1
|
Vinther J. Dinosaurs as ambassadors for humanity. Curr Biol 2023; 33:R1269-R1271. [PMID: 38113832 DOI: 10.1016/j.cub.2023.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Jakob Vinther discusses the power of performance in educating children and adults about science and diversity.
Collapse
Affiliation(s)
- Jakob Vinther
- School of Earth Sciences and School of Biological Sciences, University of Bristol, Bristol, UK.
| |
Collapse
|
2
|
Slater TS, Ito S, Wakamatsu K, Zhang F, Sjövall P, Jarenmark M, Lindgren J, McNamara ME. Taphonomic experiments reveal authentic molecular signals for fossil melanins and verify preservation of phaeomelanin in fossils. Nat Commun 2023; 14:5651. [PMID: 37803012 PMCID: PMC10558522 DOI: 10.1038/s41467-023-40570-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/01/2023] [Indexed: 10/08/2023] Open
Abstract
Melanin pigments play a critical role in physiological processes and shaping animal behaviour. Fossil melanin is a unique resource for understanding the functional evolution of melanin but the impact of fossilisation on molecular signatures for eumelanin and, especially, phaeomelanin is not fully understood. Here we present a model for the chemical taphonomy of fossil eumelanin and phaeomelanin based on thermal maturation experiments using feathers from extant birds. Our results reveal which molecular signatures are authentic signals for thermally matured eumelanin and phaeomelanin, which signatures are artefacts derived from the maturation of non-melanin molecules, and how these chemical data are impacted by sample preparation. Our model correctly predicts the molecular composition of eumelanins in diverse vertebrate fossils from the Miocene and Cretaceous and, critically, identifies direct molecular evidence for phaeomelanin in these fossils. This taphonomic framework adds to the geochemical toolbox that underpins reconstructions of melanin evolution and of melanin-based coloration in fossil vertebrates.
Collapse
Affiliation(s)
- Tiffany S Slater
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland.
- Environmental Research Institute, University College Cork, Cork, Ireland.
| | - Shosuke Ito
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Aichi, Japan
| | - Kazumasa Wakamatsu
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Aichi, Japan
| | - Fucheng Zhang
- Institute of Geology and Paleontology, Linyi University, Linyi City, Shandong, China
| | - Peter Sjövall
- RISE Research Institutes of Sweden, Materials and Production, 501 15, Borås, Sweden
| | | | - Johan Lindgren
- Department of Geology, Lund University, 223 62, Lund, Sweden
| | - Maria E McNamara
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland.
- Environmental Research Institute, University College Cork, Cork, Ireland.
| |
Collapse
|
3
|
Roy A, Pittman M, Kaye TG, Saitta ET, Xu X. Correction statement for Recent advances in amniote palaeocolour reconstruction and a framework for future research (volume 95, issue 1, pp. 22-50). Biol Rev Camb Philos Soc 2023; 98:386-389. [PMID: 36320106 PMCID: PMC10117546 DOI: 10.1111/brv.12901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 01/11/2023]
Affiliation(s)
- Arindam Roy
- Department of Earth Sciences, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China.,School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol, BS8 1RJ, UK
| | - Michael Pittman
- School of Life Sciences, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, SAR, China.,Foundation for Scientific Advancement, 7023 Alhambra Drive, Sierra Vista, AZ, 85650, USA
| | - Thomas G Kaye
- Foundation for Scientific Advancement, 7023 Alhambra Drive, Sierra Vista, AZ, 85650, USA
| | - Evan T Saitta
- Department of Organismal Biology & Anatomy, University of Chicago, 1027 E 57th St, Chicago, IL, 60637, USA
| | - Xing Xu
- Chinese Academy of Sciences - Institute of Vertebrate Paleontology and Paleoanthropology, Beijing, China
| |
Collapse
|
4
|
de Alcantara Viana JV, Vieira C, Duarte RC, Romero GQ. Predator responses to prey camouflage strategies: a meta-analysis. Proc Biol Sci 2022; 289:20220980. [PMID: 36100020 PMCID: PMC9470275 DOI: 10.1098/rspb.2022.0980] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/15/2022] [Indexed: 11/12/2022] Open
Abstract
Although numerous studies about camouflage have been conducted in the last few decades, there is still a significant gap in our knowledge about the magnitude of protective value of different camouflage strategies in prey detection and survival. Furthermore, the functional significance of several camouflage strategies remains controversial. Here we carried out a comprehensive meta-analysis including comparisons of different camouflage strategies as well as predator and prey types, considering two response variables: mean predator search time (ST) (63 studies) and predator attack rate (AR) of camouflaged prey (28 studies). Overall, camouflage increased the predator ST by 62.56% and decreased the AR of prey by 27.34%. Masquerade was the camouflage strategy that most increased predator ST (295.43%). Background matching and disruptive coloration did not differ from each other. Motion camouflage did not increase ST but decreases AR on prey. We found no evidence that eyespot increases ST and decreases AR by predators. The different types of predators did not differ from each other, but caterpillars were the type of prey that most influenced the magnitude of camouflage's effect. We highlight the potential evolutionary mechanisms that led camouflage to be a highly effective anti-predatory adaptation, as well as potential discrepancies or redundancies among strategies, predator and prey types.
Collapse
Affiliation(s)
- João Vitor de Alcantara Viana
- Programa de Pós-graduação em Ecologia, Universidade Estadual de Campinas (UNICAMP), Instituto de Biologia, Laboratório de Interações Multitróficas e Biodiversidade, Campinas, São Paulo, Brazil
- Laboratório de Interações Multitróficas e Biodiversidade, Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), CP 6109, CEP 13083-970 Campinas, São Paulo, Brazil
| | - Camila Vieira
- Departamento de Ciências Básicas, Universidade de São Paulo (USP), campus de Pirassununga, CEP 13635-900 Pirassununga, São Paulo, Brazil
| | - Rafael Campos Duarte
- Universidade Federal do ABC, CEP 09606-045 São Bernardo do Campo, São Paulo, Brazil
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Penryn TR10 9FE, UK
| | - Gustavo Quevedo Romero
- Laboratório de Interações Multitróficas e Biodiversidade, Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), CP 6109, CEP 13083-970 Campinas, São Paulo, Brazil
| |
Collapse
|
5
|
Cincotta A, Nicolaï M, Campos HBN, McNamara M, D'Alba L, Shawkey MD, Kischlat EE, Yans J, Carleer R, Escuillié F, Godefroit P. Pterosaur melanosomes support signalling functions for early feathers. Nature 2022; 604:684-688. [PMID: 35444275 PMCID: PMC9046085 DOI: 10.1038/s41586-022-04622-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/07/2022] [Indexed: 01/10/2023]
Abstract
Remarkably well-preserved soft tissues in Mesozoic fossils have yielded substantial insights into the evolution of feathers1. New evidence of branched feathers in pterosaurs suggests that feathers originated in the avemetatarsalian ancestor of pterosaurs and dinosaurs in the Early Triassic2, but the homology of these pterosaur structures with feathers is controversial3,4. Reports of pterosaur feathers with homogeneous ovoid melanosome geometries2,5 suggest that they exhibited limited variation in colour, supporting hypotheses that early feathers functioned primarily in thermoregulation6. Here we report the presence of diverse melanosome geometries in the skin and simple and branched feathers of a tapejarid pterosaur from the Early Cretaceous found in Brazil. The melanosomes form distinct populations in different feather types and the skin, a feature previously known only in theropod dinosaurs, including birds. These tissue-specific melanosome geometries in pterosaurs indicate that manipulation of feather colour-and thus functions of feathers in visual communication-has deep evolutionary origins. These features show that genetic regulation of melanosome chemistry and shape7-9 was active early in feather evolution.
Collapse
Affiliation(s)
- Aude Cincotta
- Directorate Earth and History of Life, Royal Belgian Institute of Natural Sciences, Brussels, Belgium. .,Institute of Life, Earth and Environment, University of Namur, Namur, Belgium. .,School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland. .,Environmental Research Institute, University College Cork, Cork, Ireland.
| | - Michaël Nicolaï
- Evolution and Optics of Nanostructures Group, Biology Department, Ghent University, Ghent, Belgium
| | | | - Maria McNamara
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland. .,Environmental Research Institute, University College Cork, Cork, Ireland.
| | - Liliana D'Alba
- Evolution and Optics of Nanostructures Group, Biology Department, Ghent University, Ghent, Belgium.,Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Matthew D Shawkey
- Evolution and Optics of Nanostructures Group, Biology Department, Ghent University, Ghent, Belgium
| | - Edio-Ernst Kischlat
- Divisão de Bacias Sedimentares, Geological Survey of Brazil, Porto Alegre, Brazil
| | - Johan Yans
- Institute of Life, Earth and Environment, University of Namur, Namur, Belgium
| | - Robert Carleer
- Research Group of Analytical and Circular Chemistry, Institute for Material Research, Hasselt University, Diepenbeek, Belgium
| | | | - Pascal Godefroit
- Directorate Earth and History of Life, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| |
Collapse
|
6
|
Hendrickx C, Bell PR, Pittman M, Milner ARC, Cuesta E, O'Connor J, Loewen M, Currie PJ, Mateus O, Kaye TG, Delcourt R. Morphology and distribution of scales, dermal ossifications, and other non-feather integumentary structures in non-avialan theropod dinosaurs. Biol Rev Camb Philos Soc 2022; 97:960-1004. [PMID: 34991180 DOI: 10.1111/brv.12829] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 12/14/2022]
Abstract
Modern birds are typified by the presence of feathers, complex evolutionary innovations that were already widespread in the group of theropod dinosaurs (Maniraptoriformes) that include crown Aves. Squamous or scaly reptilian-like skin is, however, considered the plesiomorphic condition for theropods and dinosaurs more broadly. Here, we review the morphology and distribution of non-feathered integumentary structures in non-avialan theropods, covering squamous skin and naked skin as well as dermal ossifications. The integumentary record of non-averostran theropods is limited to tracks, which ubiquitously show a covering of tiny reticulate scales on the plantar surface of the pes. This is consistent also with younger averostran body fossils, which confirm an arthral arrangement of the digital pads. Among averostrans, squamous skin is confirmed in Ceratosauria (Carnotaurus), Allosauroidea (Allosaurus, Concavenator, Lourinhanosaurus), Compsognathidae (Juravenator), and Tyrannosauroidea (Santanaraptor, Albertosaurus, Daspletosaurus, Gorgosaurus, Tarbosaurus, Tyrannosaurus), whereas dermal ossifications consisting of sagittate and mosaic osteoderms are restricted to Ceratosaurus. Naked, non-scale bearing skin is found in the contentious tetanuran Sciurumimus, ornithomimosaurians (Ornithomimus) and possibly tyrannosauroids (Santanaraptor), and also on the patagia of scansoriopterygids (Ambopteryx, Yi). Scales are surprisingly conservative among non-avialan theropods compared to some dinosaurian groups (e.g. hadrosaurids); however, the limited preservation of tegument on most specimens hinders further interrogation. Scale patterns vary among and/or within body regions in Carnotaurus, Concavenator and Juravenator, and include polarised, snake-like ventral scales on the tail of the latter two genera. Unusual but more uniformly distributed patterning also occurs in Tyrannosaurus, whereas feature scales are present only in Albertosaurus and Carnotaurus. Few theropods currently show compelling evidence for the co-occurrence of scales and feathers (e.g. Juravenator, Sinornithosaurus), although reticulate scales were probably retained on the mani and pedes of many theropods with a heavy plumage. Feathers and filamentous structures appear to have replaced widespread scaly integuments in maniraptorans. Theropod skin, and that of dinosaurs more broadly, remains a virtually untapped area of study and the appropriation of commonly used techniques in other palaeontological fields to the study of skin holds great promise for future insights into the biology, taphonomy and relationships of these extinct animals.
Collapse
Affiliation(s)
- Christophe Hendrickx
- Unidad Ejecutora Lillo, CONICET-Fundación Miguel Lillo, 251 Miguel Lillo, San Miguel de Tucumán, Tucumán, 4000, Argentina
| | - Phil R Bell
- School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia
| | - Michael Pittman
- Vertebrate Palaeontology Laboratory, Department of Earth Sciences, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China.,Department of Earth Sciences, University College London, WC1E 6BT, United Kingdom
| | - Andrew R C Milner
- St. George Dinosaur Discovery Site at Johnson Farm, 2180 East Riverside Drive, St. George, UT, U.S.A
| | - Elena Cuesta
- Bayerische Staatssammlung für Paläontologie und Geologie, Richard-Wagner-Str. 10, Munich, 80333, Germany
| | - Jingmai O'Connor
- Field Museum of Natural History, 1400 S Lake Shore Drive, Chicago, IL, 60605, U.S.A
| | - Mark Loewen
- Department of Geology and Geophysics, University of Utah, Frederick Albert Sutton Building, 115 South 1460 East, Salt Lake City, UT, 84112, U.S.A.,Natural History Museum of Utah, 301 Wakara Way, Salt Lake City, UT, 84108, U.S.A
| | - Philip J Currie
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Octávio Mateus
- GeoBioTec, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal.,Museu da Lourinhã, 95 Rua João Luis de Moura, Lourinhã, 2530-158, Portugal
| | - Thomas G Kaye
- Foundation for Scientific Advancement, 7023 Alhambra Dr., Sierra Vista, AZ, 85650, U.S.A
| | - Rafael Delcourt
- Universidade Estadual de Campinas (UNICAMP), Instituto de Geociências, Cidade Universitária, Rua Carlos Gomes, 250, Campinas, SP, 13083-855, Brazil
| |
Collapse
|
7
|
Benton MJ, Currie PJ, Xu X. A thing with feathers. Curr Biol 2021; 31:R1406-R1409. [PMID: 34752760 DOI: 10.1016/j.cub.2021.09.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Michael Benton and colleagues reminisce about the discovery of Sinosauripteryx, the first feathered dinosaur.
Collapse
Affiliation(s)
- Michael J Benton
- School of Earth Sciences, University of Bristol, Bristol BS8 1TQ, UK.
| | - Philip J Currie
- Department of Biological Sciences, University of Alberta 116 Street and 85 Avenue, Edmonton, AB T6G 2R3, Canada
| | - Xing Xu
- IVPP, 142 Xizhimenwai Street, PO Box 643, Beijing 100044, China
| |
Collapse
|
8
|
Mavrovouna V, Penacchio O, Allen WL. Orienting to the sun improves camouflage for bilaterally symmetrical prey. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Here, we investigate the camouflage consequences of animal orientation behaviour. Shadows can be a conspicuous cue to the presence of prey. For bilaterally symmetrical animals, light field modelling indicates that camouflage will be improved when an animal orients its longitudinal axis directly towards or away from the sun, because the appearance of shadows is minimized. We test this prediction with a field predation experiment, in which wild birds hunt for artificial camouflaged prey oriented with the longitudinal axis either parallel or perpendicular to the sun. We find that prey oriented parallel to the sun are 3.93 times more likely to survive than prey oriented perpendicular to the sun. This result demonstrates the strong orientation dependence of camouflage. Given the dramatic difference in survival of prey with different orientations, we suggest that camouflage should be investigated as an important determinant of the positional behaviour of animals.
Collapse
Affiliation(s)
- Veronica Mavrovouna
- Department of Biosciences, Swansea University, Singleton Campus, Swansea SA2 8PP, UK
| | - Olivier Penacchio
- School of Psychology and Neuroscience, University of St Andrews, South Street, St Andrews, Fife KY16 9JP, UK
| | - William L Allen
- Department of Biosciences, Swansea University, Singleton Campus, Swansea SA2 8PP, UK
| |
Collapse
|
9
|
Decoding the Evolution of Melanin in Vertebrates. Trends Ecol Evol 2021; 36:430-443. [DOI: 10.1016/j.tree.2020.12.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 02/08/2023]
|
10
|
Abstract
Feathers are the most complex integumentary structures in the animal world. They come in a variety of forms, the most familiar of which are remiges (flight feathers). Flight feathers are composed of a central shaft made up of a hollow calamus (quill), which is inserted into the skin, and a more distal rachis. Hundreds of parallel barbs branch from the sides of the rachis. In turn, smaller hooked barbules branch off the barbs, allowing them to interlock in a tight zipper-like fashion to form vanes. Variations in rachis, barb and barbule morphology result in other feather types such as contour feathers, bristles and down feathers. Feathers have a remarkable array of functions - they form airfoils and elaborate display structures, they serve to camouflage and insulate, to generate and help detect sound, and even to disintegrate into powder to condition other feathers.
Collapse
|
11
|
Siomava N, Fuentes JSM, Diogo R. Deconstructing the long‐standing a priori assumption that serial homology generally involves ancestral similarity followed by anatomical divergence. J Morphol 2020; 281:1110-1132. [DOI: 10.1002/jmor.21236] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/18/2020] [Accepted: 07/07/2020] [Indexed: 12/26/2022]
Affiliation(s)
- Natalia Siomava
- Department of Anatomy Howard University College of Medicine Washington District of Columbia USA
| | | | - Rui Diogo
- Department of Anatomy Howard University College of Medicine Washington District of Columbia USA
| |
Collapse
|
12
|
Hierarchical biota-level and taxonomic controls on the chemistry of fossil melanosomes revealed using synchrotron X-ray fluorescence. Sci Rep 2020; 10:8970. [PMID: 32488139 PMCID: PMC7265528 DOI: 10.1038/s41598-020-65868-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 05/12/2020] [Indexed: 12/22/2022] Open
Abstract
Fossil melanosomes, micron-sized granules rich in melanin in vivo, provide key information for investigations of the original coloration, taxonomy and internal anatomy of fossil vertebrates. Such studies rely, in part, on analysis of the inorganic chemistry of preserved melanosomes and an understanding of melanosome chemical taphonomy. The extent to which the preserved chemistry of fossil melanosomes is biased by biotic and abiotic factors is, however, unknown. Here we report the discovery of hierarchical controls on the inorganic chemistry of melanosomes from fossil vertebrates from nine biotas. The chemical data are dominated by a strong biota-level signal, indicating that the primary taphonomic control is the diagenetic history of the host sediment. This extrinsic control is superimposed by a biological, tissue-level control; tissue-specific chemical variation is most likely to survive in fossils where the inorganic chemistry of preserved melanosomes is distinct from that of the host sediment. Comparative analysis of our data for fossil and modern amphibians reveals that most fossil specimens show tissue-specific melanosome chemistries that differ from those of extant analogues, strongly suggesting alteration of original melanosome chemistry. Collectively, these findings form a predictive tool for the identification of fossil deposits with well-preserved melanosomes amenable to studies of fossil colour and anatomy.
Collapse
|
13
|
Pogoda P, Zuber M, Baumbach T, Schoch RR, Kupfer A. Cranial shape evolution of extant and fossil crocodile newts and its relation to reproduction and ecology. J Anat 2020; 237:285-300. [PMID: 32297321 PMCID: PMC7369190 DOI: 10.1111/joa.13201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/19/2020] [Accepted: 03/19/2020] [Indexed: 01/22/2023] Open
Abstract
The diversity of the vertebrate cranial shape of phylogenetically related taxa allows conclusions on ecology and life history. As pleurodeline newts (the genera Echinotriton, Pleurodeles and Tylototriton) have polymorphic reproductive modes, they are highly suitable for following cranial shape evolution in relation to reproduction and environment. We investigated interspecific differences externally and differences in the cranial shape of pleurodeline newts via two‐dimensional geometric morphometrics. Our analyses also included the closely related but extinct genus Chelotriton to better follow the evolutionary history of cranial shape. Pleurodeles was morphologically distinct in relation to other phylogenetically basal salamanders. The subgenera within Tylototriton (Tylototriton and Yaotriton) were well separated in morphospace, whereas Echinotriton resembled the subgenus Yaotriton more than Tylototriton. Oviposition site choice correlated with phylogeny and morphology. Only the mating mode, with a random distribution along the phylogenetic tree, separated crocodile newts into two morphologically distinct groups. Extinct Chelotriton likely represented several species and were morphologically and ecologically more similar to Echinotriton and Yaotriton than to Tylototriton subgenera. Our data also provide the first comprehensive morphological support for the molecular phylogeny of pleurodeline newts.
Collapse
Affiliation(s)
- Peter Pogoda
- Department of Zoology, State Museum of Natural History Stuttgart, Stuttgart, Germany.,Comparative Zoology, Institute of Evolution and Ecology, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Marcus Zuber
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany.,Laboratory for Applications of Synchrotron Radiation (LAS), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Tilo Baumbach
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany.,Laboratory for Applications of Synchrotron Radiation (LAS), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Rainer R Schoch
- Department of Paleontology, State Museum of Natural History Stuttgart, Stuttgart, Germany
| | - Alexander Kupfer
- Department of Zoology, State Museum of Natural History Stuttgart, Stuttgart, Germany.,Institute of Zoology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
14
|
Roy A, Pittman M, Saitta ET, Kaye TG, Xu X. Recent advances in amniote palaeocolour reconstruction and a framework for future research. Biol Rev Camb Philos Soc 2020; 95:22-50. [PMID: 31538399 PMCID: PMC7004074 DOI: 10.1111/brv.12552] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/12/2019] [Accepted: 08/15/2019] [Indexed: 01/24/2023]
Abstract
Preserved melanin pigments have been discovered in fossilised integumentary appendages of several amniote lineages (fishes, frogs, snakes, marine reptiles, non-avialan dinosaurs, birds, and mammals) excavated from lagerstätten across the globe. Melanisation is a leading factor in organic integument preservation in these fossils. Melanin in extant vertebrates is typically stored in rod- to sphere-shaped, lysosome-derived, membrane-bound vesicles called melanosomes. Black, dark brown, and grey colours are produced by eumelanin, and reddish-brown colours are produced by phaeomelanin. Specific morphotypes and nanostructural arrangements of melanosomes and their relation to the keratin matrix in integumentary appendages create the so-called 'structural colours'. Reconstruction of colour patterns in ancient animals has opened an exciting new avenue for studying their life, behaviour and ecology. Modern relationships between the shape, arrangement, and size of avian melanosomes, melanin chemistry, and feather colour have been applied to reconstruct the hues and colour patterns of isolated feathers and plumages of the dinosaurs Anchiornis, Sinosauropteryx, and Microraptor in seminal papers that initiated the field of palaeocolour reconstruction. Since then, further research has identified countershading camouflage patterns, and informed subsequent predictions on the ecology and behaviour of these extinct animals. However, palaeocolour reconstruction remains a nascent field, and current approaches have considerable potential for further refinement, standardisation, and expansion. This includes detailed study of non-melanic pigments that might be preserved in fossilised integuments. A common issue among existing palaeocolour studies is the lack of contextualisation of different lines of evidence and the wide variety of techniques currently employed. To that end, this review focused on fossil amniotes: (i) produces an overarching framework that appropriately reconstructs palaeocolour by accounting for the chemical signatures of various pigments, morphology and local arrangement of pigment-bearing vesicles, pigment concentration, macroscopic colour patterns, and taphonomy; (ii) provides background context for the evolution of colour-producing mechanisms; and (iii) encourages future efforts in palaeocolour reconstructions particularly of less-studied groups such as non-dinosaur archosaurs and non-archosaur amniotes.
Collapse
Affiliation(s)
- Arindam Roy
- Vertebrate Palaeontology Laboratory, Department of Earth SciencesThe University of Hong KongPokfulamHong Kong SARChina
| | - Michael Pittman
- Vertebrate Palaeontology Laboratory, Department of Earth SciencesThe University of Hong KongPokfulamHong Kong SARChina
| | - Evan T. Saitta
- Integrative Research Center, Section of Earth SciencesField Museum of Natural History1400 S. Lake Shore Drive, ChicagoIL60605U.S.A.
| | - Thomas G. Kaye
- Foundation for Scientific Advancement7023 Alhambra Drive, Sierra VistaAZ85650U.S.A.
| | - Xing Xu
- Institute of Vertebrate Paleontology and PaleoanthropologyChinese Academy of Sciences142 Xizhimenwai Street.Beijing100044China
| |
Collapse
|
15
|
Slater TS, McNamara ME, Orr PJ, Foley TB, Ito S, Wakamatsu K. Taphonomic experiments resolve controls on the preservation of melanosomes and keratinous tissues in feathers. PALAEONTOLOGY 2020; 63:103-115. [PMID: 32025055 PMCID: PMC6988486 DOI: 10.1111/pala.12445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/15/2019] [Indexed: 06/10/2023]
Abstract
Fossils are a key source of data on the evolution of feather structure and function through deep time, but their ability to resolve macroevolutionary questions is compromised by an incomplete understanding of their taphonomy. Critically, the relative preservation potential of two key feather components, melanosomes and keratinous tissue, is not fully resolved. Recent studies suggesting that melanosomes are preferentially preserved conflict with observations that melanosomes preserve in fossil feathers as external moulds in an organic matrix. To date, there is no model to explain the latter mode of melanosome preservation. We addressed these issues by degrading feathers in systematic taphonomic experiments incorporating decay, maturation and oxidation in isolation and combination. Our results reveal that the production of mouldic melanosomes requires interactions with an oxidant and is most likely to occur prior to substantial maturation. This constrains the taphonomic conditions under which melanosomes are likely to be fossilized. Critically, our experiments also confirm that keratinous feather structures have a higher preservation potential than melanosomes under a range of diagenetic conditions, supporting hitherto controversial hypotheses that fossil feathers can retain degraded keratinous structures.
Collapse
Affiliation(s)
- Tiffany S. Slater
- School of Biological, Earth & Environmental SciencesUniversity College CorkCorkIreland
| | - Maria E. McNamara
- School of Biological, Earth & Environmental SciencesUniversity College CorkCorkIreland
| | - Patrick J. Orr
- UCDSchool of Earth SciencesUniversity College DublinDublinIreland
| | - Tara B. Foley
- Department of Anatomy & NeuroscienceUniversity College CorkCorkIreland
| | - Shosuke Ito
- Department of ChemistryFujita Health University School of Health SciencesToyoakeAichiJapan
| | - Kazumasa Wakamatsu
- Department of ChemistryFujita Health University School of Health SciencesToyoakeAichiJapan
| |
Collapse
|
16
|
Pinheiro FL, Prado G, Ito S, Simon JD, Wakamatsu K, Anelli LE, Andrade JAF, Glass K. Chemical characterization of pterosaur melanin challenges color inferences in extinct animals. Sci Rep 2019; 9:15947. [PMID: 31685890 PMCID: PMC6828676 DOI: 10.1038/s41598-019-52318-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/11/2019] [Indexed: 12/18/2022] Open
Abstract
Melanosomes (melanin-bearing organelles) are common in the fossil record occurring as dense packs of globular microbodies. The organic component comprising the melanosome, melanin, is often preserved in fossils, allowing identification of the chemical nature of the constituent pigment. In present-day vertebrates, melanosome morphology correlates with their pigment content in selected melanin-containing structures, and this interdependency is employed in the color reconstruction of extinct animals. The lack of analyses integrating the morphology of fossil melanosomes with the chemical identification of pigments, however, makes these inferences tentative. Here, we chemically characterize the melanin content of the soft tissue headcrest of the pterosaur Tupandactylus imperator by alkaline hydrogen peroxide oxidation followed by high-performance liquid chromatography. Our results demonstrate the unequivocal presence of eumelanin in T. imperator headcrest. Scanning electron microscopy followed by statistical analyses, however, reveal that preserved melanosomes containing eumelanin are undistinguishable to pheomelanin-bearing organelles of extant vertebrates. Based on these new findings, straightforward color inferences based on melanosome morphology may not be valid for all fossil vertebrates, and color reconstructions based on ultrastructure alone should be regarded with caution.
Collapse
Affiliation(s)
- Felipe L Pinheiro
- Laboratório de Paleobiologia, Universidade Federal do Pampa, São Gabriel, 97300-162, Brazil.
| | - Gustavo Prado
- Instituto de Geociências, Universidade de São Paulo, São Paulo, Brazil.
| | - Shosuke Ito
- Department of Chemistry, Fujita Health University School of Medical Sciences, Toyoake, Aichi, 470-1192, Japan
| | | | - Kazumasa Wakamatsu
- Department of Chemistry, Fujita Health University School of Medical Sciences, Toyoake, Aichi, 470-1192, Japan
| | - Luiz E Anelli
- Instituto de Geociências, Universidade de São Paulo, São Paulo, Brazil
| | - José A F Andrade
- Centro de Pesquisas Paleontológicas da Chapada do Araripe, Departamento Nacional de Produção Mineral, 63100-440, Crato, Brazil
| | - Keely Glass
- Department of Chemistry, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
17
|
Tissue-specific geometry and chemistry of modern and fossilized melanosomes reveal internal anatomy of extinct vertebrates. Proc Natl Acad Sci U S A 2019; 116:17880-17889. [PMID: 31427524 PMCID: PMC6731645 DOI: 10.1073/pnas.1820285116] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Recent reports of nonintegumentary melanosomes in fossils hint at functions for melanin beyond color production, but the biology and evolution of internal melanins are poorly understood. Our results show that internal melanosomes are widespread in diverse fossil and modern vertebrates and have tissue-specific geometries and metal chemistries. Tissue-specific chemical signatures can persist in fossils despite some diagenetic overprint, allowing the reconstruction of internal soft-tissue anatomy in fossil vertebrates, and suggest that links between melanin and metal regulation have deep evolutionary origins in vertebrates. Recent discoveries of nonintegumentary melanosomes in extant and fossil amphibians offer potential insights into the physiological functions of melanin not directly related to color production, but the phylogenetic distribution and evolutionary history of these internal melanosomes has not been characterized systematically. Here, we present a holistic method to discriminate among melanized tissues by analyzing the anatomical distribution, morphology, and chemistry of melanosomes in various tissues in a phylogenetically broad sample of extant and fossil vertebrates. Our results show that internal melanosomes in all extant vertebrates analyzed have tissue-specific geometries and elemental signatures. Similar distinct populations of preserved melanosomes in phylogenetically diverse vertebrate fossils often map onto specific anatomical features. This approach also reveals the presence of various melanosome-rich internal tissues in fossils, providing a mechanism for the interpretation of the internal anatomy of ancient vertebrates. Collectively, these data indicate that vertebrate melanins share fundamental physiological roles in homeostasis via the scavenging and sequestering of metals and suggest that intimate links between melanin and metal metabolism in vertebrates have deep evolutionary origins.
Collapse
|
18
|
Babarović F, Puttick MN, Zaher M, Learmonth E, Gallimore EJ, Smithwick FM, Mayr G, Vinther J. Characterization of melanosomes involved in the production of non-iridescent structural feather colours and their detection in the fossil record. J R Soc Interface 2019; 16:20180921. [PMID: 31238836 DOI: 10.1098/rsif.2018.0921] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Non-iridescent structural colour in avian feathers is produced by coherent light scattering through quasi-ordered nanocavities in the keratin cortex of the barbs. To absorb unscattered light, melanosomes form a basal layer underneath the nanocavities. It has been shown that throughout Aves, melanosome morphology reflects broad categories of melanin-based coloration, as well as iridescence, allowing identification of palaeocolours in exceptionally preserved fossils. However, no studies have yet investigated the morphology of melanosomes in non-iridescent structural colour. Here, we analyse a wide sample of melanosomes from feathers that express non-iridescent structural colour from a phylogenetically broad range of extant avians to describe their morphology and compare them with other avian melanosome categories. We find that investigated melanosomes are typically wide (approx. 300 nm) and long (approx. 1400 nm), distinct from melanosomes found in black, brown and iridescent feathers, but overlapping significantly with melanosomes from grey feathers. This may suggest a developmental, and perhaps evolutionary, relationship between grey coloration and non-iridescent structural colours. We show that through analyses of fossil melanosomes, melanosomes indicative of non-iridescent structural colour can be predicted in an Eocene stem group roller ( Eocoracias: Coraciiformes) and with phylogenetic comparative methods the likely hue can be surmised. The overlap between melanosomes from grey and non-iridescent structurally coloured feathers complicates their distinction in fossil samples where keratin does not preserve. However, the abundance of grey coloration relative to non-iridescent structural coloration makes the former a more likely occurrence except in phylogenetically bracketed specimens like the specimen of Eocoracias studied here.
Collapse
Affiliation(s)
- Frane Babarović
- 1 Department of Animal and Plant Sciences, University of Sheffield , Sheffield S10 2TN , UK.,3 School of Earth Sciences, University of Bristol , Wills Memorial Building, Queen's Road, Bristol BS8 1RJ , UK
| | - Mark N Puttick
- 2 Department of Biology and Biochemistry, University of Bath , Claverton Down, Bath BA2 7AY , UK
| | - Marta Zaher
- 3 School of Earth Sciences, University of Bristol , Wills Memorial Building, Queen's Road, Bristol BS8 1RJ , UK
| | - Elizabeth Learmonth
- 4 School of Biological Sciences , Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TH , UK
| | - Emily-Jane Gallimore
- 4 School of Biological Sciences , Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TH , UK
| | - Fiann M Smithwick
- 3 School of Earth Sciences, University of Bristol , Wills Memorial Building, Queen's Road, Bristol BS8 1RJ , UK
| | - Gerald Mayr
- 5 Senckenberg Research Institute, Section of Ornithology , Senckenberganlage 25, 60325 Frankfurt am Main , Germany
| | - Jakob Vinther
- 3 School of Earth Sciences, University of Bristol , Wills Memorial Building, Queen's Road, Bristol BS8 1RJ , UK.,4 School of Biological Sciences , Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TH , UK
| |
Collapse
|
19
|
Affiliation(s)
- I. C. Cuthill
- School of Biological Sciences University of Bristol Bristol UK
| |
Collapse
|
20
|
Pickrell J. Camouflage plumage patterns offer clue to dinosaur's habitat. Nature 2017; 551:17. [PMID: 29094706 DOI: 10.1038/nature.2017.22891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|