1
|
Tang C, Tamura-Nakano M, Kobayakawa K, Ozawa T, Onojima T, Kajitani R, Itoh T, Tachibana K. A single gene determines allorecognition in hydrozoan jellyfish Cladonema radiatum inbred lines. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:1002-1020. [PMID: 38973306 DOI: 10.1002/jez.2853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/10/2024] [Accepted: 06/24/2024] [Indexed: 07/09/2024]
Abstract
Allorecognition-the ability of an organism to discriminate between self and nonself-is crucial to colonial marine animals to avoid invasion by other individuals in the same habitat. The cnidarian hydroid Hydractinia has long been a major research model in studying invertebrate allorecognition, establishing a rich knowledge foundation. In this study, we introduce a new cnidarian model Cladonema radiatum (C. radiatum). C. radiatum is a hydroid jellyfish which also forms polyp colonies interconnected with stolons. Allorecognition responses-fusion or regression of stolons-are observed when stolons encounter each other. By transmission electron microscopy, we observe rapid tissue remodeling contributing to gastrovascular system connection in fusion. Meanwhile, rejection responses are regulated by reconstruction of the chitinous exoskeleton perisarc, and induction of necrotic and autophagic cellular responses at cells in contact with the opponent. Genetic analysis identifies allorecognition genes: six Alr genes located on the putative allorecognition complex and four immunoglobulin superfamily genes on a separate genome region. C. radiatum allorecognition genes show notable conservation with the Hydractinia Alr family. Remarkedly, stolon encounter assays of inbred lines reveal that genotypes of Alr1 solely determine allorecognition outcomes in C. radiatum.
Collapse
Affiliation(s)
- Crystal Tang
- Laboratory of Chronobiology, School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Miwa Tamura-Nakano
- Research Institute National Center for Global Health and Medicine, Tokyo, Japan
| | - Kenta Kobayakawa
- Laboratory of Chronobiology, School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Takuto Ozawa
- Laboratory of Chronobiology, School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Takao Onojima
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-Ku, Tokyo, Japan
| | - Rei Kajitani
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-Ku, Tokyo, Japan
| | - Takehiko Itoh
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-Ku, Tokyo, Japan
| | - Kazunori Tachibana
- Laboratory of Chronobiology, School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
2
|
Gahan JM, Cartwright P, Nicotra ML, Schnitzler CE, Steinmetz PRH, Juliano CE. Cnidofest 2022: hot topics in cnidarian research. EvoDevo 2023; 14:13. [PMID: 37620964 PMCID: PMC10463417 DOI: 10.1186/s13227-023-00217-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023] Open
Abstract
The second annual Cnidarian Model Systems Meeting, aka "Cnidofest", took place in Davis, California from 7 to 10th of September, 2022. The meeting brought together scientists using cnidarians to study molecular and cellular biology, development and regeneration, evo-devo, neurobiology, symbiosis, physiology, and comparative genomics. The diversity of topics and species represented in presentations highlighted the importance and versatility of cnidarians in addressing a wide variety of biological questions. In keeping with the spirit of the first meeting (and its predecessor, Hydroidfest), almost 75% of oral presentations were given by early career researchers (i.e., graduate students and postdocs). In this review, we present research highlights from the meeting.
Collapse
Affiliation(s)
- James M Gahan
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
- Michael Sars Centre, University of Bergen, Thormøhlensgt. 55, 5008, Bergen, Norway
| | - Paulyn Cartwright
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, 66045, USA
| | - Matthew L Nicotra
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Christine E Schnitzler
- Whitney Laboratory for Marine Bioscience and Department of Biology, University of Florida, St. Augustine, FL, 32080, USA
| | | | - Celina E Juliano
- Department of Molecular and Cellular Biology, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
3
|
Taguchi M, Minakata K, Tame A, Furukawa R. Establishment of the immunological self in juvenile Patiria pectinifera post-metamorphosis. Front Immunol 2022; 13:1056027. [PMID: 36561757 PMCID: PMC9763293 DOI: 10.3389/fimmu.2022.1056027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Ontogeny of the immune system is a fundamental immunology issue. One indicator of immune system maturation is the establishment of the immunological self, which describes the ability of the immune system to distinguish allogeneic individuals (allorecognition ability). However, the timing of immune system maturation during invertebrate ontogeny is poorly understood. In the sea star Patiria pectinifera, cells that have dissociated from the embryos and larvae are able to reconstruct larvae. This reconstruction phenomenon is possible because of a lack of allorecognition capability in the larval immune system, which facilitates the formation of an allogeneic chimera. In this study, we revealed that the adult immune cells of P. pectinifera (coelomocytes) have allorecognition ability. Based on a hypothesis that allorecognition ability is acquired before and after metamorphosis, we conducted detailed morphological observations and survival time analysis of metamorphosis-induced chimeric larvae. The results showed that all allogeneic chimeras died within approximately two weeks to one month of reaching the juvenile stage. In these chimeras, the majority of the epidermal cell layer was lost and the mesenchymal region expanded, but cell death appeared enhanced in the digestive tract. These results indicate that the immunological self of P. pectinifera is established post-metamorphosis during the juvenile stage. This is the first study to identify the timing of immune system maturation during echinodermal ontogenesis. As well as establishing P. pectinifera as an excellent model for studies on self- and non-self-recognition, this study enhances our understanding of the ontogeny of the immune system in invertebrates.
Collapse
Affiliation(s)
- Mizuki Taguchi
- Department of Biology, Research and Education Center for Natural Sciences, Keio University, Yokohama, Japan
| | - Kota Minakata
- Department of Biosciences and Informatics, Keio University, Yokohama, Japan
| | - Akihiro Tame
- Department of Marine and Earth Sciences, Marine Works Japan Ltd., Yokosuka, Japan
| | - Ryohei Furukawa
- Department of Biology, Research and Education Center for Natural Sciences, Keio University, Yokohama, Japan
| |
Collapse
|
4
|
A family of unusual immunoglobulin superfamily genes in an invertebrate histocompatibility complex. Proc Natl Acad Sci U S A 2022; 119:e2207374119. [PMID: 36161920 PMCID: PMC9546547 DOI: 10.1073/pnas.2207374119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Most colonial marine invertebrates are capable of allorecognition, the ability to distinguish between themselves and conspecifics. One long-standing question is whether invertebrate allorecognition genes are homologous to vertebrate histocompatibility genes. In the cnidarian Hydractinia symbiolongicarpus, allorecognition is controlled by at least two genes, Allorecognition 1 (Alr1) and Allorecognition 2 (Alr2), which encode highly polymorphic cell-surface proteins that serve as markers of self. Here, we show that Alr1 and Alr2 are part of a family of 41 Alr genes, all of which reside in a single genomic interval called the Allorecognition Complex (ARC). Using sensitive homology searches and highly accurate structural predictions, we demonstrate that the Alr proteins are members of the immunoglobulin superfamily (IgSF) with V-set and I-set Ig domains unlike any previously identified in animals. Specifically, their primary amino acid sequences lack many of the motifs considered diagnostic for V-set and I-set domains, yet they adopt secondary and tertiary structures nearly identical to canonical Ig domains. Thus, the V-set domain, which played a central role in the evolution of vertebrate adaptive immunity, was present in the last common ancestor of cnidarians and bilaterians. Unexpectedly, several Alr proteins also have immunoreceptor tyrosine-based activation motifs and immunoreceptor tyrosine-based inhibitory motifs in their cytoplasmic tails, suggesting they could participate in pathways homologous to those that regulate immunity in humans and flies. This work expands our definition of the IgSF with the addition of a family of unusual members, several of which play a role in invertebrate histocompatibility.
Collapse
|
5
|
Rodriguez-Valbuena H, Gonzalez-Muñoz A, Cadavid LF. Multiple Alr genes exhibit allorecognition-associated variation in the colonial cnidarian Hydractinia. Immunogenetics 2022; 74:559-581. [PMID: 35761101 DOI: 10.1007/s00251-022-01268-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 06/19/2022] [Indexed: 11/25/2022]
Abstract
The genetics of allorecognition has been studied extensively in inbred lines of Hydractinia symbiolongicarpus, in which genetic control is attributed mainly to the highly polymorphic loci allorecognition 1 (Alr1) and allorecognition 2 (Alr2), located within the Allorecognition Complex (ARC). While allelic variation at Alr1 and Alr2 can predict the phenotypes in inbred lines, these two loci do not entirely predict the allorecognition phenotypes in wild-type colonies and their progeny, suggesting the presence of additional uncharacterized genes that are involved in the regulation of allorecognition in this species. Comparative genomics analyses were used to identify coding sequence differences from assembled chromosomal intervals of the ARC and from genomic scaffold sequences between two incompatible H. symbiolongicarpus siblings from a backcross population. New immunoglobulin superfamily (Igsf) genes are reported for the ARC, where five of these genes are closely related to the Alr1 and Alr2 genes, suggesting the presence of multiple Alr-like genes within this complex. Complementary DNA sequence evidence revealed that the allelic polymorphism of eight Igsf genes is associated with allorecognition phenotypes in a backcross population of H. symbiolongicarpus, yet that association was not found between parental colonies and their offspring. Alternative splicing was found as a mechanism that contributes to the variability of these genes by changing putative activating receptors to inhibitory receptors or generating secreted isoforms of allorecognition proteins. Our findings demonstrate that allorecognition in H. symbiolongicarpus is a multigenic phenomenon controlled by genetic variation in at least eight genes in the ARC complex.
Collapse
Affiliation(s)
- Henry Rodriguez-Valbuena
- Instituto de Genética, Universidad Nacional de Colombia, Bogotá, Colombia.
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA.
| | - Andrea Gonzalez-Muñoz
- Instituto de Genética, Universidad Nacional de Colombia, Bogotá, Colombia
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Luis F Cadavid
- Instituto de Genética, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
6
|
Chrysostomou E, Febrimarsa, DuBuc T, Frank U. Gene Manipulation in Hydractinia. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2450:419-436. [PMID: 35359321 DOI: 10.1007/978-1-0716-2172-1_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The ability to regenerate lost body parts is irregularly distributed among animals, with substantial differences in regenerative potential between and within metazoan phyla. It is widely believed that regenerative animal clades inherited some aspects of their capacity to regenerate from their common ancestors but have also evolved new mechanisms that are not shared with other regenerative animals. Therefore, to gain a broad understanding of animal regenerative mechanisms and evolution, a broad sampling approach is necessary. Unfortunately, only few regenerative animals have been established as laboratory models with protocols for functional gene studies. Here, we describe the methods to establish transgenic individuals of the marine cnidarian Hydractinia. We also provide methods for transient gene expression manipulation without modifying the genome of the animals.
Collapse
Affiliation(s)
- Eleni Chrysostomou
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Febrimarsa
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Timothy DuBuc
- Biology Department, Swarthmore College, Swarthmore, PA, USA
| | - Uri Frank
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
7
|
Buckley KM, Dooley H. Immunological Diversity Is a Cornerstone of Organismal Defense and Allorecognition across Metazoa. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:203-211. [PMID: 35017209 DOI: 10.4049/jimmunol.2100754] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/16/2021] [Indexed: 01/09/2023]
Abstract
The ongoing arms race between hosts and microbes has fueled the evolution of novel strategies for diversifying the molecules involved in immune responses. Characterization of immune systems from an ever-broadening phylogenetic range of organisms reveals that there are many mechanisms by which this diversity can be generated and maintained. Diversification strategies operate at the level of populations, genomes, genes, and even individual transcripts. Lineage-specific innovations have been cataloged within the immune systems of both invertebrates and vertebrates. Furthermore, somatic diversification of immune receptor genes has now been described in jawless vertebrates and some invertebrate species. In addition to pathogen detection, immunological diversity plays important roles in several distinct allorecognition systems. In this Brief Review, we highlight some of the evolutionary innovations employed by a variety of metazoan species to generate the molecular diversity required to detect a vast array of molecules in the context of both immune response and self/nonself-recognition.
Collapse
Affiliation(s)
| | - Helen Dooley
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Institute of Marine & Environmental Technology, Baltimore, MD
| |
Collapse
|
8
|
Huene AL, Nicotra ML. Cell Aggregation Assays for Homophilic Interactions Between Cell Surface Proteins. Methods Mol Biol 2022; 2421:91-102. [PMID: 34870813 DOI: 10.1007/978-1-0716-1944-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Many proteins expressed on the cellular surface provide signaling and cell adhesion properties required for vital cellular functions. These binding interactions can occur between different but complementary proteins such as a ligand and receptor, or between the same protein acting as both ligand and receptor. The cell aggregation assay is a straightforward technique to identify homophilic interactions from such proteins. Here we describe the procedure for testing proteins via cell aggregation assays in HEK293T cells.
Collapse
Affiliation(s)
- Aidan L Huene
- Department of Surgery and Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matthew L Nicotra
- Departments of Surgery and Immunology, Thomas E. Starzl Transplantation Institute, and Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
9
|
Buckley KM. Bioinformatics Approaches for Analyzing Multigene Families Encoding Immune Receptors. Methods Mol Biol 2022; 2421:151-169. [PMID: 34870818 DOI: 10.1007/978-1-0716-1944-5_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Genome sequences are quickly becoming available from a variety of organisms, providing researchers with an abundance of previously inaccessible information and an important source of insight into immune mechanisms. There are a variety of methods to accurately characterize genes from new genome sequences, but immune receptors pose special challenges for these techniques. Immune receptors, particularly those that directly recognize pathogens, often diverge rapidly among species and are commonly found in large, complex multigene families. Because of these characteristics, immune receptors tend to be overlooked or misannotated in large-scale genomic surveys. We describe here a strategy to characterize homologs of immune receptors and to identify putative receptors from newly assembled genome or transcriptome sequences. The description of these protocols is aimed at a typical immunologist and does not rely on substantial a priori knowledge of bioinformatics. The approach is based on using low-stringency sequence searches to identify divergent homologs. For receptors with multiple domains, the intersection of low-stringency searches can be used to identify divergent receptor sequences with high confidence. For multigene families, these predictions can be refined using sequence conservation among gene family paralogs. Assembled genome sequences serve as a critical foundation for subsequent functional characterization and remove long-standing barriers in understanding the evolution of immune recognition systems.
Collapse
|
10
|
Nicotra ML. The Hydractinia allorecognition system. Immunogenetics 2021; 74:27-34. [PMID: 34773127 DOI: 10.1007/s00251-021-01233-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/08/2021] [Indexed: 10/19/2022]
Abstract
Hydractinia symbiolongicarpus is a colonial hydroid and a long-standing model system for the study of invertebrate allorecognition. The Hydractinia allorecognition system allows colonies to discriminate between their own tissues and those of unrelated conspecifics that co-occur with them on the same substrate. This recognition mediates spatial competition and mitigates the risk of stem cell parasitism. Here, I review how we have come to our current understanding of the molecular basis of allorecognition in Hydractinia. To date, two allodeterminants have been identified, called Allorecognition 1 (Alr1) and Allorecognition 2 (Alr2), which occupy a genomic region called the allorecognition complex (ARC). Both genes encode highly polymorphic cell surface proteins that are capable of homophilic binding, which is thought to be the mechanism of self/non-self discrimination. Here, I review how we have come to our current understanding of Alr1 and Alr2. Although both are members of the immunoglobulin superfamily, their evolutionary origins remain unknown. Moreover, existing data suggest that the ARC may be home to a family of Alr-like genes, and I speculate on their potential functions.
Collapse
Affiliation(s)
- Matthew L Nicotra
- Departments of Surgery and Immunology, Center for Evolutionary Biology and Medicine, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
11
|
Huene AL, Chen T, Nicotra ML. New binding specificities evolve via point mutation in an invertebrate allorecognition gene. iScience 2021; 24:102811. [PMID: 34296075 PMCID: PMC8282982 DOI: 10.1016/j.isci.2021.102811] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 06/16/2021] [Accepted: 06/28/2021] [Indexed: 01/04/2023] Open
Abstract
Many organisms use genetic self-recognition systems to distinguish themselves from conspecifics. In the cnidarian, Hydractinia symbiolongicarpus, self-recognition is partially controlled by allorecognition 2 (Alr2). Alr2 encodes a highly polymorphic transmembrane protein that discriminates self from nonself by binding in trans to other Alr2 proteins with identical or similar sequences. Here, we focused on the N-terminal domain of Alr2, which can determine its binding specificity. We pair ancestral sequence reconstruction and experimental assays to show that amino acid substitutions can create sequences with novel binding specificities either directly (via one mutation) or via sequential mutations and intermediates with relaxed specificities. We also show that one side of the domain has experienced positive selection and likely forms the binding interface. Our results provide direct evidence that point mutations can generate Alr2 proteins with novel binding specificities. This provides a plausible mechanism for the generation and maintenance of functional variation in nature.
Collapse
Affiliation(s)
- Aidan L. Huene
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Traci Chen
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Matthew L. Nicotra
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
12
|
Parisi MG, Parrinello D, Stabili L, Cammarata M. Cnidarian Immunity and the Repertoire of Defense Mechanisms in Anthozoans. BIOLOGY 2020; 9:E283. [PMID: 32932829 PMCID: PMC7563517 DOI: 10.3390/biology9090283] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/04/2020] [Accepted: 09/04/2020] [Indexed: 02/07/2023]
Abstract
Anthozoa is the most specious class of the phylum Cnidaria that is phylogenetically basal within the Metazoa. It is an interesting group for studying the evolution of mutualisms and immunity, for despite their morphological simplicity, Anthozoans are unexpectedly immunologically complex, with large genomes and gene families similar to those of the Bilateria. Evidence indicates that the Anthozoan innate immune system is not only involved in the disruption of harmful microorganisms, but is also crucial in structuring tissue-associated microbial communities that are essential components of the cnidarian holobiont and useful to the animal's health for several functions including metabolism, immune defense, development, and behavior. Here, we report on the current state of the art of Anthozoan immunity. Like other invertebrates, Anthozoans possess immune mechanisms based on self/non-self-recognition. Although lacking adaptive immunity, they use a diverse repertoire of immune receptor signaling pathways (PRRs) to recognize a broad array of conserved microorganism-associated molecular patterns (MAMP). The intracellular signaling cascades lead to gene transcription up to endpoints of release of molecules that kill the pathogens, defend the self by maintaining homeostasis, and modulate the wound repair process. The cells play a fundamental role in immunity, as they display phagocytic activities and secrete mucus, which acts as a physicochemical barrier preventing or slowing down the proliferation of potential invaders. Finally, we describe the current state of knowledge of some immune effectors in Anthozoan species, including the potential role of toxins and the inflammatory response in the Mediterranean Anthozoan Anemonia viridis following injection of various foreign particles differing in type and dimensions, including pathogenetic bacteria.
Collapse
Affiliation(s)
- Maria Giovanna Parisi
- Department of Earth and Marine Sciences, University of Palermo, 90128 Palermo, Italy;
| | - Daniela Parrinello
- Department of Earth and Marine Sciences, University of Palermo, 90128 Palermo, Italy;
| | - Loredana Stabili
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy;
| | - Matteo Cammarata
- Department of Earth and Marine Sciences, University of Palermo, 90128 Palermo, Italy;
| |
Collapse
|
13
|
Gonçalves AP, Heller J, Rico-Ramírez AM, Daskalov A, Rosenfield G, Glass NL. Conflict, Competition, and Cooperation Regulate Social Interactions in Filamentous Fungi. Annu Rev Microbiol 2020; 74:693-712. [PMID: 32689913 DOI: 10.1146/annurev-micro-012420-080905] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Social cooperation impacts the development and survival of species. In higher taxa, kin recognition occurs via visual, chemical, or tactile cues that dictate cooperative versus competitive interactions. In microbes, the outcome of cooperative versus competitive interactions is conferred by identity at allorecognition loci, so-called kind recognition. In syncytial filamentous fungi, the acquisition of multicellularity is associated with somatic cell fusion within and between colonies. However, such intraspecific cooperation entails risks, as fusion can transmit deleterious genotypes or infectious components that reduce fitness, or give rise to cheaters that can exploit communal goods without contributing to their production. Allorecognition mechanisms in syncytial fungi regulate somatic cell fusion by operating precontact during chemotropic interactions, during cell adherence, and postfusion by triggering programmed cell death reactions. Alleles at fungal allorecognition loci are highly polymorphic, fall into distinct haplogroups, and show evolutionary signatures of balancing selection, similar to allorecognition loci across the tree of life.
Collapse
Affiliation(s)
- A Pedro Gonçalves
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA.,Current Affiliation: Institute of Molecular Biology, Academia Sinica, Nangang District, Taipei 115, Taiwan
| | - Jens Heller
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA.,Current Affiliation: Perfect Day, Inc., Emeryville, California 94608, USA
| | - Adriana M Rico-Ramírez
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
| | - Asen Daskalov
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA.,Current Affiliation: Institut Européen de Chimie et Biologie, 33600 Pessac, France
| | - Gabriel Rosenfield
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA.,Current Affiliation: Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - N Louise Glass
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
14
|
Abstract
Most colonial marine invertebrates live as surface encrustations in benthic environments. As they grow, these animals frequently encounter other members of their own species. These encounters typically lead to conflict, in which the colonies aggressively compete for space, or co-existence, in which the colonies peacefully border each other. Sometimes, however, interacting colonies will engage in a form of cooperation in which they fuse together and actively share resources.
Collapse
|
15
|
Cell Communication-mediated Nonself-Recognition and -Intolerance in Representative Species of the Animal Kingdom. J Mol Evol 2020; 88:482-500. [PMID: 32572694 DOI: 10.1007/s00239-020-09955-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/07/2020] [Indexed: 12/27/2022]
Abstract
Why has histo-incompatibility arisen in evolution and can cause self-intolerance? Compatible/incompatible reactions following natural contacts between genetically-different (allogeneic) colonies of marine organisms have inspired the conception that self-nonself discrimination has developed to reduce invasion threats by migratory foreign germ/somatic stem cells, in extreme cases resulting in conquest of the whole body by a foreign genome. Two prominent model species for allogeneic discrimination are the marine invertebrates Hydractinia (Cnidaria) and Botryllus (Ascidiacea). In Hydractinia, self-nonself recognition is based on polymorphic surface markers encoded by two genes (alr1, alr2), with self recognition enabled by homophilic binding of identical ALR molecules. Variable expression patterns of alr alleles presumably account for the first paradigm of autoaggression in an invertebrate. In Botryllus, self-nonself recognition is controlled by a single polymorphic gene locus (BHF) with hundreds of codominantly expressed alleles. Fusion occurs when both partners share at least one BHF allele while rejection develops when no allele is shared. Molecules involved in allorecognition frequently contain immunoglobulin or Ig-like motifs, case-by-case supplemented by additional molecules enabling homophilic interaction, while the mechanisms applied to destroy allogeneic grafts or neighbors include taxon-specific tools besides common facilities of natural immunity. The review encompasses comparison with allorecognition in mammals based on MHC-polymorphism in transplantation and following feto-maternal cell trafficking.
Collapse
|
16
|
Frank U, Nicotra ML, Schnitzler CE. The colonial cnidarian Hydractinia. EvoDevo 2020; 11:7. [PMID: 32226598 PMCID: PMC7098123 DOI: 10.1186/s13227-020-00151-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/12/2020] [Indexed: 11/27/2022] Open
Abstract
Hydractinia, a genus of colonial marine cnidarians, has been used as a model organism for developmental biology and comparative immunology for over a century. It was this animal where stem cells and germ cells were first studied. However, protocols for efficient genetic engineering have only recently been established by a small but interactive community of researchers. The animal grows well in the lab, spawns daily, and its relatively short life cycle allows genetic studies. The availability of genomic tools and resources opens further opportunities for research using this animal. Its accessibility to experimental manipulation, growth- and cellular-plasticity, regenerative ability, and resistance to aging and cancer place Hydractinia as an emerging model for research in many biological and environmental disciplines.
Collapse
Affiliation(s)
- Uri Frank
- 1Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Matthew L Nicotra
- 2Departments of Surgery and Immunology, Center for Evolutionary Biology and Medicine, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA 15261 USA
| | - Christine E Schnitzler
- 3Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 320803 USA.,4Department of Biology, University of Florida, Gainesville, FL 32611 USA
| |
Collapse
|
17
|
Oppler ZJ, Parrish ME, Murphy HA. Variation at an adhesin locus suggests sociality in natural populations of the yeast Saccharomyces cerevisiae. Proc Biol Sci 2019; 286:20191948. [PMID: 31615361 PMCID: PMC6834051 DOI: 10.1098/rspb.2019.1948] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Microbes engage in numerous social behaviours that are critical for survival and reproduction, and that require individuals to act as a collective. Various mechanisms ensure that collectives are composed of related, cooperating cells, thus allowing for the evolution and stability of these traits, and for selection to favour traits beneficial to the collective. Since microbes are difficult to observe directly, sociality in natural populations can instead be investigated using evolutionary genetic signatures, as social loci can be evolutionary hotspots. The budding yeast has been studied for over a century, yet little is known about its social behaviour in nature. Flo11 is a highly regulated cell adhesin required for most laboratory social phenotypes; studies suggest it may function in cell recognition and its heterogeneous expression may be adaptive for collectives such as biofilms. We investigated this locus and found positive selection in the areas implicated in cell-cell interaction, suggesting selection for kin discrimination. We also found balancing selection at an upstream activation site, suggesting selection on the level of variegated gene expression. Our results suggest this model yeast is surprisingly social in natural environments and is probably engaging in various forms of sociality. By using genomic data, this research provides a glimpse of otherwise unobservable interactions.
Collapse
Affiliation(s)
- Zachary J Oppler
- Department of Biology, William & Mary, PO Box 8795, Williamsburg, VA 23187-8795, USA
| | - Meadow E Parrish
- Department of Biology, William & Mary, PO Box 8795, Williamsburg, VA 23187-8795, USA
| | - Helen A Murphy
- Department of Biology, William & Mary, PO Box 8795, Williamsburg, VA 23187-8795, USA
| |
Collapse
|
18
|
Greenbeard Genes: Theory and Reality. Trends Ecol Evol 2019; 34:1092-1103. [PMID: 31488327 DOI: 10.1016/j.tree.2019.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/29/2019] [Accepted: 08/01/2019] [Indexed: 12/12/2022]
Abstract
Greenbeard genes were proposed as a cartoonish thought experiment to explain why altruism can be a selfish strategy from the perspective of genes. The likelihood of finding a real greenbeard gene in nature was thought to be remote because they were believed to require a set of improbable properties. Yet, despite this expectation, there is an ongoing explosion in claimed discoveries of greenbeard genes. Bringing together the latest theory and experimental findings, we argue that there is a need to dispose of the cartoon presentation of a greenbeard to refocus their burgeoning empirical study on the more fundamental concept that the thought experiment was designed to illustrate.
Collapse
|
19
|
Kundert P, Shaulsky G. Cellular allorecognition and its roles in Dictyostelium development and social evolution. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2019; 63:383-393. [PMID: 31840777 PMCID: PMC6919275 DOI: 10.1387/ijdb.190239gs] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The social amoeba Dictyostelium discoideum is a tractable model organism to study cellular allorecognition, which is the ability of a cell to distinguish itself and its genetically similar relatives from more distantly related organisms. Cellular allorecognition is ubiquitous across the tree of life and affects many biological processes. Depending on the biological context, these versatile systems operate both within and between individual organisms, and both promote and constrain functional heterogeneity. Some of the most notable allorecognition systems mediate neural self-avoidance in flies and adaptive immunity in vertebrates. D. discoideum's allorecognition system shares several structures and functions with other allorecognition systems. Structurally, its key regulators reside at a single genomic locus that encodes two highly polymorphic proteins, a transmembrane ligand called TgrC1 and its receptor TgrB1. These proteins exhibit isoform-specific, heterophilic binding across cells. Functionally, this interaction determines the extent to which co-developing D. discoideum strains co-aggregate or segregate during the aggregation phase of multicellular development. The allorecognition system thus affects both development and social evolution, as available evidence suggests that the threat of developmental cheating represents a primary selective force acting on it. Other significant characteristics that may inform the study of allorecognition in general include that D. discoideum's allorecognition system is a continuous and inclusive trait, it is pleiotropic, and it is temporally regulated.
Collapse
Affiliation(s)
- Peter Kundert
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| | | |
Collapse
|
20
|
Grice LF, Gauthier ME, Roper KE, Fernàndez-Busquets X, Degnan SM, Degnan BM. Origin and Evolution of the Sponge Aggregation Factor Gene Family. Mol Biol Evol 2017; 34:1083-1099. [PMID: 28104746 PMCID: PMC5400394 DOI: 10.1093/molbev/msx058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Although discriminating self from nonself is a cardinal animal trait, metazoan allorecognition genes do not appear to be homologous. Here, we characterize the Aggregation Factor (AF) gene family, which encodes putative allorecognition factors in the demosponge Amphimedon queenslandica, and trace its evolution across 24 sponge (Porifera) species. The AF locus in Amphimedon is comprised of a cluster of five similar genes that encode Calx-beta and Von Willebrand domains and a newly defined Wreath domain, and are highly polymorphic. Further AF variance appears to be generated through individualistic patterns of RNA editing. The AF gene family varies between poriferans, with protein sequences and domains diagnostic of the AF family being present in Amphimedon and other demosponges, but absent from other sponge classes. Within the demosponges, AFs vary widely with no two species having the same AF repertoire or domain organization. The evolution of AFs suggests that their diversification occurs via high allelism, and the continual and rapid gain, loss and shuffling of domains over evolutionary time. Given the marked differences in metazoan allorecognition genes, we propose the rapid evolution of AFs in sponges provides a model for understanding the extensive diversification of self-nonself recognition systems in the animal kingdom.
Collapse
Affiliation(s)
- Laura F. Grice
- School of Biological Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Marie E.A. Gauthier
- School of Biological Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Kathrein E. Roper
- School of Biological Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Xavier Fernàndez-Busquets
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain
- Barcelona Institute for Global Health, ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
- Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Barcelona, Spain
| | - Sandie M. Degnan
- School of Biological Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Bernard M. Degnan
- School of Biological Sciences, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
21
|
Nydam ML, Stephenson EE, Waldman CE, De Tomaso AW. Balancing selection on allorecognition genes in the colonial ascidian Botryllus schlosseri. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 69:60-74. [PMID: 28024871 DOI: 10.1016/j.dci.2016.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 12/22/2016] [Accepted: 12/22/2016] [Indexed: 06/06/2023]
Abstract
Allorecognition is the capability of an organism to recognize its own or related tissues. The colonial ascidian Botryllus schlosseri, which comprises five genetically distinct and divergent species (Clades A-E), contains two adjacent genes that control allorecognition: fuhcsec and fuhctm. These genes have been characterized extensively in Clade A and are highly polymorphic. Using alleles from 10 populations across the range of Clade A, we investigated the type and strength of selection maintaining this variation. Both fuhc genes exhibit higher within-population variation and lower population differentiation measures (FST) than neutral loci. The fuhc genes contain a substantial number of codons with >95% posterior probability of dN/dS > 1. fuhcsec and fuhctm also have polymorphisms shared between Clade A and Clade E that were present prior to speciation (trans-species polymorphisms). These results provide robust evidence that the fuhc genes are evolving under balancing selection.
Collapse
Affiliation(s)
- Marie L Nydam
- Division of Science and Mathematics, Centre College, 600 W. Walnut Street, Danville, KY 40422, United States.
| | - Emily E Stephenson
- Division of Science and Mathematics, Centre College, 600 W. Walnut Street, Danville, KY 40422, United States; Centre for Infectious Disease Research, P.O. Box 34681, Lusaka, 10101, Zambia.
| | - Claire E Waldman
- Division of Science and Mathematics, Centre College, 600 W. Walnut Street, Danville, KY 40422, United States.
| | - Anthony W De Tomaso
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106, United States.
| |
Collapse
|
22
|
Self-identity reprogrammed by a single residue switch in a cell surface receptor of a social bacterium. Proc Natl Acad Sci U S A 2017; 114:3732-3737. [PMID: 28320967 DOI: 10.1073/pnas.1700315114] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The ability to recognize close kin confers survival benefits on single-celled microbes that live in complex and changing environments. Microbial kinship detection relies on perceptible cues that reflect relatedness between individuals, although the mechanisms underlying recognition in natural populations remain poorly understood. In myxobacteria, cells identify related individuals through a polymorphic cell surface receptor, TraA. Recognition of compatible receptors leads to outer membrane exchange among clonemates and fitness consequences. Here, we investigated how a single receptor creates a diversity in recognition across myxobacterial populations. We first show that TraA requires its partner protein TraB to function in cell-cell adhesion. Recognition is shown to be traA allele-specific, where polymorphisms within TraA dictate binding selectivity. We reveal the malleability of TraA recognition, and seemingly minor changes to its variable region reprogram recognition outcomes. Strikingly, we identify a single residue (A/P205) as a molecular switch for TraA recognition. Substitutions at this position change the specificity of a diverse panel of environmental TraA receptors. In addition, we engineered a receptor with unique specificity by simply creating an A205P substitution, suggesting that modest changes in TraA can lead to diversification of new recognition groups in nature. We hypothesize that the malleable property of TraA has allowed it to evolve and create social barriers between myxobacterial populations and in turn avoid adverse interactions with relatives.
Collapse
|
23
|
Gahan JM, Bradshaw B, Flici H, Frank U. The interstitial stem cells in Hydractinia and their role in regeneration. Curr Opin Genet Dev 2016; 40:65-73. [DOI: 10.1016/j.gde.2016.06.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 05/26/2016] [Accepted: 06/16/2016] [Indexed: 10/21/2022]
|
24
|
Leclère L, Copley RR, Momose T, Houliston E. Hydrozoan insights in animal development and evolution. Curr Opin Genet Dev 2016; 39:157-167. [DOI: 10.1016/j.gde.2016.07.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 06/02/2016] [Accepted: 07/07/2016] [Indexed: 12/21/2022]
|
25
|
Nishimura H, L'Hernault SW. Gamete interactions require transmembranous immunoglobulin-like proteins with conserved roles during evolution. WORM 2016; 5:e1197485. [PMID: 27695654 DOI: 10.1080/21624054.2016.1197485] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 05/20/2016] [Accepted: 05/27/2016] [Indexed: 10/21/2022]
Abstract
C. elegans spe-9 class genes are male germline-enriched in their expression and indispensable during sperm-oocyte fusion. Identification of mammalian orthologs that exhibit similar functions to these C. elegans genes has been a challenge. The mouse Izumo1 gene encodes a sperm-specific, immunoglobulin (Ig)-like transmembrane (TM) protein that is required for gamete fusion. We recently identified the C. elegans spe-45 gene, which shows male germline-enriched expression and encodes an Ig-like TM protein. spe-45 mutant worms produced otherwise normal spermatozoa that cannot fuse with oocytes, causing essentially the same phenotype as that seen in the Izumo1-knockout mice. By counting the number of self-sperm in the spermatheca of spe-45 hermaphrodites, it was found that this gene might be involved in sperm guidance from the uterus into the spermatheca, as well as gamete fusion. Moreover, we discovered that SPE-45 and IZUMO1 share certain functions for gamete fusion, which are presumably related to binding with cis- and/or trans-partners. Intriguingly, various organisms have Ig-like TM proteins that act during gamete interactions, indicating the wide-spread utility of Ig-like domains during fertilization.
Collapse
Affiliation(s)
- Hitoshi Nishimura
- Department of Life Science, Setsunan University , Neyagawa, Osaka, Japan
| | | |
Collapse
|
26
|
Early histocompatibility: color the mechanism green and red. Curr Biol 2015; 25:R1042-R1043. [PMID: 26528746 DOI: 10.1016/j.cub.2015.09.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Allorecognition in Hydractinia, a cnidarian, is governed by two different, highly polymorphic genes encoding transmembrane proteins. Using a fluorescent cell read-out system, a new study now shows that the basis for specificity involves homophilic interactions between extracellular domains.
Collapse
|