1
|
Zhou X, Yang Y, Tai Z, Zhang H, Yang J, Luo Z, Xu Z. The mechanism of mitochondrial autophagy regulating Clathrin-mediated endocytosis in epilepsy. Epilepsia Open 2024; 9:1252-1264. [PMID: 38700951 PMCID: PMC11296089 DOI: 10.1002/epi4.12945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 03/10/2024] [Accepted: 03/31/2024] [Indexed: 05/05/2024] Open
Abstract
OBJECTIVE The objective of this study is to determine whether inhibition of mitophagy affects seizures through Clathrin-mediated endocytosis (CME). METHODS Pentylenetetrazol (PTZ) was intraperitoneally injected daily to establish a chronic PTZ-kindled seizure. The Western blot (WB) was used to compare the differences in Parkin protein expression between the epilepsy group and the control group. Immunofluorescence was used to detect the expression of MitoTracker and LysoTracker. Transferrin-Alexa488 (Tf-A488) was injected into the hippocampus of mice. We evaluated the effect of 3-methyladenine (3-MA) on epilepsy behavior through observation in PTZ-kindled models. RESULTS The methylated derivative of adenine, known as 3-MA, has been extensively utilized in the field of autophagy research. The transferrin protein is internalized from the extracellular environment into the intracellular space via the CME pathway. Tf-A488 uses a fluorescent marker to track CME. Western blot showed that the expression of Parkin was significantly increased in the PTZ-kindled model (p < 0.05), while 3-MA could reduce the expression (p < 0.05). The fluorescence uptake of MitoTracker and LysoTracker was increased in the primary cultured neurons induced by magnesium-free extracellular fluid (p < 0.05); the fluorescence uptake of Tf-A488 was significantly decreased in the 3-MA group compared with the control group (p < 0.05). Following hippocampal injection of Tf-A488, both the epilepsy group and the 3-MA group exhibited decreased fluorescence uptake, with a more pronounced effect observed in the 3-MA group. Inhibition of mitophagy by 3-MA from day 3 to day 9 progressively exacerbated seizure severity and shortened latency. SIGNIFICANCE It is speculated that the aggravation of seizures by 3-MA may be related to the failure to remove damaged mitochondria in time and effectively after inhibiting mitochondrial autophagy, affecting the vesicle endocytosis function of CME and increasing the susceptibility to epilepsy. SUMMARY Abnormal mitophagy was observed in a chronic pentylenetetrazol-induced seizure model and a Mg2+-free-induced spontaneous recurrent epileptiform discharge model. A fluorescent transferrin marker was utilized to track clathrin-mediated endocytosis. Using an autophagy inhibitor (3-methyladenine) on primary cultured neurons, we discovered that inhibition of autophagy led to a reduction in fluorescent transferrin uptake, while impairing clathrin-mediated endocytosis function mediated by mitophagy. Finally, we examined the effects of 3-methyladenine in an animal model of seizures showing that it exacerbated seizure severity. Ultimately, this study provides insights into potential mechanisms through which mitophagy regulates clathrin-mediated endocytosis in epilepsy.
Collapse
Affiliation(s)
- Xuejiao Zhou
- Department of NeurologyThe Affiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative Innovation Center of Tissue Damage Repair and RegenerationZunyi Medical UniversityZunyiChina
| | - Yu Yang
- Department of NeurologyThe Affiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Zhenzhen Tai
- Department of NeurologyThe Affiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Haiqing Zhang
- Department of NeurologyThe Affiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Juan Yang
- Department of NeurologyThe Affiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Zhong Luo
- Department of NeurologyThe Affiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Zucai Xu
- Department of NeurologyThe Affiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative Innovation Center of Tissue Damage Repair and RegenerationZunyi Medical UniversityZunyiChina
- Key Laboratory of Brain ScienceZunyi Medical UniversityZunyiChina
| |
Collapse
|
2
|
Lei F, Tian Y, Miao J, Pan L, Tong R, Zhou Y. Immunotoxicity pathway and mechanism of benzo[a]pyrene on hemocytes of Chlamys farreri in vitro. FISH & SHELLFISH IMMUNOLOGY 2022; 124:208-218. [PMID: 35413479 DOI: 10.1016/j.fsi.2022.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
Benzo[a]pyrene (B[a]P), a typical PAHs widely existing in the marine environment, has been extensively studied for its immunotoxicity due to its persistence and high toxicity. Nevertheless, the immunotoxicity mechanism remain incompletely understood. In this study, isolated hemocytes of Chlamys farreri were exposed at three concentrations of B[a]P (5, 10 and 15 μg/mL), and the effects of B[a]P on detoxification metabolism, signal transduction, humoral immune factors, exocytosis and phagocytosis relevant proteins and immune function at 0, 6, 12, 24 h were studied. Results illustrated the AhR, ARNT and CYP1A1 were significantly induced by B[a]P at 12 h. Additionally, the content of B[a]P metabolite BPDE increased in a dose-dependent manner with pollutants. Under B[a]P stimulation, the expressions of PTK (Src, Fyn) and PLC-Ca2+-PKC pathway gene increased significantly, while the transcription level of AC-cAMP-PKA pathway gene decreased remarkably. Additionally, the expressions of nuclear transcription factors (CREB, NF-κB), complement system genes and C-type lectin genes up-regulated obviously. The gene expressions of phagocytosis and exocytosis related proteins were also notably affected. 5 μg/mL B[a]P could promote phagocytosis in a transitory time, but with the increase of exposure time and concentration of B[a]P, the phagocytosis, antibacterial and bacteriolytic activities gradually decreased. These results indicated that similar to vertebrates, BPDE, the metabolite of B[a]P, mediated downstream signal transduction via PTK in bivalves. The declined of the immune defense ability of hemocytes might be closely related to the inhibition of AC-cAMP-PKA pathway and the imbalance of intracellular Ca2+ pathway. In addition, the results manifested that complement and lectin systems play a significant role in regulating immune response. In this study, the direct relationship between detoxification metabolism and immune signal transduction in bivalves under B[a]P stress was demonstrated for the first time, which provided important information for the potential molecular mechanism of B[a]P-induced immune system disorder in bivalves.
Collapse
Affiliation(s)
- Fengjun Lei
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Yimeng Tian
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Jingjing Miao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China.
| | - Ruixue Tong
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Yueyao Zhou
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| |
Collapse
|
3
|
Catsburg LAE, Westra M, van Schaik AML, MacGillavry HD. Dynamics and nanoscale organization of the postsynaptic endocytic zone at excitatory synapses. eLife 2022; 11:74387. [PMID: 35072626 PMCID: PMC8813055 DOI: 10.7554/elife.74387] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/07/2021] [Indexed: 12/01/2022] Open
Abstract
At postsynaptic sites of neurons, a prominent clathrin-coated structure, the endocytic zone (EZ), controls the trafficking of glutamate receptors and is essential for synaptic plasticity. Despite its importance, little is known about how this clathrin structure is organized to mediate endocytosis. We used live-cell and super-resolution microscopy to reveal the dynamic organization of this poorly understood clathrin structure in rat hippocampal neurons. We found that a subset of endocytic proteins only transiently appeared at postsynaptic sites. In contrast, other proteins were persistently enriched and partitioned at the edge of the EZ. We found that uncoupling the EZ from the synapse led to the loss of most of these components, while disrupting interactions with the actin cytoskeleton or membrane did not alter EZ positioning. Finally, we found that plasticity-inducing stimuli promoted the reorganization of the EZ. We conclude that the EZ is a stable, highly organized molecular platform where components are differentially recruited and positioned to orchestrate the endocytosis of synaptic receptors.
Collapse
|
4
|
The why and how of sleep-dependent synaptic down-selection. Semin Cell Dev Biol 2021; 125:91-100. [PMID: 33712366 PMCID: PMC8426406 DOI: 10.1016/j.semcdb.2021.02.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/28/2021] [Accepted: 02/28/2021] [Indexed: 12/22/2022]
Abstract
Sleep requires that we disconnect from the environment, losing the ability to promptly respond to stimuli. There must be at least one essential function that justifies why we take this risk every day, and that function must depend on the brain being offline. We have proposed that this function is to renormalize synaptic weights after learning has led to a net increase in synaptic strength in many brain circuits. Without this renormalization, synaptic activity would become energetically too expensive and saturation would prevent new learning. There is converging evidence from molecular, electrophysiological, and ultrastructural experiments showing a net increase in synaptic strength after the major wake phase, and a net decline after sleep. The evidence also suggests that sleep-dependent renormalization is a smart process of synaptic down-selection, comprehensive and yet specific, which could explain the many beneficial effects of sleep on cognition. Recently, a key molecular mechanism that allows broad synaptic weakening during sleep was identified. Other mechanisms still being investigated should eventually explain how sleep can weaken most synapses but afford protection to some, including those directly activated by learning. That synaptic down-selection takes place during sleep is by now established; why it should take place during sleep has a plausible explanation; how it happens is still work in progress.
Collapse
|
5
|
Dendritic Spines in Alzheimer's Disease: How the Actin Cytoskeleton Contributes to Synaptic Failure. Int J Mol Sci 2020; 21:ijms21030908. [PMID: 32019166 PMCID: PMC7036943 DOI: 10.3390/ijms21030908] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/24/2020] [Accepted: 01/26/2020] [Indexed: 02/06/2023] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by Aβ-driven synaptic dysfunction in the early phases of pathogenesis. In the synaptic context, the actin cytoskeleton is a crucial element to maintain the dendritic spine architecture and to orchestrate the spine’s morphology remodeling driven by synaptic activity. Indeed, spine shape and synaptic strength are strictly correlated and precisely governed during plasticity phenomena in order to convert short-term alterations of synaptic strength into long-lasting changes that are embedded in stable structural modification. These functional and structural modifications are considered the biological basis of learning and memory processes. In this review we discussed the existing evidence regarding the role of the spine actin cytoskeleton in AD synaptic failure. We revised the physiological function of the actin cytoskeleton in the spine shaping and the contribution of actin dynamics in the endocytosis mechanism. The internalization process is implicated in different aspects of AD since it controls both glutamate receptor membrane levels and amyloid generation. The detailed understanding of the mechanisms controlling the actin cytoskeleton in a unique biological context as the dendritic spine could pave the way to the development of innovative synapse-tailored therapeutic interventions and to the identification of novel biomarkers to monitor synaptic loss in AD.
Collapse
|
6
|
Hanley JG. The Regulation of AMPA Receptor Endocytosis by Dynamic Protein-Protein Interactions. Front Cell Neurosci 2018; 12:362. [PMID: 30364226 PMCID: PMC6193100 DOI: 10.3389/fncel.2018.00362] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/25/2018] [Indexed: 11/13/2022] Open
Abstract
The precise regulation of AMPA receptor (AMPAR) trafficking in neurons is crucial for excitatory neurotransmission, synaptic plasticity and the consequent formation and modification of neural circuits during brain development and learning. Clathrin-mediated endocytosis (CME) is an essential trafficking event for the activity-dependent removal of AMPARs from the neuronal plasma membrane, resulting in a reduction in synaptic strength known as long-term depression (LTD). The regulated AMPAR endocytosis that underlies LTD is caused by specific modes of synaptic activity, most notably stimulation of NMDA receptors (NMDARs) and metabotropic glutamate receptors (mGluRs). Numerous proteins associate with AMPAR subunits, directly or indirectly, to control their trafficking, and therefore the regulation of these protein-protein interactions in response to NMDAR or mGluR signaling is a critical feature of synaptic plasticity. This article reviews the protein-protein interactions that are dynamically regulated during synaptic plasticity to modulate AMPAR endocytosis, focussing on AMPAR binding proteins and proteins that bind the core endocytic machinery. In addition, the mechanisms for the regulation of protein-protein interactions are considered, as well as the functional consequences of these dynamic interactions on AMPAR endocytosis.
Collapse
Affiliation(s)
- Jonathan G Hanley
- Centre for Synaptic Plasticity and School of Biochemistry, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
7
|
Sun B, Fan P, Liao M, Zhang Y. Modeling endophilin-mediated Aβ disposal in glioma cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2018; 1865:1385-1396. [PMID: 30049645 DOI: 10.1016/j.bbamcr.2018.06.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/26/2018] [Accepted: 06/28/2018] [Indexed: 12/17/2022]
Abstract
Autophagy dysregulation has emerged in age-related neurological diseases (Ulland et al.; Matheoud et al.; Ashkenazi et al.). Alzheimer Disease (AD), the most common progressive neurodegenerative disorder, is characterized by the accumulation of amyloid-β (Aβ) plaques caused by aberrant Aβ metabolism (Qiang et al.; Sevigny et al.; Ittner et al.). Glia constitute the brain immune system and ingest extracellular Aβ for degradation via the autophagy-lysosome machinery (Ries and Sastre; Cho et al.). Here, we model the molecular rationale for this clearance process in glioma cells by showing that miR34a inhibits autophagy-mediated disposal of Aβ fibrils and identifying two novel direct targets of miR34a, endophilin-3 and cathepsin B (CTSB, a previously reported enzyme for Aβ degrading (Sun et al.)). Bioinformatics analyses revealed that endophilin-3 expresses at a significantly lower level in neurodegenerative diseases. Its gain-of-function substantially promotes both uptake and degradation of Aβ while small interfering RNA (siRNA)-mediated endophilin-3 knockdown slowed down Aβ clearance and blocked autolysosome formation. Mechanistically, gene ontology (GO) analysis of the endophilin-3 interactome identified by mass spectrometry uncovered enriched components involved in actin binding (with the highest score). Importantly, we validated that the actin-binding protein phostensin interacted with endophilin-3. Phostensin knockdown restored endophilin-3-mediated up-regulation of Aβ clearance. Thus, our findings indicate that miR34a inhibits Aβ clearance by targeting endophilin-3 and CTSB at multiple steps including uptake and autophagy-mediated degradation.
Collapse
Affiliation(s)
- Bing Sun
- Key Lab in Healthy Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, Shenzhen, PR China
| | - Ping Fan
- Key Lab in Healthy Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, Shenzhen, PR China
| | - Meijian Liao
- Key Lab in Healthy Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, Shenzhen, PR China
| | - Yaou Zhang
- Key Lab in Healthy Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, Shenzhen, PR China; Open FIESTA Center, Tsinghua University, Shenzhen, PR China.
| |
Collapse
|
8
|
Synaptic Actin Dysregulation, a Convergent Mechanism of Mental Disorders? J Neurosci 2017; 36:11411-11417. [PMID: 27911743 DOI: 10.1523/jneurosci.2360-16.2016] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 08/30/2016] [Accepted: 09/01/2016] [Indexed: 12/25/2022] Open
Abstract
Actin polymerization governs activity-dependent modulation of excitatory synapses, including their morphology and functionality. It is clear from human genetics that neuropsychiatric and neurodevelopmental disturbances are multigenetic in nature, highlighting the need to better understand the critical neural pathways associated with these disorders and how they are altered by genetic risk alleles. One such signaling pathway that is heavily implicated by candidate genes for psychiatric and neurodevelopmental disorders are regulators of signaling to the actin cytoskeleton, suggesting that its disruption and the ensuring abnormalities of spine structures and postsynaptic complexes is a commonly affected pathway in brain disorders. This review will discuss recent experimental findings that strongly support genetic evidence linking the synaptic cytoskeleton to mental disorders, such as schizophrenia and autism spectrum disorders.
Collapse
|
9
|
Serfass JM, Takahashi Y, Zhou Z, Kawasawa YI, Liu Y, Tsotakos N, Young MM, Tang Z, Yang L, Atkinson JM, Chroneos ZC, Wang HG. Endophilin B2 facilitates endosome maturation in response to growth factor stimulation, autophagy induction, and influenza A virus infection. J Biol Chem 2017; 292:10097-10111. [PMID: 28455444 PMCID: PMC5473216 DOI: 10.1074/jbc.m117.792747] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 04/27/2017] [Indexed: 12/19/2022] Open
Abstract
Endocytosis, and the subsequent trafficking of endosomes, requires dynamic physical alterations in membrane shape that are mediated in part by endophilin proteins. The endophilin B family of proteins contains an N-terminal Bin/amphiphysin/Rvs (N-BAR) domain that induces membrane curvature to regulate intracellular membrane dynamics. Whereas endophilin B1 (SH3GLB1/Bif-1) is known to be involved in a number of cellular processes, including apoptosis, autophagy, and endocytosis, the cellular function of endophilin B2 (SH3GLB2) is not well understood. In this study, we used genetic approaches that revealed that endophilin B2 is not required for embryonic development in vivo but that endophilin B2 deficiency impairs endosomal trafficking in vitro, as evidenced by suppressed endosome acidification, EGFR degradation, autophagic flux, and influenza A viral RNA nuclear entry and replication. Mechanistically, although the loss of endophilin B2 did not affect endocytic internalization and lysosomal function, endophilin B2 appeared to regulate the trafficking of endocytic vesicles and autophagosomes to late endosomes or lysosomes. Moreover, we also found that despite having an intracellular localization and tissue distribution similar to endophilin B1, endophilin B2 is dispensable for mitochondrial apoptosis. Taken together, our findings suggest that endophilin B2 positively regulates the endocytic pathway in response to growth factor signaling, autophagy induction, and viral entry.
Collapse
Affiliation(s)
| | | | - Zhixiang Zhou
- the Department of Pediatrics
- the College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China
| | - Yuka Imamura Kawasawa
- From the Department of Pharmacology
- the Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, and
| | - Ying Liu
- From the Department of Pharmacology
| | | | | | | | | | | | - Zissis C Chroneos
- the Department of Pediatrics
- the Department of Microbiology & Immunology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033 and
| | - Hong-Gang Wang
- From the Department of Pharmacology,
- the Department of Pediatrics
| |
Collapse
|