1
|
Chen H, Bai X, Sun T, Wang X, Zhang Y, Bian X, Zhou H. The Genomic-Driven Discovery of Glutarimide-Containing Derivatives from Burkholderia gladioli. Molecules 2023; 28:6937. [PMID: 37836780 PMCID: PMC10574677 DOI: 10.3390/molecules28196937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/20/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Glutarimide-containing polyketides exhibiting potent antitumor and antimicrobial activities were encoded via conserved module blocks in various strains that favor the genomic mining of these family compounds. The bioinformatic analysis of the genome of Burkholderia gladioli ATCC 10248 showed a silent trans-AT PKS biosynthetic gene cluster (BGC) on chromosome 2 (Chr2C8), which was predicted to produce new glutarimide-containing derivatives. Then, the silent polyketide synthase gene cluster was successfully activated via in situ promoter insertion and heterologous expression. As a result, seven glutarimide-containing analogs, including five new ones, gladiofungins D-H (3-7), and two known gladiofungin A/gladiostatin (1) and 2 (named gladiofungin C), were isolated from the fermentation of the activated mutant. Their structures were elucidated through the analysis of HR-ESI-MS and NMR spectroscopy. The structural diversities of gladiofungins may be due to the degradation of the butenolide group in gladiofungin A (1) during the fermentation and extraction process. Bioactivity screening showed that 2 and 4 had moderate anti-inflammatory activities. Thus, genome mining combined with promoter engineering and heterologous expression were proved to be effective strategies for the pathway-specific activation of the silent BGCs for the directional discovery of new natural products.
Collapse
Affiliation(s)
- Hanna Chen
- Helmholtz International Lab for Anti-Infectives, Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (H.C.); (X.B.); (T.S.); (X.W.)
- School of Medicine, Linyi University, Shuangling Road, Linyi 276000, China
| | - Xianping Bai
- Helmholtz International Lab for Anti-Infectives, Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (H.C.); (X.B.); (T.S.); (X.W.)
| | - Tao Sun
- Helmholtz International Lab for Anti-Infectives, Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (H.C.); (X.B.); (T.S.); (X.W.)
| | - Xingyan Wang
- Helmholtz International Lab for Anti-Infectives, Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (H.C.); (X.B.); (T.S.); (X.W.)
| | - Youming Zhang
- Helmholtz International Lab for Anti-Infectives, Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (H.C.); (X.B.); (T.S.); (X.W.)
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaoying Bian
- Helmholtz International Lab for Anti-Infectives, Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (H.C.); (X.B.); (T.S.); (X.W.)
| | - Haibo Zhou
- Helmholtz International Lab for Anti-Infectives, Shandong University–Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (H.C.); (X.B.); (T.S.); (X.W.)
| |
Collapse
|
2
|
Comparative Metagenomic Analysis of Biosynthetic Diversity across Sponge Microbiomes Highlights Metabolic Novelty, Conservation, and Diversification. mSystems 2022; 7:e0035722. [PMID: 35862823 PMCID: PMC9426513 DOI: 10.1128/msystems.00357-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Marine sponges and their microbial symbiotic communities are rich sources of diverse natural products (NPs) that often display biological activity, yet little is known about the global distribution of NPs and the symbionts that produce them. Since the majority of sponge symbionts remain uncultured, it is a challenge to characterize their NP biosynthetic pathways, assess their prevalence within the holobiont, and measure the diversity of NP biosynthetic gene clusters (BGCs) across sponge taxa and environments. Here, we explore the microbial biosynthetic landscapes of three high-microbial-abundance (HMA) sponges from the Atlantic Ocean and the Mediterranean Sea. This data set reveals striking novelty, with <1% of the recovered gene cluster families (GCFs) showing similarity to any characterized BGC. When zooming in on the microbial communities of each sponge, we observed higher variability of specialized metabolic and taxonomic profiles between sponge species than within species. Nonetheless, we identified conservation of GCFs, with 20% of sponge GCFs being shared between at least two sponge species and a GCF core comprised of 6% of GCFs shared across all species. Within this functional core, we identified a set of widespread and diverse GCFs encoding nonribosomal peptide synthetases that are potentially involved in the production of diversified ether lipids, as well as GCFs putatively encoding the production of highly modified proteusins. The present work contributes to the small, yet growing body of data characterizing NP landscapes of marine sponge symbionts and to the cryptic biosynthetic potential contained in this environmental niche. IMPORTANCE Marine sponges and their microbial symbiotic communities are a rich source of diverse natural products (NPs). However, little is known about the sponge NP global distribution landscape and the symbionts that produce them. Here, we make use of recently developed tools to perform untargeted mining and comparative analysis of sponge microbiome metagenomes of three sponge species in the first study considering replicate metagenomes of multiple sponge species. We present an overview of the biosynthetic diversity across these sponge holobionts, which displays extreme biosynthetic novelty. We report not only the conservation of biosynthetic and taxonomic diversity but also a core of conserved specialized metabolic pathways. Finally, we highlight several novel GCFs with unknown ecological function, and observe particularly high biosynthetic potential in Acidobacteriota and Latescibacteria symbionts. This study paves the way toward a better understanding of the marine sponge holobionts' biosynthetic potential and the functional and ecological role of sponge microbiomes.
Collapse
|
3
|
Vertical Inheritance Facilitates Interspecies Diversification in Biosynthetic Gene Clusters and Specialized Metabolites. mBio 2021; 12:e0270021. [PMID: 34809466 PMCID: PMC8609351 DOI: 10.1128/mbio.02700-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
While specialized metabolites are thought to mediate ecological interactions, the evolutionary processes driving chemical diversification, particularly among closely related lineages, remain poorly understood. Here, we examine the evolutionary dynamics governing the distribution of natural product biosynthetic gene clusters (BGCs) among 118 strains representing all nine currently named species of the marine actinobacterial genus Salinispora. While much attention has been given to the role of horizontal gene transfer (HGT) in structuring BGC distributions, we find that vertical descent facilitates interspecies BGC diversification over evolutionary timescales. Moreover, we identified a distinct phylogenetic signal among Salinispora species at both the BGC and metabolite level, indicating that specialized metabolism represents a conserved phylogenetic trait. Using a combination of genomic analyses and liquid chromatography–high-resolution tandem mass spectrometry (LC-MS/MS) targeting nine experimentally characterized BGCs and their small molecule products, we identified gene gain/loss events, constrained interspecies recombination, and other evolutionary processes associated with vertical inheritance as major contributors to BGC diversification. These evolutionary dynamics had direct consequences for the compounds produced, as exemplified by species-level differences in salinosporamide production. Together, our results support the concept that specialized metabolites, and their cognate BGCs, can represent phylogenetically conserved functional traits with chemical diversification proceeding in species-specific patterns over evolutionary time frames.
Collapse
|
4
|
Dragoš A, Andersen AJC, Lozano-Andrade CN, Kempen PJ, Kovács ÁT, Strube ML. Phages carry interbacterial weapons encoded by biosynthetic gene clusters. Curr Biol 2021; 31:3479-3489.e5. [PMID: 34186025 DOI: 10.1016/j.cub.2021.05.046] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 04/16/2021] [Accepted: 05/20/2021] [Indexed: 01/08/2023]
Abstract
Bacteria produce diverse specialized metabolites that mediate ecological interactions and serve as a rich source of industrially relevant natural products. Biosynthetic pathways for these metabolites are encoded by organized groups of genes called biosynthetic gene clusters (BGCs). Understanding the natural function and distribution of BGCs provides insight into the mechanisms through which microorganisms interact and compete. Further, understanding BGCs is extremely important for biocontrol and the mining of new bioactivities. Here, we investigated phage-encoded BGCs (pBGCs), challenging the relationship between phage origin and BGC structure and function. The results demonstrated that pBGCs are rare, and they predominantly reside within temperate phages infecting commensal or pathogenic bacterial hosts. Further, the vast majority of pBGCs were found to encode for bacteriocins. Using the soil- and gut-associated bacterium Bacillus subtilis, we experimentally demonstrated how a temperate phage equips a bacterium with a fully functional BGC, providing a clear competitive fitness advantage over the ancestor. Moreover, we demonstrated a similar transfer of the same phage in prophage form. Finally, using genetic and genomic comparisons, a strong association between pBGC type and phage host range was revealed. These findings suggest that bacteriocins are encoded in temperate phages of a few commensal bacterial genera. In these cases, lysogenic conversion provides an evolutionary benefit to the infected host and, hence, to the phage itself. This study is an important step toward understanding the natural role of bacterial compounds encoded by BGCs, the mechanisms driving their horizontal transfer, and the sometimes mutualistic relationship between bacteria and temperate phages.
Collapse
Affiliation(s)
- Anna Dragoš
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads bldg. 221, DK-2800 Kgs Lyngby, Denmark.
| | - Aaron J C Andersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads bldg. 221, DK-2800 Kgs Lyngby, Denmark
| | - Carlos N Lozano-Andrade
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads bldg. 221, DK-2800 Kgs Lyngby, Denmark
| | - Paul J Kempen
- Department of Health Technology, Technical University of Denmark, Produktionstorvet bldg. 423, DK-2800 Kgs Lyngby, Denmark; National Center for Nano Fabrication and Characterization, Technical University of Denmark, Fysikvej bldg. 307, DK-2800 Kgs Lyngby, Denmark
| | - Ákos T Kovács
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads bldg. 221, DK-2800 Kgs Lyngby, Denmark
| | - Mikael Lenz Strube
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads bldg. 221, DK-2800 Kgs Lyngby, Denmark.
| |
Collapse
|
5
|
The Carbapenemase BKC-1 from Klebsiella pneumoniae Is Adapted for Translocation by Both the Tat and Sec Translocons. mBio 2021; 12:e0130221. [PMID: 34154411 PMCID: PMC8262980 DOI: 10.1128/mbio.01302-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The cell envelope of Gram-negative bacteria consists of two membranes surrounding the periplasm and peptidoglycan layer. β-Lactam antibiotics target the periplasmic penicillin-binding proteins that synthesize peptidoglycan, resulting in cell death. The primary means by which bacterial species resist the effects of β-lactam drugs is to populate the periplasmic space with β-lactamases. Resistance to β-lactam drugs is spread by lateral transfer of genes encoding β-lactamases from one species of bacteria to another. However, the resistance phenotype depends in turn on these “alien” protein sequences being recognized and exported across the cytoplasmic membrane by either the Sec or Tat protein translocation machinery of the new bacterial host. Here, we examine BKC-1, a carbapenemase from an unknown bacterial source that has been identified in a single clinical isolate of Klebsiella pneumoniae. BKC-1 was shown to be located in the periplasm, and functional in both K. pneumoniae and Escherichia coli. Sequence analysis revealed the presence of an unusual signal peptide with a twin arginine motif and a duplicated hydrophobic region. Biochemical assays showed this signal peptide directs BKC-1 for translocation by both Sec and Tat translocons. This is one of the few descriptions of a periplasmic protein that is functionally translocated by both export pathways in the same organism, and we suggest it represents a snapshot of evolution for a β-lactamase adapting to functionality in a new host.
Collapse
|
6
|
Goldstein SL, Klassen JL. Pseudonocardia Symbionts of Fungus-Growing Ants and the Evolution of Defensive Secondary Metabolism. Front Microbiol 2020; 11:621041. [PMID: 33424822 PMCID: PMC7793712 DOI: 10.3389/fmicb.2020.621041] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 12/03/2020] [Indexed: 12/16/2022] Open
Abstract
Actinobacteria belonging to the genus Pseudonocardia have evolved a close relationship with multiple species of fungus-growing ants, where these bacteria produce diverse secondary metabolites that protect the ants and their fungal mutualists from disease. Recent research has charted the phylogenetic diversity of this symbiosis, revealing multiple instances where the ants and Pseudonocardia have formed stable relationships in which these bacteria are housed on specific regions of the ant's cuticle. Parallel chemical and genomic analyses have also revealed that symbiotic Pseudonocardia produce diverse secondary metabolites with antifungal and antibacterial bioactivities, and highlighted the importance of plasmid recombination and horizontal gene transfer for maintaining these symbiotic traits. Here, we propose a multi-level model for the evolution of Pseudonocardia and their secondary metabolites that includes symbiont transmission within and between ant colonies, and the potentially independent movement and diversification of their secondary metabolite biosynthetic genes. Because of their well-studied ecology and experimental tractability, Pseudonocardia symbionts of fungus-growing ants are an especially useful model system to understand the evolution of secondary metabolites, and also comprise a significant source of novel antibiotic and antifungal agents.
Collapse
Affiliation(s)
- Sarah L Goldstein
- Department of Molecular and Cell Biology, University of Connecticut, Mansfield, CT, United States
| | - Jonathan L Klassen
- Department of Molecular and Cell Biology, University of Connecticut, Mansfield, CT, United States
| |
Collapse
|
7
|
Rokas A, Mead ME, Steenwyk JL, Raja HA, Oberlies NH. Biosynthetic gene clusters and the evolution of fungal chemodiversity. Nat Prod Rep 2020; 37:868-878. [PMID: 31898704 PMCID: PMC7332410 DOI: 10.1039/c9np00045c] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Covering: up to 2019Fungi produce a remarkable diversity of secondary metabolites: small, bioactive molecules not required for growth but which are essential to their ecological interactions with other organisms. Genes that participate in the same secondary metabolic pathway typically reside next to each other in fungal genomes and form biosynthetic gene clusters (BGCs). By synthesizing state-of-the-art knowledge on the evolution of BGCs in fungi, we propose that fungal chemodiversity stems from three molecular evolutionary processes involving BGCs: functional divergence, horizontal transfer, and de novo assembly. We provide examples of how these processes have contributed to the generation of fungal chemodiversity, discuss their relative importance, and outline major, outstanding questions in the field.
Collapse
Affiliation(s)
- Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
| | | | | | | | | |
Collapse
|
8
|
Chevrette MG, Gutiérrez-García K, Selem-Mojica N, Aguilar-Martínez C, Yañez-Olvera A, Ramos-Aboites HE, Hoskisson PA, Barona-Gómez F. Evolutionary dynamics of natural product biosynthesis in bacteria. Nat Prod Rep 2019; 37:566-599. [PMID: 31822877 DOI: 10.1039/c9np00048h] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Covering: 2008 up to 2019The forces of biochemical adaptive evolution operate at the level of genes, manifesting in complex phenotypes and the global biodiversity of proteins and metabolites. While evolutionary histories have been deciphered for some other complex traits, the origins of natural product biosynthesis largely remain a mystery. This fundamental knowledge gap is surprising given the many decades of research probing the genetic, chemical, and biophysical mechanisms of bacterial natural product biosynthesis. Recently, evolutionary thinking has begun to permeate this otherwise mechanistically dominated field. Natural products are now sometimes referred to as 'specialized' rather than 'secondary' metabolites, reinforcing the importance of their biological and ecological functions. Here, we review known evolutionary mechanisms underlying the overwhelming chemical diversity of bacterial secondary metabolism, focusing on enzyme promiscuity and the evolution of enzymatic domains that enable metabolic traits. We discuss the mechanisms that drive the assembly of natural product biosynthetic gene clusters and propose formal definitions for 'specialized' and 'secondary' metabolism. We further explore how biosynthetic gene clusters evolve to synthesize related molecular species, and in turn how the biological and ecological roles that emerge from metabolic diversity are acted on by selection. Finally, we reconcile chemical, functional, and genetic data into an evolutionary model, the dynamic chemical matrix evolutionary hypothesis, in which the relationships between chemical distance, biomolecular activity, and relative fitness shape adaptive landscapes.
Collapse
Affiliation(s)
- Marc G Chevrette
- Wisconsin Institute for Discovery, Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Fewer DP, Metsä‐Ketelä M. A pharmaceutical model for the molecular evolution of microbial natural products. FEBS J 2019; 287:1429-1449. [DOI: 10.1111/febs.15129] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/11/2019] [Accepted: 11/05/2019] [Indexed: 12/20/2022]
Affiliation(s)
- David P. Fewer
- Department of Microbiology University of Helsinki Finland
| | | |
Collapse
|
10
|
Pawar S, Chaudhari A. Pyrrolnitrin from Rhizospheric Serratia marcescens NCIM 5696: Optimization of Process Parameters Using Statistical Tools and Seed-Applied Bioprotectants for Vigna radiata (L.) Against Fusarium oxysporum MTCC 9913. Appl Biochem Biotechnol 2019; 190:803-825. [PMID: 31493159 DOI: 10.1007/s12010-019-03123-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 08/25/2019] [Indexed: 10/26/2022]
Abstract
The extensive use of chemical fungicide in the health and agriculture sectors has increased environmental concerns and promoted an extensive search for alternative bioactives from the microbial system. In the present study, two rhizospheric strains of Serratia spp. (TO-2 and TW-3) have been shown to secrete pyrrolnitrin (PRN) in the range of 11.35 to 35.97 μg ml-1 using MSG and MSD medium after 72 h under static and shake conditions, respectively, but thereafter marginally declined in 96 to 240 h. Alternative one variable assortment at a time (OVAT) for PRN secretion by TW-3 yielded 59.27 μg ml-1 using (gl-1) glycerol (20), monosodium glutamate (14), KH2PO4 (14), NH4Cl (3), Na2HPO4 (4), and MgSO4 (0.3) at pH 7, 120 rpm within 72 h. Further, the Placket-Burman Design (PBD) identified KH2PO4, glycerol, pH, and monosodium glutamate as significant variables and optimized by centered composite design. Accordingly, 3% glycerol, 1.72% KH2PO4, 1.1% monosodium glutamate, 0.4% Na2HPO4, 0.03% MgSO4, 0.05% FeSO4, and 0.01% ZnSO4 were found to enhance the yield of PRN to 96.54 μg ml-1 by TW-3 in 72 h, 120 rpm. Thus, the statistical tool employed in the present study showed a threefold hike in PRN secretion over the OVAT approach, thereby indicating the scope for more PRN production from rhizobacteria. Further, seed application of low PRN (30 μg ml-1) concentration in treatments I and II showed > 90% germination in the initial seed germination and pot assay with the Fusarium oxysporum challenge compared to the control. Also, various growth parameters calculated during 11 days of experiment were significantly increased compared to the negative control (seed + fungus) in both treatments. Thus, the application of PRN at a low concentration to seeds of Vigna radiata (L.) offered protection against the phytopathogenic F. oxysporum MTCC 9913 challenge, suggesting biocontrol activity potential for use in agriculture soils particularly salt-affected soil.
Collapse
Affiliation(s)
- Shraddha Pawar
- School of Life Sciences, Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon, 425001, India
| | - Ambalal Chaudhari
- School of Life Sciences, Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon, 425001, India.
| |
Collapse
|
11
|
Shin YH, Beom JY, Chung B, Shin Y, Byun WS, Moon K, Bae M, Lee SK, Oh KB, Shin J, Yoon YJ, Oh DC. Bombyxamycins A and B, Cytotoxic Macrocyclic Lactams from an Intestinal Bacterium of the Silkworm Bombyx mori. Org Lett 2019; 21:1804-1808. [DOI: 10.1021/acs.orglett.9b00384] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Yern-Hyerk Shin
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Ji Yoon Beom
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Beomkoo Chung
- Department of Agricultural Biotechnology, College of Agriculture & Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yoonho Shin
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Woong Sub Byun
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyuho Moon
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Munhyung Bae
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang Kook Lee
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Ki-Bong Oh
- Department of Agricultural Biotechnology, College of Agriculture & Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jongheon Shin
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Yeo Joon Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
12
|
Busch J, Agarwal V, Schorn M, Machado H, Moore BS, Rouse GW, Gram L, Jensen PR. Diversity and distribution of the bmp gene cluster and its Polybrominated products in the genus Pseudoalteromonas. Environ Microbiol 2019; 21:1575-1585. [PMID: 30652406 DOI: 10.1111/1462-2920.14532] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 01/10/2019] [Accepted: 01/12/2019] [Indexed: 12/18/2022]
Abstract
The production of pentabromopseudilin and related brominated compounds by Pseudoalteromonas spp. has recently been linked to the bmp biosynthetic gene cluster. This study explored the distribution and evolutionary history of this gene cluster in the genus Pseudoalteromonas. A phylogeny of the genus revealed numerous clades that do not contain type strains, suggesting considerable species level diversity has yet to be described. Comparative genomics revealed four distinct versions of the gene cluster distributed among 19 of the 101 Pseudoalteromonas genomes examined. These were largely localized to the least inclusive clades containing the Pseudoalteromonas luteoviolacea and Pseudoalteromonas phenolica type strains and show clear evidence of gene and gene cluster loss in certain lineages. Bmp gene phylogeny is largely congruent with the Pseudoalteromonas species phylogeny, suggesting vertical inheritance within the genus. However, the gene cluster is found in three different genomic environments suggesting either chromosomal rearrangement or multiple acquisition events. Bmp conservation within certain lineages suggests the encoded products are highly relevant to the ecology of these bacteria.
Collapse
Affiliation(s)
- Julia Busch
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA.,Scripps Center for Oceans and Human Health, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Vinayak Agarwal
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA.,Scripps Center for Oceans and Human Health, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Michelle Schorn
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA.,Scripps Center for Oceans and Human Health, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Henrique Machado
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA.,Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads bldg. 221, DK-2800, Kgs. Lyngby, Denmark
| | - Bradley S Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA.,Scripps Center for Oceans and Human Health, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Greg W Rouse
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Lone Gram
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads bldg. 221, DK-2800, Kgs. Lyngby, Denmark
| | - Paul R Jensen
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA.,Scripps Center for Oceans and Human Health, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
13
|
Stubenrauch CJ, Dougan G, Lithgow T, Heinz E. Constraints on lateral gene transfer in promoting fimbrial usher protein diversity and function. Open Biol 2018; 7:rsob.170144. [PMID: 29142104 PMCID: PMC5717340 DOI: 10.1098/rsob.170144] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 10/05/2017] [Indexed: 12/16/2022] Open
Abstract
Fimbriae are long, adhesive structures widespread throughout members of the family Enterobacteriaceae. They are multimeric extrusions, which are moved out of the bacterial cell through an integral outer membrane protein called usher. The complex folding mechanics of the usher protein were recently revealed to be catalysed by the membrane-embedded translocation and assembly module (TAM). Here, we examine the diversity of usher proteins across a wide range of extraintestinal (ExPEC) and enteropathogenic (EPEC) Escherichia coli, and further focus on a so far undescribed chaperone–usher system, with this usher referred to as UshC. The fimbrial system containing UshC is distributed across a discrete set of EPEC types, including model strains like E2348/67, as well as ExPEC ST131, currently the most prominent multi-drug-resistant uropathogenic E. coli strain worldwide. Deletion of the TAM from a naive strain of E. coli results in a drastic time delay in folding of UshC, which can be observed for a protein from EPEC as well as for two introduced proteins from related organisms, Yersinia and Enterobacter. We suggest that this models why the TAM machinery is essential for efficient folding of proteins acquired via lateral gene transfer.
Collapse
Affiliation(s)
- Christopher J Stubenrauch
- Infection and Immunity Program, Department of Microbiology, Monash University, Clayton 3800, Australia
| | - Gordon Dougan
- Infection Genomics Program, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - Trevor Lithgow
- Infection and Immunity Program, Department of Microbiology, Monash University, Clayton 3800, Australia
| | - Eva Heinz
- Infection Genomics Program, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| |
Collapse
|
14
|
Li X, Tong W, Wang L, Rahman SU, Wei G, Tao S. A Novel Strategy for Detecting Recent Horizontal Gene Transfer and Its Application to Rhizobium Strains. Front Microbiol 2018; 9:973. [PMID: 29867876 PMCID: PMC5968381 DOI: 10.3389/fmicb.2018.00973] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/25/2018] [Indexed: 11/13/2022] Open
Abstract
Recent horizontal gene transfer (HGT) is crucial for enabling microbes to rapidly adapt to their novel environments without relying upon rare beneficial mutations that arise spontaneously. For several years now, computational approaches have been developed to detect HGT, but they typically lack the sensitivity and ability to detect recent HGT events. Here we introduce a novel strategy, named RecentHGT. The number of genes undergoing recent HGT between two bacterial genomes was estimated by a new algorithm derived from the expectation-maximization algorithm and is based on the theoretical sequence-similarity distribution of orthologous genes. We tested the proposed strategy by applying it to a set of 10 Rhizobium genomes, and detected several large-scale recent HGT events. We also found that our strategy was more sensitive than other available HGT detection methods. These HGT events were mainly mediated by symbiotic plasmids. Our new strategy can provide clear evidence of recent HGT events and thus it brings us closer to the goal of detecting these potentially adaptive evolution processes in rhizobia as well as pathogens.
Collapse
Affiliation(s)
- Xiangchen Li
- College of Life Sciences and State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, China.,Bioinformatics Center, Northwest A&F University, Yangling, China
| | - Wenjun Tong
- College of Life Sciences and State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, China
| | - Lina Wang
- College of Life Sciences and State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, China.,Bioinformatics Center, Northwest A&F University, Yangling, China
| | - Siddiq Ur Rahman
- College of Life Sciences and State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, China.,Bioinformatics Center, Northwest A&F University, Yangling, China
| | - Gehong Wei
- College of Life Sciences and State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, China
| | - Shiheng Tao
- College of Life Sciences and State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, China.,Bioinformatics Center, Northwest A&F University, Yangling, China
| |
Collapse
|
15
|
Van Arnam EB, Currie CR, Clardy J. Defense contracts: molecular protection in insect-microbe symbioses. Chem Soc Rev 2018; 47:1638-1651. [DOI: 10.1039/c7cs00340d] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Insects frequently host microbes that produce defensive molecules: a successful protective strategy and also an opportunity for antibiotic discovery
Collapse
Affiliation(s)
- Ethan B. Van Arnam
- Keck Science Department
- Claremont McKenna
- Pitzer
- and Scripps Colleges
- Claremont
| | | | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology
- Harvard Medical School
- Boston
- USA
| |
Collapse
|
16
|
Baskin JM, Aye Y. Meeting Proceedings, 2017 Cornell University Baker Symposium-Quo Vadis: The Boundless Trajectories of Chemical Biology. Biochemistry 2017; 56:2967-2970. [PMID: 28558237 DOI: 10.1021/acs.biochem.7b00495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jeremy M Baskin
- Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States.,Weill Institute for Cell and Molecular Biology, Cornell University , Ithaca, New York 14853, United States
| | - Yimon Aye
- Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States.,Department of Biochemistry, Weill Cornell Medicine , New York, New York 10065, United States
| |
Collapse
|
17
|
Baskin JM, Aye Y. Meeting Proceedings, 2017 Cornell University Baker Symposium— Quo Vadis: The Boundless Trajectories of Chemical Biology. ACS Chem Biol 2017. [DOI: 10.1021/acschembio.7b00432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jeremy M. Baskin
- Department
of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
- Weill
Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States
| | - Yimon Aye
- Department
of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
- Department
of Biochemistry, Weill Cornell Medicine, New York, New York 10065, United States
| |
Collapse
|
18
|
Moosmann P, Ueoka R, Grauso L, Mangoni A, Morinaka BI, Gugger M, Piel J. Cyanobacterial ent
-Sterol-Like Natural Products from a Deviated Ubiquinone Pathway. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201611617] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Philipp Moosmann
- Institut für Mikrobiologie; Eidgenössiche Technische Hochschule (ETH) Zürich; Vladimir-Prelog-Weg 4 8093 Zürich Switzerland
| | - Reiko Ueoka
- Institut für Mikrobiologie; Eidgenössiche Technische Hochschule (ETH) Zürich; Vladimir-Prelog-Weg 4 8093 Zürich Switzerland
| | - Laura Grauso
- Dipartimento di Farmacia Università di Napoli Federico II; Università di Napoli Federico II; via D. Montesano 49 80131 Napoli Italy
- Current address: Stazione Zoologica Anton Dohrn; Villa Comunale 80121 Napoli Italy
| | - Alfonso Mangoni
- Dipartimento di Farmacia Università di Napoli Federico II; Università di Napoli Federico II; via D. Montesano 49 80131 Napoli Italy
| | - Brandon I. Morinaka
- Institut für Mikrobiologie; Eidgenössiche Technische Hochschule (ETH) Zürich; Vladimir-Prelog-Weg 4 8093 Zürich Switzerland
| | - Muriel Gugger
- Institut Pasteur; Collection des Cyanobactéries; Département de Microbiologie; 75015 Paris France
| | - Jörn Piel
- Institut für Mikrobiologie; Eidgenössiche Technische Hochschule (ETH) Zürich; Vladimir-Prelog-Weg 4 8093 Zürich Switzerland
| |
Collapse
|
19
|
Moosmann P, Ueoka R, Grauso L, Mangoni A, Morinaka BI, Gugger M, Piel J. Cyanobacterial ent
-Sterol-Like Natural Products from a Deviated Ubiquinone Pathway. Angew Chem Int Ed Engl 2017; 56:4987-4990. [DOI: 10.1002/anie.201611617] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/19/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Philipp Moosmann
- Institut für Mikrobiologie; Eidgenössiche Technische Hochschule (ETH) Zürich; Vladimir-Prelog-Weg 4 8093 Zürich Switzerland
| | - Reiko Ueoka
- Institut für Mikrobiologie; Eidgenössiche Technische Hochschule (ETH) Zürich; Vladimir-Prelog-Weg 4 8093 Zürich Switzerland
| | - Laura Grauso
- Dipartimento di Farmacia Università di Napoli Federico II; Università di Napoli Federico II; via D. Montesano 49 80131 Napoli Italy
- Current address: Stazione Zoologica Anton Dohrn; Villa Comunale 80121 Napoli Italy
| | - Alfonso Mangoni
- Dipartimento di Farmacia Università di Napoli Federico II; Università di Napoli Federico II; via D. Montesano 49 80131 Napoli Italy
| | - Brandon I. Morinaka
- Institut für Mikrobiologie; Eidgenössiche Technische Hochschule (ETH) Zürich; Vladimir-Prelog-Weg 4 8093 Zürich Switzerland
| | - Muriel Gugger
- Institut Pasteur; Collection des Cyanobactéries; Département de Microbiologie; 75015 Paris France
| | - Jörn Piel
- Institut für Mikrobiologie; Eidgenössiche Technische Hochschule (ETH) Zürich; Vladimir-Prelog-Weg 4 8093 Zürich Switzerland
| |
Collapse
|
20
|
Quorum Sensing in a Methane-Oxidizing Bacterium. J Bacteriol 2017; 199:JB.00773-16. [PMID: 27994019 DOI: 10.1128/jb.00773-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 12/15/2016] [Indexed: 12/12/2022] Open
Abstract
Aerobic methanotrophic bacteria use methane as their sole source of carbon and energy and serve as a major sink for the potent greenhouse gas methane in freshwater ecosystems. Dissecting the molecular details of how these organisms interact in the environment may increase our understanding of how they perform this important ecological role. Many bacterial species use quorum sensing (QS) systems to regulate gene expression in a cell density-dependent manner. We have identified a QS system in the genome of Methylobacter tundripaludum, a dominant methane oxidizer in methane enrichments of sediment from Lake Washington (Seattle, WA). We determined that M. tundripaludum produces primarily N-3-hydroxydecanoyl-l-homoserine lactone (3-OH-C10-HSL) and that its production is governed by a positive feedback loop. We then further characterized this system by determining which genes are regulated by QS in this methane oxidizer using transcriptome sequencing (RNA-seq) and discovered that this system regulates the expression of a putative nonribosomal peptide synthetase biosynthetic gene cluster. Finally, we detected an extracellular factor that is produced by M. tundripaludum in a QS-dependent manner. These results identify and characterize a mode of cellular communication in an aerobic methane-oxidizing bacterium.IMPORTANCE Aerobic methanotrophs are critical for sequestering carbon from the potent greenhouse gas methane in the environment, yet the mechanistic details of chemical interactions in methane-oxidizing bacterial communities are not well understood. Understanding these interactions is important in order to maintain, and potentially optimize, the functional potential of the bacteria that perform this vital ecosystem function. In this work, we identify a quorum sensing system in the aerobic methanotroph Methylobacter tundripaludum and use both chemical and genetic methods to characterize this system at the molecular level.
Collapse
|