1
|
Smith MR, Long EJ, Dhungana A, Dobson KJ, Yang J, Zhang X. Organ systems of a Cambrian euarthropod larva. Nature 2024; 633:120-126. [PMID: 39085610 PMCID: PMC11374701 DOI: 10.1038/s41586-024-07756-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/26/2024] [Indexed: 08/02/2024]
Abstract
The Cambrian radiation of euarthropods can be attributed to an adaptable body plan. Sophisticated brains and specialized feeding appendages, which are elaborations of serially repeated organ systems and jointed appendages, underpin the dominance of Euarthropoda in a broad suite of ecological settings. The origin of the euarthropod body plan from a grade of vermiform taxa with hydrostatic lobopodous appendages ('lobopodian worms')1,2 is founded on data from Burgess Shale-type fossils. However, the compaction associated with such preservation obscures internal anatomy3-6. Phosphatized microfossils provide a complementary three-dimensional perspective on early crown group euarthropods7, but few lobopodians8,9. Here we describe the internal and external anatomy of a three-dimensionally preserved euarthropod larva with lobopods, midgut glands and a sophisticated head. The architecture of the nervous system informs the early configuration of the euarthropod brain and its associated appendages and sensory organs, clarifying homologies across Panarthropoda. The deep evolutionary position of Youti yuanshi gen. et sp. nov. informs the sequence of character acquisition during arthropod evolution, demonstrating a deep origin of sophisticated haemolymph circulatory systems, and illuminating the internal anatomical changes that propelled the rise and diversification of this enduringly successful group.
Collapse
Affiliation(s)
- Martin R Smith
- Department of Earth Sciences, Durham University, Durham, UK.
| | - Emma J Long
- Department of Earth Sciences, Durham University, Durham, UK
- Science Group, Natural History Museum, London, UK
- Centre for Ecology and Conservation, University of Exeter, Cornwall, UK
| | | | - Katherine J Dobson
- Department of Earth Sciences, Durham University, Durham, UK
- Department of Civil and Environmental Engineering, University of Strathclyde, Glasgow, UK
- Department of Chemical and Process Engineering, University of Strathclyde, Glasgow, UK
| | - Jie Yang
- Institute of Palaeontology, Yunnan University, Chenggong, Kunming, China
| | - Xiguang Zhang
- Institute of Palaeontology, Yunnan University, Chenggong, Kunming, China
| |
Collapse
|
2
|
Ortega-Hernández J, Lerosey-Aubril R, Losso SR, Weaver JC. Neuroanatomy in a middle Cambrian mollisoniid and the ancestral nervous system organization of chelicerates. Nat Commun 2022; 13:410. [PMID: 35058474 PMCID: PMC8776822 DOI: 10.1038/s41467-022-28054-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 12/17/2021] [Indexed: 11/09/2022] Open
Abstract
Recent years have witnessed a steady increase in reports of fossilized nervous tissues among Cambrian total-group euarthropods, which allow reconstructing the early evolutionary history of these animals. Here, we describe the central nervous system of the stem-group chelicerate Mollisonia symmetrica from the mid-Cambrian Burgess Shale. The fossilized neurological anatomy of M. symmetrica includes optic nerves connected to a pair of lateral eyes, a putative condensed cephalic synganglion, and a metameric ventral nerve cord. Each trunk tergite is associated with a condensed ganglion bearing lateral segmental nerves, and linked by longitudinal connectives. The nervous system is preserved as reflective carbonaceous films underneath the phosphatized digestive tract. Our results suggest that M. symmetrica illustrates the ancestral organization of stem-group Chelicerata before the evolution of the derived neuroanatomical characters observed in Cambrian megacheirans and extant representatives. Our findings reveal a conflict between the phylogenetic signals provided by neuroanatomical and appendicular data, which we interpret as evidence of mosaic evolution in the chelicerate stem-lineage.
Collapse
Affiliation(s)
- Javier Ortega-Hernández
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA.
| | - Rudy Lerosey-Aubril
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Sarah R Losso
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - James C Weaver
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 60 Oxford Street, Cambridge, MA, 02138, USA
| |
Collapse
|
3
|
Jiao DG, Pates S, Lerosey-Aubril R, Ortega-Hernández J, Yang J, Lan T, Zhang XG. New multipodomerous appendages of stem-group euarthropods from the Cambrian (Stage 4) Guanshan Konservat-Lagerstätte. ROYAL SOCIETY OPEN SCIENCE 2021; 8:211134. [PMID: 34804574 PMCID: PMC8580442 DOI: 10.1098/rsos.211134] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/04/2021] [Indexed: 05/13/2023]
Abstract
Stem-group euarthropods are important for understanding the early evolutionary and ecological history of the most species-rich animal phylum on Earth. Of particular interest are fossil taxa that occupy a phylogenetic position immediately crownwards of radiodonts, for this part of the euarthropod tree is associated with the appearance of several morphological features that characterize extant members of the group. Here, we report two new euarthropods from the Cambrian Stage 4 Guanshan Biota of South China. The fuxianhuiid Alacaris? sp. is represented by isolated appendages composed of a gnathobasic protopodite and an endite-bearing endopod of at least 20 podomeres. This material represents the youngest occurrence of the family Chengjiangocarididae, and its first record outside the Chengjiang and Xiaoshiba biotas. We also describe Lihuacaris ferox gen. et sp. nov. based on well-preserved and robust isolated appendages. Lihuacaris ferox exhibits an atypical combination of characters including an enlarged rectangular base, 11 endite-bearing podomeres and a hypertrophied distal element bearing 8-10 curved spines. Alacaris? sp. appendages display adaptations for macrophagy. Lihuacaris ferox appendages resemble the frontal appendages of radiodonts, as well as the post-oral endopods of chengjiangocaridid fuxianhuids and other deuteropods with well-documented raptorial/predatory habits. Lihuacaris ferox contributes towards the record of endemic biodiversity in the Guanshan Biota.
Collapse
Affiliation(s)
- De-guang Jiao
- Yuxi Normal University, Kunming, 134 Phoenix Road, Yuxi, Yunnan 653100, People's Republic of China
- Key Laboratory for Palaeobiology, Yunnan University, Kunming 650091, People's Republic of China
| | - Stephen Pates
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Rudy Lerosey-Aubril
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Javier Ortega-Hernández
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Jie Yang
- Key Laboratory for Palaeobiology, Yunnan University, Kunming 650091, People's Republic of China
| | - Tian Lan
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550003, People's Republic of China
| | - Xi-guang Zhang
- Key Laboratory for Palaeobiology, Yunnan University, Kunming 650091, People's Republic of China
| |
Collapse
|
4
|
Lan T, Zhao Y, Zhao F, He Y, Martinez P, Strausfeld NJ. Leanchoiliidae reveals the ancestral organization of the stem euarthropod brain. Curr Biol 2021; 31:4397-4404.e2. [PMID: 34416180 DOI: 10.1016/j.cub.2021.07.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/03/2021] [Accepted: 07/22/2021] [Indexed: 11/25/2022]
Abstract
Fossils provide insights into how organs may have diversified over geological time.1 However, diversification already accomplished early in evolution can obscure ancestral events leading to it. For example, already by the mid-Cambrian period, euarthropods had condensed brains typifying modern mandibulate lineages.2 However, the demonstration that extant euarthropods and chordates share orthologous developmental control genes defining the segmental fore-, mid-, and hindbrain suggests that those character states were present even before the onset of the Cambrian.3 Fossilized nervous systems of stem Euarthropoda might, therefore, be expected to reveal ancestral segmental organization, from which divergent arrangements emerged. Here, we demonstrate unsurpassed preservation of cerebral tissue in Kaili leanchoiliids revealing near-identical arrangements of bilaterally symmetric ganglia identified as the proto-, deuto-, and tritocerebra disposed behind an asegmental frontal domain, the prosocerebrum, from which paired nerves extend to labral ganglia flanking the stomodeum. This organization corresponds to labral connections hallmarking extant euarthropod clades4 and to predicted transformations of presegmental ganglia serving raptorial preocular appendages of Radiodonta.5 Trace nervous system in the gilled lobopodian Kerygmachela kierkegaardi6 suggests an even deeper prosocerebral ancestry. An asegmental prosocerebrum resolves its location relative to the midline asegmental sclerite of the radiodontan head, which persists in stem Euarthropoda.7 Here, data from two Kaili Leanchoilia, with additional reference to Alalcomenaeus,8,9 demonstrate that Cambrian stem Euarthropoda confirm genomic and developmental studies10-15 claiming that the most frontal domain of the euarthropod brain is a unique evolutionary module distinct from, and ancestral to, the fore-, mid-, and hindbrain.
Collapse
Affiliation(s)
- Tian Lan
- Guizhou Research Center for Palaeobiology, Guizhou University, Guiyang, Guizhou, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, The College of Resources and Environmental Engineering, Guizhou University, Guiyang 500025, Guizhou, China.
| | - Yuanlong Zhao
- Guizhou Research Center for Palaeobiology, Guizhou University, Guiyang, Guizhou, China
| | - Fangchen Zhao
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Centre for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, Nanjing, China
| | - You He
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Pedro Martinez
- Departament de Genetica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain; Institut Català de Recerca i Estudis Avancats (ICREA), Passeig de Lluís Companys, Barcelona 08010, Spain
| | | |
Collapse
|
5
|
Bicknell RDC, Holmes JD, Edgecombe GD, Losso SR, Ortega-Hernández J, Wroe S, Paterson JR. Biomechanical analyses of Cambrian euarthropod limbs reveal their effectiveness in mastication and durophagy. Proc Biol Sci 2021; 288:20202075. [PMID: 33499790 DOI: 10.1098/rspb.2020.2075] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Durophagy arose in the Cambrian and greatly influenced the diversification of biomineralized defensive structures throughout the Phanerozoic. Spinose gnathobases on protopodites of Cambrian euarthropod limbs are considered key innovations for shell-crushing, yet few studies have demonstrated their effectiveness with biomechanical models. Here we present finite-element analysis models of two Cambrian trilobites with prominent gnathobases-Redlichia rex and Olenoides serratus-and compare these to the protopodites of the Cambrian euarthropod Sidneyia inexpectans and the modern American horseshoe crab, Limulus polyphemus. Results show that L. polyphemus, S. inexpectans and R. rex have broadly similar microstrain patterns, reflecting effective durophagous abilities. Conversely, low microstrain values across the O. serratus protopodite suggest that the elongate gnathobasic spines transferred minimal strain, implying that this species was less well-adapted to masticate hard prey. These results confirm that Cambrian euarthropods with transversely elongate protopodites bearing short, robust gnathobasic spines were likely durophages. Comparatively, taxa with shorter protopodites armed with long spines, such as O. serratus, were more likely restricted to a soft food diet. The prevalence of Cambrian gnathobase-bearing euarthropods and their various feeding specializations may have accelerated the development of complex trophic relationships within early animal ecosystems, especially the 'arms race' between predators and biomineralized prey.
Collapse
Affiliation(s)
- Russell D C Bicknell
- Palaeoscience Research Centre, School of Environmental & Rural Science University of New England, Armidale, NSW 2351, Australia.,Function, Evolution and Anatomy Research Lab, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - James D Holmes
- School of Biological Sciences, University of Adelaide, North Terrace, Adelaide, SA 5005, Australia
| | - Gregory D Edgecombe
- Department of Earth Sciences, The Natural History Museum, London SW7 5BD, UK
| | - Sarah R Losso
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Javier Ortega-Hernández
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Stephen Wroe
- Palaeoscience Research Centre, School of Environmental & Rural Science University of New England, Armidale, NSW 2351, Australia.,Function, Evolution and Anatomy Research Lab, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - John R Paterson
- Palaeoscience Research Centre, School of Environmental & Rural Science University of New England, Armidale, NSW 2351, Australia
| |
Collapse
|
6
|
Liu Y, Ortega-Hernández J, Chen H, Mai H, Zhai D, Hou X. Computed tomography sheds new light on the affinities of the enigmatic euarthropod Jianshania furcatus from the early Cambrian Chengjiang biota. BMC Evol Biol 2020; 20:62. [PMID: 32487135 PMCID: PMC7268425 DOI: 10.1186/s12862-020-01625-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/11/2020] [Indexed: 11/16/2022] Open
Abstract
Background The Chengjiang biota is one of the most species-rich Cambrian Konservat-Lagerstätten, and preserves a community dominated by non-biomineralized euarthropods. However, several Chengjiang euarthropods have an unfamiliar morphology, are extremely rare, or incompletely preserved. Results We employed micro-computed tomography to restudy the enigmatic euarthropod Jianshania furcatus. We reveal new morphological details, and demonstrate that the specimens assigned to this species represent two different taxa. The holotype of J. furcatus features a head shield with paired anterolateral notches, stalked lateral eyes, and an articulated tailspine with a bifurcate termination. The other specimen is formally redescribed as Xiaocaris luoi gen. et sp. nov., and is characterized by stalked eyes connected to an anterior sclerite, a subtrapezoidal head shield covering three small segments with reduced tergites, a trunk with 15 overlapping tergites with a well-developed dorsal keel, and paired tail flukes. Conclusions The presence of antennae, biramous appendages with endopods composed of 15 articles, and multiple appendage pairs associated with the trunk tergites identify X. luoi nov. as a representative of Fuxianhuiida, an early branching group of stem-group euarthropods endemic to the early Cambrian of Southwest China. X. luoi nov. represents the fifth fuxianhuiid species described from the Chengjiang biota, and its functional morphology illuminates the ecological diversity of this important clade for understanding the early evolutionary history of euarthropods.
Collapse
Affiliation(s)
- Yu Liu
- Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan University, Kunming, 650500, China. .,MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Kunming, 650500, China.
| | - Javier Ortega-Hernández
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA.
| | - Hong Chen
- Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan University, Kunming, 650500, China.,MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Kunming, 650500, China
| | - Huijuan Mai
- Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan University, Kunming, 650500, China.,MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Kunming, 650500, China
| | - Dayou Zhai
- Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan University, Kunming, 650500, China.,MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Kunming, 650500, China
| | - Xianguang Hou
- Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan University, Kunming, 650500, China.,MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Kunming, 650500, China
| |
Collapse
|
7
|
Ortega-Hernández J, Lerosey-Aubril R, Pates S. Proclivity of nervous system preservation in Cambrian Burgess Shale-type deposits. Proc Biol Sci 2019; 286:20192370. [PMID: 31822253 PMCID: PMC6939931 DOI: 10.1098/rspb.2019.2370] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Recent investigations on neurological tissues preserved in Cambrian fossils have clarified the phylogenetic affinities and head segmentation in pivotal members of stem-group Euarthropoda. However, palaeoneuroanatomical features are often incomplete or described from single exceptional specimens, raising concerns about the morphological interpretation of fossilized neurological structures and their significance for early euarthropod evolution. Here, we describe the central nervous system (CNS) of the short great-appendage euarthropod Alalcomenaeus based on material from two Cambrian Burgess Shale-type deposits of the American Great Basin, the Pioche Formation (Stage 4) and the Marjum Formation (Drumian). The specimens reveal complementary ventral and lateral views of the CNS, preserved as a dark carbonaceous compression throughout the body. The head features a dorsal brain connected to four stalked ventral eyes, and four pairs of segmental nerves. The first to seventh trunk tergites overlie a ventral nerve cord with seven ganglia, each associated with paired sets of segmental nerve bundles. Posteriorly, the nerve cord features elongate thread-like connectives. The Great Basin fossils strengthen the original description—and broader evolutionary implications—of the CNS in Alalcomenaeus from the early Cambrian (Stage 3) Chengjiang deposit of South China. The spatio-temporal recurrence of fossilized neural tissues in Cambrian Konservat-Lagerstätten across North America (Pioche, Burgess Shale, Marjum) and South China (Chengjiang, Xiaoshiba) indicates that their preservation is consistent with the mechanism of Burgess Shale-type fossilization, without the need to invoke alternative taphonomic pathways or the presence of microbial biofilms.
Collapse
Affiliation(s)
- Javier Ortega-Hernández
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Rudy Lerosey-Aubril
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Stephen Pates
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| |
Collapse
|
8
|
Abstract
Ortega-Hernández et al. introduce fuxianhuiids, Cambrian arthropods that are important for our understaindg how the largest animal phylum evolved.
Collapse
Affiliation(s)
- Javier Ortega-Hernández
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK; Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA.
| | - Jie Yang
- Key Laboratory for Palaeobiology, Yunnan University, Kunming 650091, China
| | - Xi-Guang Zhang
- Key Laboratory for Palaeobiology, Yunnan University, Kunming 650091, China.
| |
Collapse
|
9
|
Chipman AD, Edgecombe GD. Developing an integrated understanding of the evolution of arthropod segmentation using fossils and evo-devo. Proc Biol Sci 2019; 286:20191881. [PMID: 31575373 DOI: 10.1098/rspb.2019.1881] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Segmentation is fundamental to the arthropod body plan. Understanding the evolutionary steps by which arthropods became segmented is being transformed by the integration of data from evolutionary developmental biology (evo-devo), Cambrian fossils that allow the stepwise acquisition of segmental characters to be traced in the arthropod stem-group, and the incorporation of fossils into an increasingly well-supported phylogenetic framework for extant arthropods based on genomic-scale datasets. Both evo-devo and palaeontology make novel predictions about the evolution of segmentation that serve as testable hypotheses for the other, complementary data source. Fossils underpin such hypotheses as arthropodization originating in a frontal appendage and then being co-opted into other segments, and segmentation of the endodermal midgut in the arthropod stem-group. Insights from development, such as tagmatization being associated with different modes of segment generation in different body regions, and a distinct patterning of the anterior head segments, are complemented by palaeontological evidence for the pattern of tagmatization during ontogeny of exceptionally preserved fossils. Fossil and developmental data together provide evidence for a short head in stem-group arthropods and the mechanism of its formation and retention. Future breakthroughs are expected from identification of molecular signatures of developmental innovations within a phylogenetic framework, and from a focus on later developmental stages to identify the differentiation of repeated units of different systems within segmental precursors.
Collapse
Affiliation(s)
- Ariel D Chipman
- Department of Ecology, Evolution and Behavior, The Silberman Institute of Life Sciences, Edmond J. Safra Campus - Givat Ram, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Gregory D Edgecombe
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| |
Collapse
|
10
|
Chen X, Ortega-Hernández J, Wolfe JM, Zhai D, Hou X, Chen A, Mai H, Liu Y. The appendicular morphology of Sinoburius lunaris and the evolution of the artiopodan clade Xandarellida (Euarthropoda, early Cambrian) from South China. BMC Evol Biol 2019; 19:165. [PMID: 31387545 PMCID: PMC6685191 DOI: 10.1186/s12862-019-1491-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/29/2019] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Artiopodan euarthropods represent common and abundant faunal components in sites with exceptional preservation during the Cambrian. The Chengjiang biota in South China contains numerous taxa that are exclusively known from this deposit, and thus offer a unique perspective on euarthropod diversity during the early Cambrian. One such endemic taxon is the non-trilobite artiopodan Sinoburius lunaris, which has been known for approximately three decades, but few details of its anatomy are well understood due to its rarity within the Chengjiang, as well as technical limitations for the study of these fossils. Furthermore, the available material does not provide clear information on the ventral organization of this animal, obscuring our understanding of phylogenetically significant details such as the appendages. RESULTS We employed X-ray computed tomography to study the non-biomineralized morphology of Sinoburius lunaris. Due to the replacement of the delicate anatomy with pyrite typical of Chengjiang fossils, computed tomography reveals substantial details of the ventral anatomy of Sinoburius lunaris, and allow us to observe in detail the three-dimensionally preserved appendicular organization of this taxon for the first time. The dorsal exoskeleton consists of a crescent-shaped head shield with well-developed genal spines, a thorax with seven freely articulating tergites, and a fused pygidium with lateral and median spines. The head bears a pair of ventral stalked eyes that are accommodated by dorsal exoskeletal bulges, and an oval elongate ventral hypostome. The appendicular organization of the head is unique among Artiopoda. The deutocerebral antennae are reduced, consisting of only five podomeres, and bear an antennal scale on the second podomere that most likely represents an exite rather than a true ramus. The head includes four post-antennal biramous limb pairs. The first two biramous appendages are differentiated from the rest. The first appendage pair consists of a greatly reduced endopod coupled with a greatly elongated exopod with a potentially sensorial function. The second appendage pair carries a more conventionally sized endopod, but also has an enlarged exopod. The remaining biramous appendages are homonomous in their construction, but decrease in size towards the posterior end of the body. They consist of a basipodite with ridge-like crescentic endites, an endopod with seven podomeres and a terminal claw, and a lamellae-bearing exopod with a slender shaft. Contrary to previous reports, we confirm the presence of segmental mismatch in Sinoburius lunaris, expressed as diplotergites in the thorax. Maximum parsimony and Bayesian phylogenetic analyses support the monophyly of Xandarellida within Artiopoda, and illuminate the internal relationships within this enigmatic clade. Our results allow us to propose a transformation series explaining the origin of archetypical xandarellid characters, such as the evolution of eye slits in Xandarella spectaculum and Phytophilaspis pergamena as derivates from the anterolateral notches in the head shield observed in Cindarella eucalla and Luohuilinella species. In this context, Sinoburius lunaris is found to feature several derived characters within the group, such as the secondary loss of eye slits and a high degree of appendicular tagmosis. Contrary to previous findings, our analyses strongly support close affinities between Sinoburius lunaris, Xandarella spectaculum and Phytophilaspis pergamena, although the precise relationships between these taxa are sensitive to different methodologies. CONCLUSIONS The revised morphology of Sinoburius lunaris, made possible through the use of computed tomography to resolve details of its three-dimensionally preserved appendicular anatomy, contributes towards an improved understanding of the morphology of this taxon and the evolution of Xandarellida more broadly. Our results indicate that Sinoburius lunaris possesses an unprecedented degree of appendicular tagmosis otherwise unknown within Artiopoda, with the implication that this iconic group of Palaeozoic euarthropods likely had a more complex ecology and functional morphology than previously considered. The application of computer tomographic techniques to the study of Chengjiang euarthropods holds exceptional promise for understanding the morphological diversity of these organisms, and also better reconstructing their phylogenetic relationships and evolutionary history.
Collapse
Affiliation(s)
- Xiaohan Chen
- Yunnan Key Laboratory for Palaeobiology, Yunnan University, North Cuihu Road 2, Kunming, 650091, China
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Kunming, 650091, China
| | - Javier Ortega-Hernández
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA.
| | - Joanna M Wolfe
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
| | - Dayou Zhai
- Yunnan Key Laboratory for Palaeobiology, Yunnan University, North Cuihu Road 2, Kunming, 650091, China
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Kunming, 650091, China
| | - Xianguang Hou
- Yunnan Key Laboratory for Palaeobiology, Yunnan University, North Cuihu Road 2, Kunming, 650091, China
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Kunming, 650091, China
| | - Ailin Chen
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Kunming, 650091, China
- Research Center of Paleobiology, Yuxi Normal University, Yuxi, 653100, Yunnan, China
| | - Huijuan Mai
- Yunnan Key Laboratory for Palaeobiology, Yunnan University, North Cuihu Road 2, Kunming, 650091, China
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Kunming, 650091, China
| | - Yu Liu
- Yunnan Key Laboratory for Palaeobiology, Yunnan University, North Cuihu Road 2, Kunming, 650091, China.
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
11
|
Du KS, Ortega-Hernández J, Yang J, Zhang XG. A soft-bodied euarthropod from the early Cambrian Xiaoshiba Lagerstätte of China supports a new clade of basal artiopodans with dorsal ecdysial sutures. Cladistics 2019; 35:269-281. [PMID: 34622993 DOI: 10.1111/cla.12344] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2018] [Indexed: 11/28/2022] Open
Abstract
We describe the exceptionally well-preserved non-trilobite artiopodan Zhiwenia coronata gen. et sp. nov. from the Cambrian Stage 3 Xiaoshiba Lagerstätte in Yunnan, China. The exoskeleton consists of a cephalic shield with dorsal sutures expressed as lateral notches that accommodate stalked lateral eyes, an elongate trunk composed of 20 tergites-the first of which is reduced-and a short tailspine with marginal spines. Appendicular data include a pair of multi-segmented antennae, and homonomous biramous trunk limbs consisting of an endopod with at least seven podomeres and a flattened exopod with lamellae. Although the presence of cephalic notches and a reduced first trunk tergite invites comparisons with the petalopleurans Xandarella, Luohiniella and Cindarella, the proportions and exoskeletal tagmosis of Zhiwenia do not closely resemble those of any major group within Trilobitomorpha. Parsimony and Bayesian phylogenetic analyses consistently support Zhiwenia as sister-taxon to the Emu Bay Shale artiopodan Australimicola spriggi, and both of them as closely related to Acanthomeridion from the Chengjiang. This new monophyletic clade, Protosutura nov., occupies a basal phylogenetic position within Artiopoda as sister-group to Trilobitomorpha and Vicissicaudata, illuminates the ancestral organization of these successful euarthropods, and leads to a re-evaluation of the evolution of ecdysial dorsal sutures within the group.
Collapse
Affiliation(s)
- Kun-Sheng Du
- Key Laboratory for Palaeobiology, Yunnan University, Kunming, 650091, China.,MEC International Joint Laboratory for Palaeoenvironment, Yunnan University, Kunming, 650091, China
| | - Javier Ortega-Hernández
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK.,Museum of Comparative Zoology and, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
| | - Jie Yang
- Key Laboratory for Palaeobiology, Yunnan University, Kunming, 650091, China.,MEC International Joint Laboratory for Palaeoenvironment, Yunnan University, Kunming, 650091, China
| | - Xi-Guang Zhang
- Key Laboratory for Palaeobiology, Yunnan University, Kunming, 650091, China.,MEC International Joint Laboratory for Palaeoenvironment, Yunnan University, Kunming, 650091, China
| |
Collapse
|
12
|
Zhai D, Ortega-Hernández J, Wolfe JM, Hou X, Cao C, Liu Y. Three-Dimensionally Preserved Appendages in an Early Cambrian Stem-Group Pancrustacean. Curr Biol 2019; 29:171-177.e1. [DOI: 10.1016/j.cub.2018.11.060] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 09/06/2018] [Accepted: 11/28/2018] [Indexed: 10/27/2022]
|
13
|
Anamorphic development and extended parental care in a 520 million-year-old stem-group euarthropod from China. BMC Evol Biol 2018; 18:147. [PMID: 30268090 PMCID: PMC6162911 DOI: 10.1186/s12862-018-1262-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 09/20/2018] [Indexed: 11/28/2022] Open
Abstract
Background Extended parental care is a complex reproductive strategy in which progenitors actively look after their offspring up to – or beyond – the first juvenile stage in order to maximize their fitness. Although the euarthropod fossil record has produced several examples of brood-care, the appearance of extended parental care within this phylum remains poorly constrained given the scarcity of developmental data for Palaeozoic stem-group representatives that would link juvenile and adult forms in an ontogenetic sequence. Results Here, we describe the post-embryonic growth of Fuxianhuia protensa from the early Cambrian Chengjiang Lagerstätte in South China. Our data demonstrate anamorphic post-embryonic development for F. protensa, in which new tergites were sequentially added from a posterior growth zone, the number of tergites varies from eight to 30. The growth of F. protensa is typified by the alternation between segment addition, followed by the depletion of the anteriormost abdominal segment into the thoracic region. The transformation of abdominal into thoracic tergite is demarcated by the development of laterally tergopleurae, and biramous walking legs. The new ontogeny data leads to the recognition of the rare Chengjiang euarthropod Pisinnocaris subconigera as a junior synonym of Fuxianhuia. Comparisons between different species of Fuxianhuia and with other genera within Fuxianhuiida suggest that heterochrony played a prominent role in the morphological diversification of fuxianhuiids. Functional analogy with the flexible trunk ontogeny of Cambrian and Silurian olenimorphic trilobites suggests an adaptation to sporadic low oxygen conditions in Chengjiang deposits for F. protensa. Finally, understanding the growth of F. protensa allows for the interpretation of an exceptional life assemblage consisting of a sexually mature adult alongside four ontogenetically coeval juveniles, which constitutes the oldest occurrence of extended parental care by prolonged cohabitation in the panarthropod fossil record. Conclusions Our findings constitute the most detailed characterization of the post-embryonic development in a soft-bodied upper stem-group euarthropod available to date. The new ontogeny data illuminates the systematics, trunk segmentation and palaeoecology of F. protensa, offers insights on the macroevolutionary processes involved in the diversification of this clade, and contributes towards an improved understanding of complex post-embryonic reproductive ecology in Cambrian euarthropods. Electronic supplementary material The online version of this article (10.1186/s12862-018-1262-6) contains supplementary material, which is available to authorized users.
Collapse
|