1
|
Feybesse C, Chokron S, Tordjman S. Melatonin in Neurodevelopmental Disorders: A Critical Literature Review. Antioxidants (Basel) 2023; 12:2017. [PMID: 38001870 PMCID: PMC10669594 DOI: 10.3390/antiox12112017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/29/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
The article presents a review of the relationships between melatonin and neurodevelopmental disorders. First, the antioxidant properties of melatonin and its physiological effects are considered to understand better the role of melatonin in typical and atypical neurodevelopment. Then, several neurodevelopmental disorders occurring during infancy, such as autism spectrum disorder or neurogenetic disorders associated with autism (including Smith-Magenis syndrome, Angelman syndrome, Rett's syndrome, Tuberous sclerosis, or Williams-Beuren syndrome) and neurodevelopmental disorders occurring later in adulthood like bipolar disorder and schizophrenia, are discussed with regard to impaired melatonin production and circadian rhythms, in particular, sleep-wake rhythms. This article addresses the issue of overlapping symptoms that are commonly observed within these different mental conditions and debates the role of abnormal melatonin production and altered circadian rhythms in the pathophysiology and behavioral expression of these neurodevelopmental disorders.
Collapse
Affiliation(s)
- Cyrille Feybesse
- Pôle Hospitalo-Universitaire de Psychiatrie de l’Enfant et de l’Adolescent (PHUPEA), Centre Hospitalier Guillaume Regnier, 154 rue de Châtillon, 35000 Rennes, France
| | - Sylvie Chokron
- Integrative Neuroscience and Cognition Center (INCC), CNRS UMR 8002, Université Paris Cité, 45 rue des Saints-Pères, 75006 Paris, France;
| | - Sylvie Tordjman
- Pôle Hospitalo-Universitaire de Psychiatrie de l’Enfant et de l’Adolescent (PHUPEA), Centre Hospitalier Guillaume Regnier, 154 rue de Châtillon, 35000 Rennes, France
- Integrative Neuroscience and Cognition Center (INCC), CNRS UMR 8002, Université Paris Cité, 45 rue des Saints-Pères, 75006 Paris, France;
- Faculté de Médecine, Université de Rennes, 2 Avenue du Professeur Léon Bernard, 35000 Rennes, France
| |
Collapse
|
2
|
Bastos PRO, Titon SCM, Titon Junior B, Gomes FR, Markus RP, Ferreira ZS. Daily and LPS-induced variation of endocrine mediators in cururu toads ( Rhinella icterica). Chronobiol Int 2021; 39:89-96. [PMID: 34503388 DOI: 10.1080/07420528.2021.1974470] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Increased plasma glucocorticoids (corticosterone - CORT, in amphibians) and melatonin (MEL) are associated with the daily activity phase and with environmental darkness, respectively. Besides, CORT and MEL also play pivotal immunomodulatory roles in several vertebrates. Herein we described the daily profile of plasma MEL and CORT for Rhinella icterica toads in captivity. Thereafter, we investigated the effects of lipopolysaccharide (LPS)-induced systemic inflammation on the production of CORT and MEL in the R. icterica. Captive toads showed CORT and MEL diurnal variation typical of nocturnal species, with increased values for CORT at ZT12 (18 h) and MEL peak at ZT18 (24 h). LPS-induced hormonal changes included increased plasma CORT and decreased ocular and plasma MEL when compared to those from toads treated with saline 2 h post-injection. Our results demonstrated the presence of a diurnal CORT and MEL variation in toads. We also showed the crosstalk between CORT and MEL during the toad's systemic inflammation in response to an immune challenge with LPS. Additionally, our results demonstrated that anuran eyes' MEL production might be regulated during the inflammatory processes.
Collapse
Affiliation(s)
| | | | - Braz Titon Junior
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brasil
| | - Fernando Ribeiro Gomes
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brasil
| | - Regina P Markus
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brasil
| | - Zulma S Ferreira
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brasil
| |
Collapse
|
3
|
Xia D, Yang L, Li Y, Chen J, Zhang X, Wang H, Zhai S, Jiang X, Meca G, Wang S, Huang L, Zhu S, Fu Y, Ma W, Zhu Y, Ye H, Wang W. Melatonin alleviates Ochratoxin A-induced liver inflammation involved intestinal microbiota homeostasis and microbiota-independent manner. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125239. [PMID: 33582472 DOI: 10.1016/j.jhazmat.2021.125239] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/19/2021] [Accepted: 01/23/2021] [Indexed: 06/12/2023]
Abstract
Melatonin (MEL) shows an anti-inflammatory effect and regulates intestinal microbiota communities in animals and humans; Ochratoxin A (OTA) induces liver inflammation through intestinal microbiota. However, it remains to know whether MEL alleviates the liver inflammation induced by OTA. In this study, MEL reversed various adverse effects induced by OTA. MEL recovered the swarming and motility of intestinal microbiota, decreased the accumulation of lipopolysaccharide (LPS), enhanced the tight junction proteins of jejunum and cecum segments; ultimately alleviated OTA-induced liver inflammation in ducks. However, it is worth noting that MEL still had positive effects on the OTA-exposed ducks after antibiotic treatment. These results suggest that both the maintenance of intestinal microbiota homeostasis and intestinal microbiota-independent manner involved the MEL anti-inflammatory function in OTA-induced liver inflammation. MEL represent a promising protective approach for OTA, even other mycotoxins.
Collapse
Affiliation(s)
- Daiyang Xia
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Lin Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yu Li
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jianying Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiufen Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Heng Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Shuangshuang Zhai
- College of Animal Science, Yangtze University, Jingzhou 434000, China
| | - Xianzhi Jiang
- Microbiome Research Center, Moon (Guangzhou) Biotech Co. Ltd. Guangzhou 510535, China
| | - Giuseppe Meca
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, Burjassot 46100, Spain
| | | | - Liang Huang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Shanshan Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yang Fu
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Weiqing Ma
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yongwen Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Hui Ye
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Wence Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
4
|
Liu Q, Su LY, Sun C, Jiao L, Miao Y, Xu M, Luo R, Zuo X, Zhou R, Zheng P, Xiong W, Xue T, Yao YG. Melatonin alleviates morphine analgesic tolerance in mice by decreasing NLRP3 inflammasome activation. Redox Biol 2020; 34:101560. [PMID: 32413745 PMCID: PMC7225735 DOI: 10.1016/j.redox.2020.101560] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 01/03/2023] Open
Abstract
Morphine is frequently used for pain relief, but long-term morphine therapy in patients with chronic pain results in analgesic tolerance and hyperalgesia. There are no effective therapeutic treatments that limit these detrimental side effects. We found pretreatment with melatonin could decrease morphine-induced analgesic tolerance. There was a significant activation of the NLRP3 inflammasome in the prefrontal cortex and the peripheral blood of morphine-treated mice compared to control animals, which could be blocked by melatonin. The inflammasome activation induced by morphine was mediated by the microglia. SiRNA knockdown or pharmacological inhibition of the NLRP3 abolished the morphine-induced inflammasome activation. Co-administration of melatonin and low-dose morphine had better analgesia effects in the murine models of pain and led to a lower NLRP3 inflammasome activity in brain tissues. Mice deficient for Nlrp3 had a higher nociceptive threshold and were less sensitive to develop morphine-induced analgesic tolerance and acetic acid-induced pain relative to wild-type animals. Concordantly, we observed a significantly elevated level of serum IL-1β, which indicates an increase of NLRP3 inflammasome activity associated with the reduced level of serum melatonin, in heroin-addicted patients relative to healthy individuals. Our results provide a solid basis for conducting a clinical trial with the co-administration of melatonin and morphine for the relief of severe pain.
Collapse
Affiliation(s)
- Qianjin Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Ling-Yan Su
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China.
| | - Chunli Sun
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Lijin Jiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Ying Miao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China; Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Min Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Rongcan Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China
| | - Xin Zuo
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Rongbin Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Ping Zheng
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China; KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Wei Xiong
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Tian Xue
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China; KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
5
|
Ruchin AB. The effect of illumination and light spectrum on growth and larvae development of Pelophylax ridibundus (Amphibia: Anura). BIOL RHYTHM RES 2019. [DOI: 10.1080/09291016.2019.1594126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Alexander B. Ruchin
- Science Department, Joint Directorate of Mordovia State Nature Reserve and Smolny National Park, Saransk, Russia
| |
Collapse
|
6
|
Haghi-Aminjan H, Farhood B, Rahimifard M, Didari T, Baeeri M, Hassani S, Hosseini R, Abdollahi M. The protective role of melatonin in chemotherapy-induced nephrotoxicity: a systematic review of non-clinical studies. Expert Opin Drug Metab Toxicol 2018; 14:937-950. [PMID: 30118646 DOI: 10.1080/17425255.2018.1513492] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 08/15/2018] [Indexed: 12/18/2022]
Abstract
BSTRACT Introduction: The aim of this study was to investigate the potential role of melatonin in the prevention of chemotherapy-induced nephrotoxicity at the preclinical level. Areas to be covered: To illuminate the possible role of melatonin in preventing chemotherapy-related nephrotoxicity, Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline was followed. A comprehensive search strategy was developed to include PubMed, Web of Science, Scopus, and Embase electronic databases from their inception to May 2018. Based on a set of prespecified inclusion and exclusion criteria, 21 non-clinical articles were ultimately included in the study. Expert opinion: Our findings clearly demonstrate that melatonin has a protective role in the prevention of chemotherapy-induced nephrotoxicity which may be caused by different chemotherapy agents such as cyclophosphamide, cisplatin, doxorubicin, methotrexate, oxaliplatin, etoposide, and daunorubicin. On the basis of current review of non-clinical studies, this protective effect of melatonin is attributed to different mechanisms such as reduction of oxidative stress, apoptosis, and inflammation. The findings presented in this review are based on non-clinical studies and thus conducting appropriate clinical trials to evaluate the real effectiveness of the concurrent use of chemotherapy agents with melatonin in the cancer patients is necessary.
Collapse
Affiliation(s)
- Hamed Haghi-Aminjan
- a Department of Toxicology and Pharmacology, Faculty of Pharmacy , Tehran University of Medical Sciences , Tehran , Iran
| | - Bagher Farhood
- b Departmentof Medical Physics and Radiology, Faculty of Paramedical Sciences , Kashan University of Medical Sciences , Kashan , Iran
| | - Mahban Rahimifard
- c Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS) , Tehran University of Medical Sciences , Tehran , Iran
| | - Tina Didari
- c Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS) , Tehran University of Medical Sciences , Tehran , Iran
| | - Maryam Baeeri
- c Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS) , Tehran University of Medical Sciences , Tehran , Iran
| | - Shokoufeh Hassani
- c Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS) , Tehran University of Medical Sciences , Tehran , Iran
| | - Rohollah Hosseini
- a Department of Toxicology and Pharmacology, Faculty of Pharmacy , Tehran University of Medical Sciences , Tehran , Iran
| | - Mohammad Abdollahi
- a Department of Toxicology and Pharmacology, Faculty of Pharmacy , Tehran University of Medical Sciences , Tehran , Iran
- c Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS) , Tehran University of Medical Sciences , Tehran , Iran
| |
Collapse
|