuroendocrine signal involved in the regulation of DoL in reproduction but not in worker task performance. The reliance on multiple signals facilitates flexibility in face of changes in the social and geophysical environment.
Collapse
Affiliation(s)
- Jin Ge
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, PR China; CAS Centre for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, PR China
| | - Yuval Shalem
- Department of Ecology, Evolution, and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Zhuxi Ge
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, PR China; CAS Centre for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, PR China
| | - Jinpeng Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, PR China; CAS Centre for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, PR China
| | - Xianhui Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, PR China; CAS Centre for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, PR China.
| | - Guy Bloch
- Department of Ecology, Evolution, and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
4
|
da Silva RC, do Nascimento FS, Wenseleers T, Oi CA. Chemical signatures of egg maternity and Dufour's gland in Vespine wasps. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2023; 110:25. [PMID: 37227507 DOI: 10.1007/s00114-023-01852-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/26/2023]
Abstract
Cuticular hydrocarbons (CHCs) are often used in the chemical communication among social insects. CHCs can be used in nestmate recognition and as queen pheromones, the latter allows the regulation of the reproductive division of labor. In the common wasp Vespula vulgaris, CHCs and egg-marking hydrocarbons are caste-specific, being hydrocarbon queen pheromones and egg maternity signals. Whether these compounds are conserved among other Vespinae wasps remains unknown. Queens, virgin queens, reproductive workers, and workers belonging to four different wasp species, Dolichovespula media, Dolichovespula saxonica, Vespa crabro, and Vespula germanica, were collected and studied. The cuticular hydrocarbons, egg surface, and Dufour's gland composition were characterized and it was found that chemical compounds are caste-specific in the four species. Quantitative and qualitative differences were detected in the cuticle, eggs, and Dufour's gland. Some specific hydrocarbons that were shown to be overproduced in the cuticle of queens were also present in higher quantities in queen-laid eggs and in their Dufour's gland. These hydrocarbons can be indicated as putative fertility signals that regulate the division of reproductive labor in these Vespine societies. Our results are in line with the literature for V. vulgaris and D. saxonica, in which hydrocarbons were shown to be conserved queen signals. This work presents correlative evidence that queen chemical compounds are found not only over the body surface of females but also in other sources, such as the Dufour's gland and eggs.
Collapse
Affiliation(s)
- Rafael Carvalho da Silva
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo - USP, Avenida Bandeirantes, 3900 - Vila Monte Alegre, Ribeirão Preto, SP, 14040-900, Brazil.
| | - Fabio Santos do Nascimento
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo - USP, Avenida Bandeirantes, 3900 - Vila Monte Alegre, Ribeirão Preto, SP, 14040-900, Brazil
| | - Tom Wenseleers
- Laboratory of Socioecology and Social Evolution, KU Leuven - University of Leuven, Leuven, Belgium
| | - Cintia Akemi Oi
- Laboratory of Socioecology and Social Evolution, KU Leuven - University of Leuven, Leuven, Belgium
- Department of Genetics, Evolution and Environment, University College London, London, UK
| |
Collapse
|
5
|
Favreau E, Cini A, Taylor D, Câmara Ferreira F, Bentley MA, Cappa F, Cervo R, Privman E, Schneider J, Thiéry D, Mashoodh R, Wyatt CDR, Brown RL, Bodrug-Schepers A, Stralis-Pavese N, Dohm JC, Mead D, Himmelbauer H, Guigo R, Sumner S. Putting hornets on the genomic map. Sci Rep 2023; 13:6232. [PMID: 37085574 PMCID: PMC10121689 DOI: 10.1038/s41598-023-31932-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 03/20/2023] [Indexed: 04/23/2023] Open
Abstract
Hornets are the largest of the social wasps, and are important regulators of insect populations in their native ranges. Hornets are also very successful as invasive species, with often devastating economic, ecological and societal effects. Understanding why these wasps are such successful invaders is critical to managing future introductions and minimising impact on native biodiversity. Critical to the management toolkit is a comprehensive genomic resource for these insects. Here we provide the annotated genomes for two hornets, Vespa crabro and Vespa velutina. We compare their genomes with those of other social Hymenoptera, including the northern giant hornet Vespa mandarinia. The three hornet genomes show evidence of selection pressure on genes associated with reproduction, which might facilitate the transition into invasive ranges. Vespa crabro has experienced positive selection on the highest number of genes, including those putatively associated with molecular binding and olfactory systems. Caste-specific brain transcriptomic analysis also revealed 133 differentially expressed genes, some of which are associated with olfactory functions. This report provides a spring-board for advancing our understanding of the evolution and ecology of hornets, and opens up opportunities for using molecular methods in the future management of both native and invasive populations of these over-looked insects.
Collapse
Affiliation(s)
- Emeline Favreau
- Centre for Biodiversity and Environmental Research, Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Alessandro Cini
- Centre for Biodiversity and Environmental Research, Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK
- Department of Biology, Università di Pisa, Via Volta 6, 56126, Pisa, Italy
| | - Daisy Taylor
- Centre for Biodiversity and Environmental Research, Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK
| | | | - Michael A Bentley
- Centre for Biodiversity and Environmental Research, Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK
| | - Federico Cappa
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019, Sesto Fiorentino, Florence, Italy
| | - Rita Cervo
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019, Sesto Fiorentino, Florence, Italy
| | - Eyal Privman
- Department of Evolutionary and Environmental Biology, Institute of Evolution, University of Haifa, Abba Hushi 199, 3498838, Haifa, Israel
| | - Jadesada Schneider
- Centre for Biodiversity and Environmental Research, Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK
| | - Denis Thiéry
- INRAe, UMR 1065 Santé et Agroécologie du Vignoble, Bordeaux Sciences Agro, ISVV, Université de Bordeaux, 33883, Villenave d'Ornon, France
| | - Rahia Mashoodh
- Centre for Biodiversity and Environmental Research, Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK
| | - Christopher D R Wyatt
- Centre for Biodiversity and Environmental Research, Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK
| | - Robert L Brown
- Manaaki Whenua - Landcare Research, 54 Gerald Street, Lincoln, 7608, New Zealand
| | - Alexandrina Bodrug-Schepers
- Department of Biotechnology, Institute of Computational Biology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Nancy Stralis-Pavese
- Department of Biotechnology, Institute of Computational Biology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Juliane C Dohm
- Department of Biotechnology, Institute of Computational Biology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Daniel Mead
- Tree of Life Programme, Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
| | - Heinz Himmelbauer
- Department of Biotechnology, Institute of Computational Biology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Roderic Guigo
- Centre for Genomic Regulation, Dr. Aiguader 88, 08003, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Seirian Sumner
- Centre for Biodiversity and Environmental Research, Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
6
|
Derstine N, Galbraith D, Villar G, Amsalem E. Differential gene expression underlying the biosynthesis of Dufour's gland signals in Bombus impatiens. CURRENT RESEARCH IN INSECT SCIENCE 2023; 3:100056. [PMID: 37124651 PMCID: PMC10130613 DOI: 10.1016/j.cris.2023.100056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 03/29/2023] [Accepted: 04/04/2023] [Indexed: 05/03/2023]
Abstract
Pheromones regulating social behavior are one of the most explored phenomena in social insects. However, compound identity, biosynthesis and their genetic basis are known in only a handful of species. Here we examined the gene expression associated with pheromone biosynthesis of two main chemical classes: esters and terpenes, using the social bee Bombus impatiens. We conducted chemical and RNA-seq analyses of the Dufour's gland, an exocrine gland producing a plethora of pheromones regulating social behavior in hymenopteran species. The Dufour's gland contains mostly long-chained hydrocarbons, terpenes and esters that signal reproductive and social status in several bee species. In bumble bees, the Dufour's gland contains queen- and worker-specific esters, in addition to terpenes and terpene-esters only found in gynes and queens. These compounds are assumed to be synthesized de novo in the gland, however, their genetic basis is unknown. A whole transcriptome gene expression analysis of the gland in queens, gynes, queenless and queenright workers showed distinct transcriptomic profiles, with thousands of differentially expressed genes between the groups. Workers and queens express genes associated with key enzymes in the biosynthesis of wax esters, while queens and gynes preferentially express key genes in terpene biosynthesis. Overall, our data demonstrate gland-specific regulation of chemical signals associated with social behavior and identifies candidate genes and pathways regulating caste-specific chemical signals in social insects.
Collapse
|
7
|
da Silva RC, do Nascimento FS, Wenseleers T, Oi CA. Juvenile hormone modulates hydrocarbon expression and reproduction in the german wasp Vespula germanica. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1024580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Juvenile hormone (JH) affects multiple physiological traits in insects. In social insects, besides development, JH has been demonstrated to influence caste determination and the production of chemical compounds. In social wasps, JH triggers behavioral maturation, gonadotropic effects, and hydrocarbon modulation. Here, we investigated whether JH displays the same function in fertility and fertility cue production in females of the German wasp Vespula germanica, previously shown in the related species Vespula vulgaris. By experimentally treating workers with JH-analog, an anti-JH, and acetone solvent control, we tested whether JH modulates the cuticular chemical expression (CHCs), the Dufour’s gland chemical composition, and hence the compounds found over the egg’s surface. Additionally, we explored whether JH has a gonadotropic effect on workers. Workers treated with the JH-analog acquired a chemical profile that was intermediate between the queen and other treated workers. Interestingly, the same pattern was also seen in the Dufour’s glands and eggs, although more subtle. Furthermore, workers treated with the JH-analog were more fertile when compared to the controls, supporting the fact that JH acts as a gonadotropic hormone. Our results indicate a similar function of JH in societies of related wasp species V. germanica and V. vulgaris.
Collapse
|
8
|
Juvenile hormone regulates reproductive physiology and the production of fertility cues in the swarm-founding wasp Polybia occidentalis. CHEMOECOLOGY 2022. [DOI: 10.1007/s00049-022-00376-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Saba NU, Ye C, Zhang W, Wu T, Wang Y, Zhang X, Song Z, Xing L, Su X. The Antennal Sensilla and Expression Patterns of Olfactory Genes in the Lower Termite Reticulitermes aculabialis (Isoptera: Rhinotermitidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2022; 22:11. [PMID: 36001302 PMCID: PMC9400615 DOI: 10.1093/jisesa/ieac045] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Indexed: 06/15/2023]
Abstract
The insect olfactory system plays pivotal roles in insect survival and reproduction through odor detection. Morphological and physiological adaptations are caste-specific and evolved independently in workers, soldiers, and reproductives in termites. However, it is unclear whether the olfactory system is involved in the division of labor in termite colonies. In the present study, the antennal sensilla of alates, workers, soldiers, nymphs, and larvae of the termite Reticulitermes aculabialis Tsai et Hwang ( Isoptera: Rhinotermitidae) were investigated. Transcriptomes were used to detect olfactory genes, and differential expression levels of olfactory genes were confirmed in various castes by qRT-PCR analysis. Nine types of sensilla were identified on the antennae of R. aculabialis, and soldiers possessed all 9 types. In 89,475 assembled unigenes, we found 16 olfactory genes, including 6 chemosensory protein (CSP) and 10 odorant-binding protein (OBP) genes. These OBP genes included 8 general odorant-binding protein genes (GOBPs) and 2 pheromone-binding protein-related protein (PBP) genes. Five CSP genes were more highly expressed in alates than in workers, soldiers, larvae, and nymphs, and the expression levels of CSP6 were significantly higher in nymphs. Seven GOBP and two PBP genes exhibited significantly higher expression levels in alates, and there were no significant differences in the expression levels of GOBP2 among workers, soldiers, alates, and larvae. These results suggest that alates, as primary reproductives, have unique expression patterns of olfactory genes, which play key roles in nuptial flight, mate seeking, and new colony foundation.
Collapse
Affiliation(s)
| | | | - Wenxiu Zhang
- College of Life Sciences, Northwest University, Xi’an, China
| | - Taoyu Wu
- College of Life Sciences, Northwest University, Xi’an, China
| | - Yijie Wang
- College of Life Sciences, Northwest University, Xi’an, China
| | - Xiaohan Zhang
- College of Life Sciences, Northwest University, Xi’an, China
| | - Zhuanzhuan Song
- College of Life Sciences, Northwest University, Xi’an, China
| | - Lianxi Xing
- College of Life Sciences, Northwest University, Xi’an, China
| | | |
Collapse
|
10
|
Ferreira HM, da Silva RC, do Nascimento FS, Wenseleers T, Oi CA. Reproduction and fertility signalling under joint juvenile hormone control in primitively eusocial Mischocyttarus wasps. CHEMOECOLOGY 2022. [DOI: 10.1007/s00049-022-00370-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
11
|
Oi CA. Honeybee queen mandibular pheromone fails to regulate ovary activation in the common wasp. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:297-302. [PMID: 35028724 DOI: 10.1007/s00359-021-01531-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 12/21/2022]
Abstract
The queen mandibular pheromone (QMP) identified from the honeybee is responsible for maintaining reproductive division of labour in the colony, and affects multiple behaviours. Interestingly, QMP inhibits reproduction not only in honeybee workers, but also in distantly related insect species such as fruit flies and bumblebees. This study examines whether QMP also affects worker reproduction in the common wasp Vespula vulgaris. Wasp workers were exposed to one of the following treatments: QMP, wasp queen pheromone (the hydrocarbon heptacosane n-C27), or acetone (solvent-only control). After dissecting the workers, no evidence that QMP inhibits development in V. vulgaris could be found. However, this study could confirm the inhibitory effect of the hydrocarbon heptacosane on ovary activation. The reason why non-social species such as the fruit fly and social species such as bumblebees and ants respond to the QMP, while the social wasp V. vulgaris does not, is unclear. The investigation of whether olfaction is key to sensing QMP in other insect species, and the detailed study of odorant receptors in other social insects, may provide insights into the mechanisms of response to this pheromone.
Collapse
Affiliation(s)
- Cintia Akemi Oi
- Laboratory of Socioecology and Social Evolution, KU Leuven, Leuven, Belgium.
| |
Collapse
|
12
|
Vander Meer RK, Chinta SP, Jones TH, O'Reilly EE, Adams RMM. Male fire ant neurotransmitter precursors trigger reproductive development in females after mating. Commun Biol 2021; 4:1400. [PMID: 34912037 PMCID: PMC8674293 DOI: 10.1038/s42003-021-02921-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 11/29/2021] [Indexed: 11/09/2022] Open
Abstract
Social insect queens have evolved mechanisms to prevent competition from their sexual daughters. For Solenopsis invicta, the fire ant, queens have evolved a primer pheromone that retards reproductive development in their winged reproductive daughters. If these daughters are removed from the influence of the queen, it takes about a week to start reproductive development; however, it starts almost immediately after mating. This dichotomy has been unsuccessfully investigated for several decades. Here we show that male fire ants produce tyramides, derivatives of the biogenic amine tyramine, in their reproductive system. Males transfer tyramides to winged females during mating, where the now newly mated queens enzymatically convert tyramides to tyramine. Tyramine floods the hemolymph, rapidly activating physiological processes associated with reproductive development. Tyramides have been found only in the large Myrmicinae ant sub-family (6,800 species), We suggest that the complex inhibition/disinhibition of reproductive development described here will be applicable to other members of this ant sub-family.
Collapse
Affiliation(s)
| | - Satya P Chinta
- Foresight Science and Technology, Hopkinton, MA, 01748, USA
| | - Tappey H Jones
- Virginia Military Institute, Department of Chemistry, Lexington, VA, 24450, USA
| | - Erin E O'Reilly
- USDA/ARS, CMAVE, 1600 SW 23rd Drive, Gainesville, FL, 32608, USA
| | - Rachelle M M Adams
- Ohio State University, Department of Evolution, Ecology and Organismal Biology, Columbus, OH, 43212, USA.,National Museum of Natural History, Department of Entomology, Washington, DC, 20560, USA
| |
Collapse
|
13
|
Abstract
Social behavior is one of the most fascinating and complex behaviors in humans and animals. A fundamental process of social behavior is communication among individuals. It relies on the capability of the nervous system to sense, process, and interpret various signals (e.g., pheromones) and respond with appropriate decisions and actions. Eusocial insects, including ants, some bees, some wasps, and termites, display intriguing cooperative social behavior. Recent advances in genetic and genomic studies have revealed key genes that are involved in pheromone synthesis, chemosensory perception, and physiological and behavioral responses to varied pheromones. In this review, we highlight the genes and pathways that regulate queen pheromone-mediated social communication, discuss the evolutionary changes in genetic systems, and outline prospects of functional studies in sociobiology.
Collapse
Affiliation(s)
- Hua Yan
- Department of Biology, University of Florida, Gainesville, Florida 32611, USA
- Center for Smell and Taste, University of Florida, Gainesville, Florida 32610, USA
| | - Jürgen Liebig
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287, USA
| |
Collapse
|
14
|
Dufour's gland analysis reveals caste and physiology specific signals in Bombus impatiens. Sci Rep 2021; 11:2821. [PMID: 33531560 PMCID: PMC7854627 DOI: 10.1038/s41598-021-82366-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 01/14/2021] [Indexed: 11/20/2022] Open
Abstract
Reproductive division of labor in insect societies is regulated through multiple concurrent mechanisms, primarily chemical and behavioral. Here, we examined if the Dufour’s gland secretion in the primitively eusocial bumble bee Bombus impatiens signals information about caste, social condition, and reproductive status. We chemically analyzed Dufour’s gland contents across castes, age groups, social and reproductive conditions, and examined worker behavioral and antennal responses to gland extracts. We found that workers and queens each possess caste-specific compounds in their Dufour’s glands. Queens and gynes differed from workers based on the presence of diterpene compounds which were absent in workers, whereas four esters were exclusive to workers. These esters, as well as the total amounts of hydrocarbons in the gland, provided a separation between castes and also between fertile and sterile workers. Olfactometer bioassays demonstrated attraction of workers to Dufour’s gland extracts that did not represent a reproductive conflict, while electroantennogram recordings showed higher overall antennal sensitivity in queenless workers. Our results demonstrate that compounds in the Dufour’s gland act as caste- and physiology-specific signals and are used by workers to discriminate between workers of different social and reproductive status.
Collapse
|
15
|
Obiero GF, Pauli T, Geuverink E, Veenendaal R, Niehuis O, Große-Wilde E. Chemoreceptor Diversity in Apoid Wasps and Its Reduction during the Evolution of the Pollen-Collecting Lifestyle of Bees (Hymenoptera: Apoidea). Genome Biol Evol 2021; 13:6117318. [PMID: 33484563 PMCID: PMC8011036 DOI: 10.1093/gbe/evaa269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2020] [Indexed: 12/15/2022] Open
Abstract
Chemoreceptors help insects to interact with their environment, to detect and assess food sources and oviposition sites, and to aid in intra- and interspecific communication. In Hymenoptera, species of eusocial lineages possess large chemoreceptor gene repertoires compared with solitary species, possibly because of their additional need to recognize nest-mates and caste. However, a critical piece of information missing so far has been the size of chemoreceptor gene repertoires of solitary apoid wasps. Apoid wasps are a paraphyletic group of almost exclusively solitary Hymenoptera phylogenetically positioned between ant and bee, both of which include eusocial species. We report the chemosensory-related gene repertoire sizes of three apoid wasps: Ampulex compressa, Cerceris arenaria, and Psenulus fuscipennis. We annotated genes encoding odorant (ORs), gustatory, and ionotropic receptors and chemosensory soluble proteins and odorant-binding proteins in transcriptomes of chemosensory tissues of the above three species and in early draft genomes of two species, A. compressa and C. arenaria. Our analyses revealed that apoid wasps possess larger OR repertoires than any bee lineage, that the last common ancestor of Apoidea possessed a considerably larger OR repertoire (∼160) than previously estimated (73), and that the expansion of OR genes in eusocial bees was less extensive than previously assumed. Intriguingly, the evolution of pollen-collecting behavior in the stem lineage of bees was associated with a notable loss of OR gene diversity. Thus, our results support the view that herbivorous Hymenoptera tend to possess smaller OR repertoires than carnivorous, parasitoid, or kleptoparasitic species.
Collapse
Affiliation(s)
- George F Obiero
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany.,School of Biological and Life Sciences, The Technical University of Kenya, Nairobi, Kenya
| | - Thomas Pauli
- Department of Evolutionary Biology and Ecology, Institute of Biology I (Zoology), Albert Ludwig University of Freiburg, Germany
| | - Elzemiek Geuverink
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, The Netherlands
| | | | - Oliver Niehuis
- Department of Evolutionary Biology and Ecology, Institute of Biology I (Zoology), Albert Ludwig University of Freiburg, Germany
| | - Ewald Große-Wilde
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany.,EXTEMIT-K, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Praha-Suchdol, Czech Republic
| |
Collapse
|
16
|
Oi CA, Brown RL, da Silva RC, Wenseleers T. Reproduction and signals regulating worker policing under identical hormonal control in social wasps. Sci Rep 2020; 10:18971. [PMID: 33149171 PMCID: PMC7643062 DOI: 10.1038/s41598-020-76084-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
In social Hymenoptera, fertility and fertility signalling are often under identical hormonal control, and it has been suggested that such hormonal pleiotropies can help to maintain signal honesty. In the common wasp Vespula vulgaris, for example, fertile queens have much higher juvenile hormone (JH) titers than workers, and JH also controls the production of chemical fertility cues present on the females’ cuticle. To regulate reproductive division of labour, queens use these fertility cues in two distinct ways: as queen pheromones that directly suppress the workers’ reproduction as well as to mark queen eggs and enable the workers to recognize and police eggs laid by other workers. Here, we investigated the hormonal pleiotropy hypothesis by testing if experimental treatment with the JH analogue methoprene could enable the workers to lay eggs that evade policing. In support of this hypothesis, we find that methoprene-treated workers laid more eggs, and that the chemical profiles of their eggs were more queen-like, thereby causing fewer of their eggs to be policed compared to in the control. Overall, our results identify JH as a key regulator of both reproduction and the production of egg marking pheromones that mediate policing behaviour in eusocial wasps.
Collapse
Affiliation(s)
- Cintia Akemi Oi
- Laboratory of Socioecology and Social Evolution, KU Leuven, Leuven, Belgium.
| | - Robert L Brown
- Manaaki Whenua - Landcare Research, Lincoln, New Zealand
| | - Rafael Carvalho da Silva
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Biologia, Universidade de São Paulo - USP, Ribeirão Preto, SP, Brazil
| | - Tom Wenseleers
- Laboratory of Socioecology and Social Evolution, KU Leuven, Leuven, Belgium
| |
Collapse
|
17
|
Oliveira RC, Warson J, Sillam-Dussès D, Herrera-Malaver B, Verstrepen K, Millar JG, Wenseleers T. Identification of a queen pheromone mediating the rearing of adult sexuals in the pharaoh ant Monomorium pharaonis. Biol Lett 2020; 16:20200348. [PMID: 32810428 DOI: 10.1098/rsbl.2020.0348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The division of labour between reproductive queens and mostly sterile workers is among the defining characteristics of social insects. Queen-produced chemical signals advertising her presence and fertility status, i.e. queen pheromones, are normally used to assert the queen's reproductive dominance in the colony. Most queen pheromones identified to date are chemicals that stop the daughter workers from reproducing. Nevertheless, it has long been suggested that queen pheromones could also regulate reproduction in different ways. In some multiple-queen ants with obligately sterile workers, for example-such as fire ants and pharaoh ants-queen pheromones are thought to regulate reproduction by inhibiting the rearing of new sexuals. Here, we identify the first such queen pheromone in the pharaoh ant Monomorium pharaonis and demonstrate its mode of action via bioassays with the pure biosynthesized compound. In particular, we show that the monocyclic diterpene neocembrene, which in different Monomorium species is produced solely by fertile, egg-laying queens, strongly inhibits the rearing of new sexuals (queens and males) and also exerts a weakly attractive 'queen retinue' effect on the workers. This is the first time that a queen pheromone with such a dual function has been identified in a social insect species with obligately sterile workers.
Collapse
Affiliation(s)
- Ricardo Caliari Oliveira
- Laboratory of Socioecology and Social Evolution, Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium
| | - Jonas Warson
- Laboratory of Socioecology and Social Evolution, Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium
| | - David Sillam-Dussès
- Laboratory of Experimental and Comparative Ethology UR 4443, University Sorbonne Paris Nord, 93430 Villetaneuse, France
| | - Beatriz Herrera-Malaver
- Laboratory of Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, Belgium.,Laboratory for Genetics and Genomics, Center of Microbial and Plant Genetics, Department M2S, KU Leuven, Gaston Geenslaan 1, 3001, Heverlee, Belgium
| | - Kevin Verstrepen
- Laboratory of Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, Belgium.,Laboratory for Genetics and Genomics, Center of Microbial and Plant Genetics, Department M2S, KU Leuven, Gaston Geenslaan 1, 3001, Heverlee, Belgium
| | - Jocelyn G Millar
- Department of Entomology, University of California, Riverside, CA 92521, USA.,Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Tom Wenseleers
- Laboratory of Socioecology and Social Evolution, Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium
| |
Collapse
|
18
|
da Silva RC, Togni OC, Giannotti E, do Nascimento FS. Cues of dominance hierarchy, fertility and nestmate recognition in the primitively eusocial wasp Mischocyttarus parallelogrammus (Vespidae: Polistinae: Mischocyttarini). CHEMOECOLOGY 2020. [DOI: 10.1007/s00049-020-00316-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
19
|
Pokorny T, Sieber LM, Hofferberth JE, Bernadou A, Ruther J. Age-dependent release of and response to alarm pheromone in a ponerine ant. J Exp Biol 2020; 223:jeb218040. [PMID: 32098887 DOI: 10.1242/jeb.218040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/14/2020] [Indexed: 11/20/2022]
Abstract
Social insect societies are characterized by division of labour and communication within the colony. The most frequent mode of communication is by chemical signals. In general, pheromones elicit specific responses in the receiver, although reactions may vary depending on the receiving individual's physiological or motivational state. For example, it has been shown that pheromones can elicit different responses in morphological worker castes. However, comparably little is known about such effects in worker castes of monomorphic species. Here, we comprehensively studied a monomorphic species showing age polyethism, the thelytokous ant Platythyrea punctata Our analyses revealed that the species' alarm pheromone consists of (S)-(-)-citronellal and (S)-(-)-actinidine, and is produced in the mandibular glands. Ants responded with increased movement activity and increasing ant density towards the pheromone source in whole-colony bioassays, confirming the alarming effect of these compounds. We found age classes to differ in their absolute pheromone content, in the propensity to release alarm pheromone upon disturbance and in their reaction towards the pheromone. Absolute amounts of pheromone content may differ simply because the biosynthesis of the pheromone begins only after adult eclosion. Nonetheless, our results indicate that this clonal species exhibits age-related polyethism in the emission of as well as in the response to its alarm pheromone.
Collapse
Affiliation(s)
- Tamara Pokorny
- Institute of Zoology, University of Regensburg, 93053 Regensburg, Germany
| | - Lisa-Marie Sieber
- Institute of Zoology, University of Regensburg, 93053 Regensburg, Germany
| | | | - Abel Bernadou
- Institute of Zoology, University of Regensburg, 93053 Regensburg, Germany
| | - Joachim Ruther
- Institute of Zoology, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
20
|
Taylor D, Bentley MA, Sumner S. Social wasps as models to study the major evolutionary transition to superorganismality. CURRENT OPINION IN INSECT SCIENCE 2018; 28:26-32. [PMID: 30551764 DOI: 10.1016/j.cois.2018.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/03/2018] [Accepted: 04/05/2018] [Indexed: 06/09/2023]
Abstract
The major evolutionary transition to superorganismality has taken place several times in the insects. Although there has been much consideration of the ultimate evolutionary explanations for superorganismality, we know relatively little about what proximate mechanisms constrain or promote this major transition. Here, we propose that Vespid wasps represent an understudied, but potentially very useful, model system for studying the mechanisms underpinning superorganismality. We highlight how there is an abundance of behavioural data for many wasp species, confirming their utility in studies of social evolution; however, there is a sparsity of genomic data from which we can test proximate and ultimate hypotheses on this major evolutionary transition.
Collapse
Affiliation(s)
- Daisy Taylor
- Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, United Kingdom
| | - Michael A Bentley
- Centre for Biodiversity & Environment Research, Department of Genetics, Evolution & Environment, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Seirian Sumner
- Centre for Biodiversity & Environment Research, Department of Genetics, Evolution & Environment, University College London, Gower Street, London WC1E 6BT, United Kingdom.
| |
Collapse
|
21
|
Dani FR, Turillazzi S. Chemical Communication and Reproduction Partitioning in Social Wasps. J Chem Ecol 2018; 44:796-804. [DOI: 10.1007/s10886-018-0968-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 04/01/2018] [Accepted: 05/06/2018] [Indexed: 12/13/2022]
|
22
|
Lhomme P, Hines HM. Reproductive Dominance Strategies in Insect Social Parasites. J Chem Ecol 2018; 44:838-850. [PMID: 29785629 DOI: 10.1007/s10886-018-0971-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 05/08/2018] [Accepted: 05/14/2018] [Indexed: 01/12/2023]
Abstract
In eusocial insects, the high cost of altruistic cooperation between colony members has favoured the evolution of cheaters that exploit social services of other species. In the most extreme forms of insect social parasitism, which has evolved multiple times across most social lineages, obligately parasitic species invade the nests of social species and manipulate the workforce of their hosts to rear their own reproductive offspring. As alien species that have lost their own sociality, these social parasites still face social challenges to infiltrate and control their hosts, thus providing independent replicates for understanding the mechanisms essential to social dominance. This review compares socially parasitic insect lineages to find general trends and build a hypothetical framework for the means by which social parasites achieve reproductive dominance. It highlights how host social organization and social parasite life history traits may impact the way they achieve reproductive supremacy, including the potential role of chemical cues. The review discusses the coevolutionary dynamics between host and parasite during this process. Altogether, this review emphasizes the value of social parasites for understanding social evolution and the need for future research in this area.
Collapse
Affiliation(s)
- Patrick Lhomme
- Department of Biology, 208 Mueller Laboratory, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Heather M Hines
- Department of Biology, 208 Mueller Laboratory, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
23
|
Olejarz J, Veller C, Nowak MA. The evolution of queen control over worker reproduction in the social Hymenoptera. Ecol Evol 2017; 7:8427-8441. [PMID: 29075460 PMCID: PMC5648666 DOI: 10.1002/ece3.3324] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 07/12/2017] [Accepted: 07/20/2017] [Indexed: 02/06/2023] Open
Abstract
A trademark of eusocial insect species is reproductive division of labor, in which workers forego their own reproduction while the queen produces almost all offspring. The presence of the queen is key for maintaining social harmony, but the specific role of the queen in the evolution of eusociality remains unclear. A long‐discussed scenario is that a queen either behaviorally or chemically sterilizes her workers. However, the demographic and ecological conditions that enable such manipulation are still debated. We study a simple model of evolutionary dynamics based on haplodiploid genetics. Our model is set in the commonly observed case where workers have lost the ability to lay female (diploid) eggs by mating, but retain the ability to lay male (haploid) eggs. We consider a mutation that acts in a queen, causing her to control the reproductive behavior of her workers. Our mathematical analysis yields precise conditions for the evolutionary emergence and stability of queen‐induced worker sterility. These conditions do not depend on the queen's mating frequency. We find that queen control is always established if it increases colony reproductive efficiency, but can evolve even if it decreases colony efficiency. We further derive the conditions under which queen control is evolutionarily stable against invasion by mutant workers who have recovered the ability to lay male eggs.
Collapse
Affiliation(s)
- Jason Olejarz
- Program for Evolutionary Dynamics Harvard University Cambridge MA USA
| | - Carl Veller
- Program for Evolutionary Dynamics Harvard University Cambridge MA USA.,Department of Organismic and Evolutionary Biology Harvard University Cambridge MA USA
| | - Martin A Nowak
- Program for Evolutionary Dynamics Harvard University Cambridge MA USA.,Department of Organismic and Evolutionary Biology Harvard University Cambridge MA USA.,Department of Mathematics Harvard University Cambridge MA USA
| |
Collapse
|
24
|
Smith AA, Liebig J. The evolution of cuticular fertility signals in eusocial insects. CURRENT OPINION IN INSECT SCIENCE 2017; 22:79-84. [PMID: 28805643 DOI: 10.1016/j.cois.2017.05.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/17/2017] [Accepted: 05/19/2017] [Indexed: 05/19/2023]
Abstract
A reproductive division of labor is a definitive characteristic of eusocial insect societies and it requires a means through which colony members can assess the presence and productivity of reproductive individuals. Cuticular hydrocarbons are the primary means of doing so across eusocial hymenopterans. However, recent experimental work presents conflicting views on how these chemical signals function, are interpreted by workers, and evolve. These recent advances include demonstrations of hydrocarbons as evolutionarily conserved 'queen pheromones' and as species-divergent 'fertility signals' used by both queens and workers. In this review, we synthesize conflicting studies into an evolutionary framework suggesting a transition of reproductive communication from cue-like signature mixtures, to learned fertility signals, to innate queen pheromones that evolved across eusocial insects.
Collapse
Affiliation(s)
- Adrian A Smith
- Research & Collections, North Carolina Museum of Natural Sciences, 11 W. Jones St, Raleigh, NC 27601, USA; Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.
| | - Jürgen Liebig
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
25
|
Wittwer B, Hefetz A, Simon T, Murphy LEK, Elgar MA, Pierce NE, Kocher SD. Solitary bees reduce investment in communication compared with their social relatives. Proc Natl Acad Sci U S A 2017; 114:6569-6574. [PMID: 28533385 PMCID: PMC5488929 DOI: 10.1073/pnas.1620780114] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Social animals must communicate to define group membership and coordinate social organization. For social insects, communication is predominantly mediated through chemical signals, and as social complexity increases, so does the requirement for a greater diversity of signals. This relationship is particularly true for advanced eusocial insects, including ants, bees, and wasps, whose chemical communication systems have been well-characterized. However, we know surprisingly little about how these communication systems evolve during the transition between solitary and group living. Here, we demonstrate that the sensory systems associated with signal perception are evolutionarily labile. In particular, we show that differences in signal production and perception are tightly associated with changes in social behavior in halictid bees. Our results suggest that social species require a greater investment in communication than their solitary counterparts and that species that have reverted from eusociality to solitary living have repeatedly reduced investment in these potentially costly sensory perception systems.
Collapse
Affiliation(s)
- Bernadette Wittwer
- School of BioSciences, University of Melbourne, Parkville, Melbourne, VIC 3010, Australia
| | - Abraham Hefetz
- Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 6997801, Israel
| | - Tovit Simon
- Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 6997801, Israel
| | - Li E K Murphy
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138
| | - Mark A Elgar
- School of BioSciences, University of Melbourne, Parkville, Melbourne, VIC 3010, Australia
| | - Naomi E Pierce
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138
| | - Sarah D Kocher
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138;
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540
| |
Collapse
|
26
|
Couto A, Mitra A, Thiéry D, Marion-Poll F, Sandoz JC. Hornets Have It: A Conserved Olfactory Subsystem for Social Recognition in Hymenoptera? Front Neuroanat 2017; 11:48. [PMID: 28659767 PMCID: PMC5469875 DOI: 10.3389/fnana.2017.00048] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 05/26/2017] [Indexed: 01/06/2023] Open
Abstract
Eusocial Hymenoptera colonies are characterized by the presence of altruistic individuals, which rear their siblings instead of their own offspring. In the course of evolution, such sterile castes are thought to have emerged through the process of kin selection, altruistic traits being transmitted to following generation if they benefit relatives. By allowing kinship recognition, the detection of cuticular hydrocarbons (CHCs) might be instrumental for kin selection. In carpenter ants, a female-specific olfactory subsystem processes CHC information through antennal detection by basiconic sensilla. It is still unclear if other families of eusocial Hymenoptera use the same subsystem for sensing CHCs. Here, we examined the existence of such a subsystem in Vespidae (using the hornet Vespa velutina), a family in which eusociality emerged independently of ants. The antennae of both males and female hornets contain large basiconic sensilla. Sensory neurons from the large basiconic sensilla exclusively project to a conspicuous cluster of small glomeruli in the antennal lobe, with anatomical and immunoreactive features that are strikingly similar to those of the ant CHC-sensitive subsystem. Extracellular electrophysiological recordings further show that sensory neurons within hornet basiconic sensilla preferentially respond to CHCs. Although this subsystem is not female-specific in hornets, the observed similarities with the olfactory system of ants are striking. They suggest that the basiconic sensilla subsystem could be an ancestral trait, which may have played a key role in the advent of eusociality in these hymenopteran families by allowing kin recognition and the production of altruistic behaviors toward relatives.
Collapse
Affiliation(s)
- Antoine Couto
- Evolution Genomes Behavior and Ecology, Centre National de la Recherche Scientifique, Univ Paris-Sud, IRD, Université Paris SaclayGif-sur-Yvette, France
| | - Aniruddha Mitra
- Evolution Genomes Behavior and Ecology, Centre National de la Recherche Scientifique, Univ Paris-Sud, IRD, Université Paris SaclayGif-sur-Yvette, France
| | - Denis Thiéry
- UMR 1065 Santé et Agroécologie du Vignoble, INRA, Université de Bordeaux, ISVVVillenave d'Ornon, France
| | - Frédéric Marion-Poll
- Evolution Genomes Behavior and Ecology, Centre National de la Recherche Scientifique, Univ Paris-Sud, IRD, Université Paris SaclayGif-sur-Yvette, France
| | - Jean-Christophe Sandoz
- Evolution Genomes Behavior and Ecology, Centre National de la Recherche Scientifique, Univ Paris-Sud, IRD, Université Paris SaclayGif-sur-Yvette, France
| |
Collapse
|
27
|
Ernst UR, Cardoen D, Cornette V, Ratnieks FL, de Graaf DC, Schoofs L, Verleyen P, Wenseleers T. Individual and genetic task specialization in policing behaviour in the European honeybee. Anim Behav 2017. [DOI: 10.1016/j.anbehav.2017.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Oliveira RC, Vollet-Neto A, Akemi Oi C, van Zweden JS, Nascimento F, Sullivan Brent C, Wenseleers T. Hormonal pleiotropy helps maintain queen signal honesty in a highly eusocial wasp. Sci Rep 2017; 7:1654. [PMID: 28490760 PMCID: PMC5431770 DOI: 10.1038/s41598-017-01794-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 04/10/2017] [Indexed: 01/17/2023] Open
Abstract
In insect societies, both queens and workers produce chemicals that reliably signal caste membership and reproductive status. The mechanisms that help to maintain the honesty of such queen and fertility signals, however, remain poorly studied. Here we test if queen signal honesty could be based on the shared endocrine control of queen fertility and the production of specific signals. In support of this “hormonal pleiotropy” hypothesis, we find that in the common wasp, application of methoprene (a juveline hormone analogue) caused workers to acquire a queen-like cuticular hydrocarbon profile, resulting in the overproduction of known queen pheromones as well as some compounds typically linked to worker fertility. By contrast, administration of precocene-I (a JH inhibitor) had a tendency to have the opposite effect. Furthermore, a clear gonadotropic effect of JH in queens was suggested by the fact that circulating levels of JH were ca. 2 orders of magnitude higher in queens than those in workers and virgin, non-egg-laying queens, even if methoprene or precocene treatment did not affect the ovary development of workers. Overall, these results suggest that queen signal honesty in this system is maintained by queen fertility and queen signal production being under shared endocrine control.
Collapse
Affiliation(s)
- Ricardo Caliari Oliveira
- Laboratory of Socioecology and Social Evolution, Zoological Institute, KU Leuven, Leuven, Belgium.
| | - Ayrton Vollet-Neto
- Laboratory of Socioecology and Social Evolution, Zoological Institute, KU Leuven, Leuven, Belgium.,Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Cintia Akemi Oi
- Laboratory of Socioecology and Social Evolution, Zoological Institute, KU Leuven, Leuven, Belgium
| | - Jelle S van Zweden
- Laboratory of Socioecology and Social Evolution, Zoological Institute, KU Leuven, Leuven, Belgium
| | - Fabio Nascimento
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Tom Wenseleers
- Laboratory of Socioecology and Social Evolution, Zoological Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
29
|
Vollet-Neto A, Oliveira RC, Schillewaert S, Alves DA, Wenseleers T, Nascimento FS, Imperatriz-Fonseca VL, Ratnieks FLW. Diploid Male Production Results in Queen Death in the Stingless Bee Scaptotrigona depilis. J Chem Ecol 2017; 43:403-410. [PMID: 28386801 DOI: 10.1007/s10886-017-0839-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 02/06/2017] [Accepted: 03/24/2017] [Indexed: 11/25/2022]
Abstract
As in most Hymenoptera, the eusocial stingless bees (Meliponini) have a complementary sex determination (CSD) system. When a queen makes a "matched mating" with a male that shares a CSD allele with her, half of their diploid offspring are diploid males rather than females. Matched mating imposes a cost, since diploid male production reduces the colony workforce. Hence, adaptations preventing the occurrence or attenuating its effects are likely to arise. Here we provide clear evidence that in the stingless bee Scaptotrigona depilis, the emergence of diploid males induces queen death, and this usually occurs within 10-20 days of the emergence of diploid male offspring from their pupae. Queens that have not made a matched mating die when introduced into a colony in which diploid males are emerging. This shows that the adult diploid males, and not the queen that has made a matched mating herself, are the proximate cause of queen death. Analysis of the cuticular hydrocarbon profiles of adult haploid and diploid males shows six compounds with significant differences. Moreover, the diploid and haploid males only acquire distinct cuticular hydrocarbon profiles 10 days after emergence. Our data shows that the timing of queen death occurs when the cuticular hydrocarbons of haploid and diploid males differ significantly, suggesting that these chemical differences could be used as cues or signals to trigger queen death.
Collapse
Affiliation(s)
- Ayrton Vollet-Neto
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, SP, Brazil.
| | - Ricardo C Oliveira
- Laboratory of Socioecology and Social Evolution, Zoological Institute, KU Leuven, Leuven, Belgium
| | - Sharon Schillewaert
- Laboratory of Socioecology and Social Evolution, Zoological Institute, KU Leuven, Leuven, Belgium
| | - Denise A Alves
- Departamento de Entomologia e Acarologia, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Tom Wenseleers
- Laboratory of Socioecology and Social Evolution, Zoological Institute, KU Leuven, Leuven, Belgium
| | - Fabio S Nascimento
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Vera L Imperatriz-Fonseca
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, SP, Brazil
- Instituto Tecnológico Vale, Belém, PA, Brazil
| | - Francis L W Ratnieks
- Laboratory of Apiculture & Social Insects (LASI), School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| |
Collapse
|
30
|
Lopez-Osorio F, Pickett KM, Carpenter JM, Ballif BA, Agnarsson I. Phylogenomic analysis of yellowjackets and hornets (Hymenoptera: Vespidae, Vespinae). Mol Phylogenet Evol 2017; 107:10-15. [DOI: 10.1016/j.ympev.2016.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/24/2016] [Accepted: 10/10/2016] [Indexed: 11/28/2022]
|
31
|
Wang Q, Goodger JQD, Woodrow IE, Elgar MA. Location-specific cuticular hydrocarbon signals in a social insect. Proc Biol Sci 2016; 283:20160310. [PMID: 27030418 DOI: 10.1098/rspb.2016.0310] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 03/04/2016] [Indexed: 12/16/2022] Open
Abstract
Social insects use cuticular hydrocarbons (CHCs) to convey different social signals, including colony or nest identity. Despite extensive investigations, the exact source and identity of CHCs that act as nest-specific identification signals remain largely unknown. Perhaps this is because studies that identify CHC signals typically use organic solvents to extract a single sample from the entire animal, thereby analysing a cocktail of chemicals that may serve several signal functions. We took a novel approach by first identifying CHC profiles from different body parts of ants (Iridomyrmex purpureus), then used behavioural bioassays to reveal the location of specific social signals. The CHC profiles of both workers and alates varied between different body parts, and workers paid more attention to the antennae of non-nest-mate and the legs of nest-mate workers. Workers responded less aggressively to non-nest-mate workers if the CHCs on the antennae of their opponents were removed with a solvent. These data indicate that CHCs located on the antennae reveal nest-mate identity and, remarkably, that antennae both convey and receive social signals. Our approach and findings could be valuably applied to chemical signalling in other behavioural contexts, and provide insights that were otherwise obscured by including chemicals that either have no signal function or may be used in other contexts.
Collapse
Affiliation(s)
- Qike Wang
- School of BioSciences, University of Melbourne, Victoria 3010, Australia
| | - Jason Q D Goodger
- School of BioSciences, University of Melbourne, Victoria 3010, Australia
| | - Ian E Woodrow
- School of BioSciences, University of Melbourne, Victoria 3010, Australia
| | - Mark A Elgar
- School of BioSciences, University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
32
|
Conservation of Queen Pheromones Across Two Species of Vespine Wasps. J Chem Ecol 2016; 42:1175-1180. [PMID: 27722875 DOI: 10.1007/s10886-016-0777-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 08/21/2016] [Accepted: 09/19/2016] [Indexed: 02/05/2023]
Abstract
Social insects are known for their reproductive division of labor between queens and workers, whereby queens lay the majority of the colony's eggs, and workers engage mostly in non-reproductive tasks. Queens produce pheromones that signal their presence and fertility to workers, which in turn generally remain sterile. Recently, it has been discovered that specific queen-characteristic cuticular hydrocarbons (CHCs) function as queen pheromones across multiple lineages of social insects. In the common wasp, Vespula vulgaris, several long-chain linear alkanes and 3-methylalkanes were shown to act as queen signals. Here, we describe similar bioassays with a related species of highly eusocial vespine wasp, the Saxon wasp, Dolichovespula saxonica. We show that a blend of queen-characteristic hydrocarbons that are structurally related to those of the common wasp inhibit worker reproduction, suggesting conservation of queen pheromones across social wasps. Overall, our results highlight the central importance of CHCs in chemical communication among social insects in general, and as conserved queen pheromones in these social wasps in particular.
Collapse
|
33
|
Couto A, Lapeyre B, Thiéry D, Sandoz JC. Olfactory pathway of the hornet Vespa velutina
: New insights into the evolution of the hymenopteran antennal lobe. J Comp Neurol 2016; 524:2335-59. [DOI: 10.1002/cne.23975] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/20/2016] [Accepted: 01/29/2016] [Indexed: 01/16/2023]
Affiliation(s)
- Antoine Couto
- Laboratory Evolution Genome Behavior and Ecology, CNRS, Université Paris-Sud, IRD, Université Paris Saclay; F-91198 Gif-sur-Yvette France
| | - Benoit Lapeyre
- Laboratory Evolution Genome Behavior and Ecology, CNRS, Université Paris-Sud, IRD, Université Paris Saclay; F-91198 Gif-sur-Yvette France
| | - Denis Thiéry
- UMR 1065 Santé et Agroécologie du Vignoble, INRA; F-33883 Villenave d'Ornon France
- Université de Bordeaux, ISVV, UMR 1065 Santé et Agroécologie du Vignoble, Bordeaux Sciences Agro; F-33883 Villenave d'Ornon France
| | - Jean-Christophe Sandoz
- Laboratory Evolution Genome Behavior and Ecology, CNRS, Université Paris-Sud, IRD, Université Paris Saclay; F-91198 Gif-sur-Yvette France
| |
Collapse
|
34
|
Oliveira RC, Oi CA, Vollet-Neto A, Wenseleers T. Intraspecific worker parasitism in the common wasp, Vespula vulgaris. Anim Behav 2016. [DOI: 10.1016/j.anbehav.2015.12.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
35
|
Grüter C, Keller L. Inter-caste communication in social insects. Curr Opin Neurobiol 2016; 38:6-11. [PMID: 26803006 DOI: 10.1016/j.conb.2016.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/04/2016] [Accepted: 01/04/2016] [Indexed: 01/02/2023]
Abstract
Social insect colonies function as highly integrated units despite consisting of many individuals. This requires the different functional parts of the colony (e.g. different castes) to exchange information that aid in colony functioning and ontogeny. Here we discuss inter-caste communication in three contexts, firstly, the communication between males and females during courtship, secondly, the communication between queens and workers that regulate reproduction and thirdly, the communication between worker castes that allows colonies to balance the number of different worker types. Some signals show surprising complexity in both their chemistry and function, whereas others are simple compounds that were probably already used as pheromones in the solitary ancestors of several social insect lineages.
Collapse
Affiliation(s)
- Christoph Grüter
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015 Lausanne, Switzerland.
| | - Laurent Keller
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
36
|
Caliari Oliveira R, Oi CA, do Nascimento MMC, Vollet-Neto A, Alves DA, Campos MC, Nascimento F, Wenseleers T. The origin and evolution of queen and fertility signals in Corbiculate bees. BMC Evol Biol 2015; 15:254. [PMID: 26573687 PMCID: PMC4647589 DOI: 10.1186/s12862-015-0509-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 10/12/2015] [Indexed: 12/13/2022] Open
Abstract
Background In social Hymenoptera (ants, bees and wasps), various chemical compounds present on the cuticle have been shown to act as fertility signals. In addition, specific queen-characteristic hydrocarbons have been implicated as sterility-inducing queen signals in ants, wasps and bumblebees. In Corbiculate bees, however, the chemical nature of queen-characteristic and fertility-linked compounds appears to be more diverse than in ants and wasps. Moreover, it remains unknown how queen signals evolved across this group and how they might have been co-opted from fertility signals in solitary ancestors. Results Here, we perform a phylogenetic analysis of fertility-linked compounds across 16 species of solitary and eusocial bee species, comprising both literature data as well as new primary data from a key solitary outgroup species, the oil-collecting bee Centris analis, and the highly eusocial stingless bee Scaptotrigona depilis. Our results demonstrate the presence of fertility-linked compounds belonging to 12 different chemical classes. In addition, we find that some classes of compounds (linear and branched alkanes, alkenes, esters and fatty acids) were already present as fertility-linked signals in the solitary ancestors of Corbiculate bees, while others appear to be specific to certain species. Conclusion Overall, our results suggest that queen signals in Corbiculate bees are likely derived from ancestral fertility-linked compounds present in solitary bees that lacked reproductive castes. These original fertility-linked cues or signals could have been produced either as a by-product of ovarian activation or could have served other communicative purposes, such as in mate recognition or the regulation of egg-laying. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0509-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ricardo Caliari Oliveira
- Department of Biology, Laboratory of Socioecology & Social Evolution, KU Leuven, Leuven, Belgium.
| | - Cintia Akemi Oi
- Department of Biology, Laboratory of Socioecology & Social Evolution, KU Leuven, Leuven, Belgium.
| | | | - Ayrton Vollet-Neto
- Department of Biology, Laboratory of Behavioral Ecology, FFCLRP, University of São Paulo, Ribeirão Preto, Brazil.
| | - Denise Araujo Alves
- Department of Entomology and Acarology, ESALQ, University of São Paulo, Piracicaba, Brazil.
| | - Maria Claudia Campos
- Department of Biology, Laboratory of Behavioral Ecology, FFCLRP, University of São Paulo, Ribeirão Preto, Brazil.
| | - Fabio Nascimento
- Department of Biology, Laboratory of Behavioral Ecology, FFCLRP, University of São Paulo, Ribeirão Preto, Brazil.
| | - Tom Wenseleers
- Department of Biology, Laboratory of Socioecology & Social Evolution, KU Leuven, Leuven, Belgium.
| |
Collapse
|
37
|
Elgar MA. Integrating insights across diverse taxa: challenges for understanding social evolution. Front Ecol Evol 2015. [DOI: 10.3389/fevo.2015.00124] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
38
|
Oldroyd B. Evolution: A Royal Seal for Wasp Eggs. Curr Biol 2015; 25:R492-4. [DOI: 10.1016/j.cub.2015.04.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
39
|
Oi CA, van Zweden JS, Oliveira RC, Van Oystaeyen A, Nascimento FS, Wenseleers T. The origin and evolution of social insect queen pheromones: Novel hypotheses and outstanding problems. Bioessays 2015; 37:808-21. [PMID: 25916998 DOI: 10.1002/bies.201400180] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Queen pheromones, which signal the presence of a fertile queen and induce daughter workers to remain sterile, are considered to play a key role in regulating the reproductive division of labor of insect societies. Although queen pheromones were long thought to be highly taxon-specific, recent studies have shown that structurally related long-chain hydrocarbons act as conserved queen signals across several independently evolved lineages of social insects. These results imply that social insect queen pheromones are very ancient and likely derived from an ancestral signalling system that was already present in their common solitary ancestors. Based on these new insights, we here review the literature and speculate on what signal precursors social insect queen pheromones may have evolved from. Furthermore, we provide compelling evidence that these pheromones should best be seen as honest signals of fertility as opposed to suppressive agents that chemically sterilize the workers against their own best interests.
Collapse
Affiliation(s)
- Cintia A Oi
- Department of Biology, Laboratory of Socioecology & Social Evolution, University of Leuven, Leuven, Belgium
| | - Jelle S van Zweden
- Department of Biology, Laboratory of Socioecology & Social Evolution, University of Leuven, Leuven, Belgium
| | - Ricardo C Oliveira
- Department of Biology, Laboratory of Socioecology & Social Evolution, University of Leuven, Leuven, Belgium
| | - Annette Van Oystaeyen
- Department of Biology, Laboratory of Socioecology & Social Evolution, University of Leuven, Leuven, Belgium
| | - Fabio S Nascimento
- Departamento de Biologia da Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Brazil
| | - Tom Wenseleers
- Department of Biology, Laboratory of Socioecology & Social Evolution, University of Leuven, Leuven, Belgium
| |
Collapse
|