1
|
Tarnutzer AA, Garces P, Antoniades CA. Quantitative Oculomotor and Vestibular Profile in Spinocerebellar Ataxia Type 6 - Systematic Review and Meta-Analysis. CEREBELLUM (LONDON, ENGLAND) 2024; 24:12. [PMID: 39674981 PMCID: PMC11646955 DOI: 10.1007/s12311-024-01774-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/05/2024] [Indexed: 12/17/2024]
Abstract
Whereas several studies have reported on quantitative oculomotor and vestibular measurements in spinocerebellar ataxia type 6 (SCA6), selecting the most suitable paradigms remains challenging. We aimed to address this knowledge gap through a systematic literature review and providing disease-specific recommendations for a tailored set of eye-movement recordings in SCA6. A literature search (MEDLINE, Embase) was performed focusing on studies reporting on quantitative oculomotor and/or vestibular measurements in SCA6-patients. Oculomotor and vestibular parameters were extracted and correlations with various epidemiologic and clinical parameters were sought. Twenty-two studies were included reporting on 154 patients. Abnormalities observed included reduced pursuit gain (58/69), frequent square-wave jerks (23/40), spontaneous downbeat nystagmus (DBN, 34/55) and triggered nystagmus including positional nystagmus (25/34) and vertical ("perverted") head-shaking nystagmus (21/34), gaze-evoked nystagmus (48/70) and angular vestibulo-ocular reflex (aVOR)-suppression (21/25), and high-frequency aVOR-deficits (26/33). For horizontal visually-guided saccades (VGS), changes in metrics (36/66) were frequently observed, whereas saccade velocity was usually preserved (39/44) and saccade latency within normal limits. Reduced high-frequency aVOR gains, VGS-latency and metrics correlated with disease severity. Longitudinal data indicated deterioration of individual video-head-impulse testing gains over time. A broad range of oculomotor and vestibular domains are affected in SCA6. Impairments in pursuit, saccade metrics, gaze-holding (gaze-evoked nystagmus, DBN) and high-frequency aVOR were most frequently identified and as such, should be prioritized as disease markers. Quantitative oculomotor testing in SCA6 may facilitate an early diagnosis and prove valuable in monitoring disease progression.
Collapse
Affiliation(s)
- Alexander A Tarnutzer
- Cantonal Hospital of Baden, Baden, Switzerland.
- Faculty of Medicine, University of Zurich, Zurich, Switzerland.
| | - Pilar Garces
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, Basel, Switzerland
| | - Chrystalina A Antoniades
- NeuroMetrology Lab, Nuffield Department of Clinical Neurosciences, Clinical Neurology, Medical Sciences Division, University of Oxford, Oxford, OX3 9DU, UK
| |
Collapse
|
2
|
Sobanska A, Czerwosz L, Sulek A, Rola R, Stepniak I, Rakowicz M. Quantitative Evaluation of Stance as a Sensitive Biomarker of Postural Ataxia Development in Preclinical SCA1 Mutation Carriers. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1882-1891. [PMID: 38492164 DOI: 10.1007/s12311-024-01679-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/26/2024] [Indexed: 03/18/2024]
Abstract
The aim of this study was to determine the time between the first detection of postural control impairments and the evident manifestation of ataxia in preclinical SCA1 individuals. Twenty five preclinical SCA1 mutation carriers: 13 with estimated disease onset ≤ 6 years (SCA1 +) aged 27.8 ± 8.1 years; 12 with expected disease onset > 6 years (SCA1-) aged 26.6 ± 3.1 years and 26 age and sex matched healthy controls (HCs) underwent static posturography during 5 years of observation. The movements of the centre of feet pressure (COP) during quiet standing with eyes open (EO) and closed (EC) were quantified by calculating the mean radius (R), developed surface area (A) and mean COP movement velocity (V). Ataxia was evaluated by use of the Scale for Assessment and Rating of Ataxia (SARA).SCA1 + exhibited significantly worse quality of stance with EC vs. SCA1- (p < 0.05 for V) and HCs (p < 0.001) even 5 to 6 years before estimated disease onset. There were no statistically significant differences between SCA1- and HCs. A slow increase in Cohen's d effect size was observed for VEO up to the clinical manifestation of ataxia. VEO and AEC recorded in preclinical SCA1 individuals correlated slightly but statistically significantly with SARA (r = 0.47).The study confirms that static posturography detects COP sway changes in SCA1 preclinical gene carriers even 5 to 6 years before estimated disease onset. The quantitative evaluation of stance in preclinical SCA is a sensitive biomarker for the monitoring of the disease progression and may be useful in clinical trials.
Collapse
Affiliation(s)
- Anna Sobanska
- Department of Clinical Neurophysiology, Institute of Psychiatry and Neurology, Warsaw, Poland.
| | - Leszek Czerwosz
- Laboratory of Respiration Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Sulek
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland
- Faculty of Medicine, Lazarski University, Warsaw, Poland
| | - Rafal Rola
- Department of Neurology, Military Institute of Aviation Medicine, Warsaw, Poland
| | - Iwona Stepniak
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Maria Rakowicz
- First Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| |
Collapse
|
3
|
Winser SJ, Chan AYY, Whitney SL, Chen CH, Pang MYC. Effectiveness and cost of integrated cognitive and balance training for balance and falls in cerebellar ataxia: a blinded two-arm parallel group RCT. Front Neurol 2024; 14:1267099. [PMID: 38313407 PMCID: PMC10834731 DOI: 10.3389/fneur.2023.1267099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/27/2023] [Indexed: 02/06/2024] Open
Abstract
Background In patients with cerebellar ataxia (CA), dual-tasking deteriorates the performance of one or both tasks. Objective Evaluate the effects of 4 weeks of cognitive-coupled intensive balance training (CIBT) on dual-task cost, dynamic balance, disease severity, number of falls, quality of life, cognition and cost among patients with CA. Methods This RCT compared CIBT (Group 1) to single-task training (Group 2) among 32 patients with CA. The intervention included either dual-task (CIBT) or single-task training for 4 weeks followed by 6 months of unsupervised home exercises. Dual-task timed up-and-go test (D-TUG) assessed dual-task cost of the physical and cognitive tasks. Assessment time points included baseline 1 (Week 0:T1), baseline 2 (Week 6:T2), post-intervention (Week 10:T3), and follow-up (Week 34:T4). Results Compared to single-task training CIBT improved the dual-task cost of physical task [MD -8.36 95% CI (-14.47 to -2.36, p < 0.01), dual-tasking ability [-6.93 (-13.16 to -0.70); p = 0.03] assessed using D-TUG, balance assessed using the scale for the assessment and rating of ataxia (SARAbal) [-2.03 (-4.04 to -0.19); p = 0.04], visual scores of the SOT (SOT-VIS) [-18.53 (-25.81 to -11.24, p ≤ 0.01] and maximal excursion [13.84 (4.65 to 23.03; p ≤ 0.01] of the Limits of Stability (LOS) in the forward direction and reaction time in both forward [-1.11 (-1.42 to -0.78); p < 0.01] and right [-0.18 (0.05 to 0.31); p < 0.01] directions following 4 weeks of training. CIBT did not have any additional benefits in reducing the number of falls, or improving disease severity, quality of life and cognition. The mean cost of intervention and healthcare costs for 7 months was HKD 33,380 for CIBT group and HKD 38,571 for single-task training group. Conclusion We found some evidence to support the use of CIBT for improving the dual-tasking ability, dual-task cost of physical task and dynamic balance in CA. Future large fully-powered studies are needed to confirm this claim. Clinical trial registration https://clinicaltrials.gov/study/NCT04648501, identifier [Ref: NCT04648501].
Collapse
Affiliation(s)
- Stanley J. Winser
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Anne Y. Y. Chan
- Division of Neurology, Prince of Wales Hospital and Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Susan L. Whitney
- School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| | - Cynthia H. Chen
- Saw Swee Hock School of Public Health (Primary), National University of Singapore, Singapore, Singapore
| | - Marco Y. C. Pang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| |
Collapse
|
4
|
Cooper C, Meso AI. Cognitive-perceptual traits associated with autism and schizotypy influence use of physics during predictive visual tracking. Eur J Neurosci 2023; 58:4236-4254. [PMID: 37850610 DOI: 10.1111/ejn.16169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 09/11/2023] [Accepted: 09/27/2023] [Indexed: 10/19/2023]
Abstract
Schizophrenia and autism spectrum disorder (ASD) can disrupt cognition and consequently behaviour. Traits of ASD and the subclinical manifestation of schizophrenia called schizotypy have been studied in healthy populations with overlap found in trait profiles linking ASD social deficits to negative schizotypy and ASD attention to detail to positive schizotypy. Here, we probed the relationship between subtrait profiles, cognition and behaviour, using a predictive tracking task to measure individuals' eye movements under three gravity conditions. A total of 48 healthy participants tracked an on-screen projected ball under familiar gravity, inverted upward acceleration (against gravity) and horizontal gravity control conditions while eye movements were recorded and dynamic performance quantified. Participants completed ASD and schizotypy inventories generating highly correlated scores, r = 0.73. All tracked best under the gravity condition, producing anticipatory downward responses from stimulus onset which were delayed under upward inverted gravity. Tracking performance was not associated with overall ASD or schizotypy trait levels. Combining measures using principal components analysis (PCA), we decomposed the inventories into subtraits unveiling interesting patterns. Positive schizotypy was associated with ASD dimensions of rigidity, odd behaviour and face processing, which all linked to anticipatory tracking responses under inverted gravity. In contrast, negative schizotypy was associated with ASD dimensions of social interactions and rigidity and to early stimulus-driven tracking under gravity. There was also substantial nonspecific overlap between ASD and schizotypy dissociated from tracking. Our work links positive-odd traits with anticipatory tracking when physics rules are violated and negative-social traits with exploitation of physics laws of motion.
Collapse
Affiliation(s)
- Chloe Cooper
- Acute Inpatient Psychology, Dorset Healthcare University NHS Foundation Trust, Poole, UK
- Psychology and Interdisciplinary Neuroscience Group, Bournemouth University, Poole, UK
| | - Andrew Isaac Meso
- Psychology and Interdisciplinary Neuroscience Group, Bournemouth University, Poole, UK
- Neuroimaging Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
5
|
Cullen KE. Internal models of self-motion: neural computations by the vestibular cerebellum. Trends Neurosci 2023; 46:986-1002. [PMID: 37739815 PMCID: PMC10591839 DOI: 10.1016/j.tins.2023.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/15/2023] [Accepted: 08/25/2023] [Indexed: 09/24/2023]
Abstract
The vestibular cerebellum plays an essential role in maintaining our balance and ensuring perceptual stability during activities of daily living. Here I examine three key regions of the vestibular cerebellum: the floccular lobe, anterior vermis (lobules I-V), and nodulus and ventral uvula (lobules X-IX of the posterior vermis). These cerebellar regions encode vestibular information and combine it with extravestibular signals to create internal models of eye, head, and body movements, as well as their spatial orientation with respect to gravity. To account for changes in the external environment and/or biomechanics during self-motion, the neural mechanisms underlying these computations are continually updated to ensure accurate motor behavior. To date, studies on the vestibular cerebellum have predominately focused on passive vestibular stimulation, whereas in actuality most stimulation is the result of voluntary movement. Accordingly, I also consider recent research exploring these computations during active self-motion and emerging evidence establishing the cerebellum's role in building predictive models of self-generated movement.
Collapse
Affiliation(s)
- Kathleen E Cullen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Otolaryngology - Head and Neck Surgery, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
6
|
Zhang L, Ouyang S, Chen L, Huang H, Ou Y, Tang X. Evaluation of subjective visual vertical and horizontal in patients with acoustic neuroma based on virtual reality. Front Neurosci 2023; 17:1264585. [PMID: 37954872 PMCID: PMC10639117 DOI: 10.3389/fnins.2023.1264585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Abstract
Objective To investigate potential differences in absolute deviation values of subjective visual vertical and horizontal between unilateral acoustic neuroma patients and healthy young adults under varying degrees of static head tilt, as well as the impact of proprioception on these values, with the aim of determining the effect of acoustic neuroma on gravity sensory pathway function in patients. Methods We recruited 22 patients diagnosed with unilateral acoustic neuroma and 25 healthy young adults and employed virtual reality technology to assess the absolute deviation values of subjective visual vertical (SVV) and subjective visual horizontal (SVH) under eight different static tilted head positions (Head centered (0° tilt), PdP, Head tilt 15°, 30°, 45° to the left and right), then compare and analyze intergroup differences. Results In the Head-centered position, both SVV and SVH absolute deviated values were significantly higher in the AN group compared to healthy young adults. The AN group exhibited significantly higher absolute deviation values of SVV compared to the healthy group when tilting their head 30° left and right. Additionally, when tilting their heads to the right at 15° and 45° the AN group showed significant increases in SVH absolute deviated values compared to healthy adults. The SVV and SVH absolute deviation values of LAN and SAN groups did not reach statistical significance. The results of the SVV test for PDP position did not show any significant differences among all groups. However, the SVH test revealed that the absolute deviation values of the LAN group was significantly higher than that of healthy individuals. Conclusion Our study shows that the gravity sensing function of patients with unilateral acoustic neuroma is affected to different degrees, however, the degree of gravity sensing function damage of patients has little relationship with tumor size. When acoustic neuroma is larger than 2 cm, the effect of proprioception on patients' SVH outcome is noteworthy. So, we should pay attention to the postoperative follow-up of patients with acoustic neuroma and the evaluation of vestibular rehabilitation effect. Meanwhile, for patients opting for conservative treatment, it is imperative to monitor the dynamic changes in vestibular function and seize timely opportunities for intervention.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Otorhinolaryngology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shunlin Ouyang
- Department of Otorhinolaryngology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ling Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Institute of Hearing and Speech-Language Science, Sun Yat-Sen University, Guangzhou, China
| | - Hemei Huang
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yongkang Ou
- Department of Otorhinolaryngology, Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Institute of Hearing and Speech-Language Science, Sun Yat-Sen University, Guangzhou, China
| | - Xiaowu Tang
- Department of Otorhinolaryngology, Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Institute of Hearing and Speech-Language Science, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
7
|
Enhancement of visual cues to self-motion during a visual/vestibular conflict. PLoS One 2023; 18:e0282975. [PMID: 36920954 PMCID: PMC10016722 DOI: 10.1371/journal.pone.0282975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/28/2023] [Indexed: 03/16/2023] Open
Abstract
Perceiving our orientation and motion requires sensory information provided by vision, our body and acceleration. Normally, these cues are redundant however in some situations they can conflict. Here, we created a visual-vestibular conflict by simulating a body-upright virtual world while participants were either standing (no conflict), supine or prone (conflict) and assessed the perception of "forward" distance travelled induced by visual motion. Some participants felt they were standing upright even when lying, indicating a visual reorientation illusion (VRI). We previously showed that when experiencing a VRI, visually induced self-motion is enhanced. Here, we determined if there was a relationship between VRI vulnerability and sensory weighting. Confirming our previous findings, the VRI-vulnerable group showed enhanced self-motion perception. We then assessed the relative weightings of visual and non-visual cues in VRI-vulnerable and VRI-resistant individuals using the Oriented Character Recognition Test. Surprisingly, VRI-vulnerable individuals weighted visual cues less and gravity cues more compared to VRI-resistant individuals. These findings are in line with robust integration where, when the difference between two cues is large, the discrepant cue (here gravity) is ignored. Ignoring the gravity cue then leads to relatively more emphasis being placed on visual information and thus a higher gain.
Collapse
|
8
|
Feng Y, Zhao T, Wu Y, Ling X, Zhang M, Song N, Kim JS, Yang X. The diagnostic value of the ocular tilt reaction plus head tilt subjective visual vertical (±45°) in patients with acute central vascular vertigo. Front Neurol 2022; 13:1022362. [DOI: 10.3389/fneur.2022.1022362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/08/2022] [Indexed: 11/30/2022] Open
Abstract
ObjectivesTo investigate the localization diagnostic value of the ocular tilt reaction (OTR) plus head tilt subjective visual vertical (SVV) in patients with acute central vascular vertigo (ACVV).MethodsWe enrolled 40 patients with acute infarction, 20 with unilateral brainstem infarction (BI) and 20 with unilateral cerebellar infarction (CI). We also included 20 patients with unilateral peripheral vestibular disorders (UPVD) as the control group. The participants completed the OTR and SVV during head tilt (±45°) within 1 week of symptom onset.ResultsIn patients with ACVV, including that caused by lateral medullary infarction (100%, 2/2), partial pontine infarction (21%, 3/14), and cerebellum infarction (35%, 7/20), we observed ipsiversive OTR, similar to that seen in UPVD patients (80.0%, 16/20). Some of the patients with medial medullary infarction (50%, 1/2), partial pons infarction (42%, 6/14), midbrain infarction (100%, 2/2), and partial cerebellum infarction (30.0%, 6/20) showed contraversive OTR. The skew deviation (SD) of the BI group with ACVV was significantly greater than that of the UPVD group (6.60 ± 2.70° vs. 1.80 ± 1.30°, Z = −2.50, P = 0.012), such that the mean SD of the patients with a pons infarction was 9.50° and that of patients with medulla infarction was 5.00°. In ACVV patients with no cerebellar damage, the area under the curve of the receiver operating characteristic curve corresponding to the use of SD to predict brainstem damage was 0.92 (95%CI: 0.73–1.00), with a sensitivity of 100% and a specificity of 80% when SD ≥ 3°. We found no statistical difference in SD between the UPVD and CI groups (1.33 ± 0.58° vs. 1.80 ± 1.30°, Z = −0.344, P = 0.73). Compared with the UPVD patients, the ACVV patients with a partial pons infarction (43%, 6/14, χ2 = 13.68, P = 0.002) or medulla infarction (25%, 1/4, χ2 = 4.94, P = 0.103) exhibited signs of the ipsiversive E-effect with the contraversive A-effect, while those with a partial medulla infarction (50%, 2/4), pons infarction (43%, 6/14), or cerebellar infarction (60%, 12/20) exhibited a pathological symmetrical increase in the E-effect.ConclusionsThe evaluation of OTR plus head tilt SVV (±45°) in vertigo patients is helpful for identifying and diagnosing ACVV, especially when SD is ≥ 3° or the E-effect is symmetrically increased.
Collapse
|
9
|
赵 雅, 陈 钢, 吴 佳, 杨 捷, 周 丽, 李 莹. [Clinical application progress of subjective visual vertical test]. LIN CHUANG ER BI YAN HOU TOU JING WAI KE ZA ZHI = JOURNAL OF CLINICAL OTORHINOLARYNGOLOGY, HEAD, AND NECK SURGERY 2022; 36:884-892. [PMID: 36347586 PMCID: PMC10127558 DOI: 10.13201/j.issn.2096-7993.2022.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Indexed: 06/16/2023]
Abstract
Subjective visual vertical test is considered as an effective technique to evaluate otolith organ function and central pathway of gravity perception. This test is non-invasive, easy to operate and has little stimulation. At present, there are few such studies in China. This paper reviews the concept, measurement principle and method, influencing factors, application, advantages and disadvantages of subjective visual vertical test.
Collapse
Affiliation(s)
- 雅楠 赵
- 山西医科大学护理学院(太原,030001)College of Nursing, Shanxi Medical University, Taiyuan, 030001, China
| | - 钢钢 陈
- 山西医科大学第一医院耳鼻咽喉头颈外科Department of Otolaryngology Head and Neck Surgery, First Hospital of Shanxi Medical University
| | - 佳鑫 吴
- 山西医科大学第一医院耳鼻咽喉头颈外科Department of Otolaryngology Head and Neck Surgery, First Hospital of Shanxi Medical University
| | - 捷 杨
- 山西医科大学第一医院耳鼻咽喉头颈外科Department of Otolaryngology Head and Neck Surgery, First Hospital of Shanxi Medical University
| | - 丽媛 周
- 山西医科大学第一医院耳鼻咽喉头颈外科Department of Otolaryngology Head and Neck Surgery, First Hospital of Shanxi Medical University
| | - 莹 李
- 山西医科大学第一医院耳鼻咽喉头颈外科Department of Otolaryngology Head and Neck Surgery, First Hospital of Shanxi Medical University
| |
Collapse
|
10
|
Day BL, Ocal D, Peters A, Bancroft MJ, Cash D, Kaski D, Crutch SJ, Yong KXX. Altered visual and haptic verticality perception in posterior cortical atrophy and Alzheimer's disease. J Physiol 2021; 600:373-391. [PMID: 34841531 DOI: 10.1113/jp282289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/26/2021] [Indexed: 12/21/2022] Open
Abstract
There is increasing theoretical and empirical support for the brain combining multisensory information to determine the direction of gravity and hence uprightness. A fundamental part of the process is the spatial transformation of sensory signals between reference frames: eye-centred, head-centred, body-centred, etc. The question 'Am I the right way up?' posed by a patient with posterior cortical atrophy (PCA) suggests disturbances in upright perception, subsequently investigated in PCA and typical Alzheimer's disease (tAD) based on what looks or feels upright. Participants repeatedly aligned to vertical a rod presented either visually (visual-vertical) or haptically (haptic-vertical). Visual-vertical involved orienting a projected rod presented without or with a visual orientation cue (circle, tilted square (±18°)). Haptic-vertical involved orientating a grasped rod with eyes closed using a combination of side (left, right) and hand (unimanual, bimanual) configurations. Intraindividual uncertainty and bias defined verticality perception. Uncertainty was consistently greater in both patient groups than in control groups, and greater in PCA than tAD. Bias in the frontal plane was strongly directionally affected by visual cue tilt (visual-vertical) and grip side (haptic-vertical). A model was developed that assumed verticality information from multiple sources is combined in a statistically optimal way to produce observed uncertainties and biases. Model results suggest the mechanism that spatially transforms graviceptive information between body parts is disturbed in both patient groups. Despite visual dysfunction being typically considered the primary feature of PCA, disturbances were greater in PCA than tAD particularly for haptic-vertical, and are considered in light of posterior parietal vulnerability. KEY POINTS: The perception of upright requires accurate and precise estimates of orientation based on multiple noisy sensory signals. The question 'Am I the right way up?' posed by a patient with posterior cortical atrophy (PCA; purported 'visual variant Alzheimer's') suggests disturbances in the perception of upright. What looks or feels upright in PCA and typical Alzheimer's disease (tAD) was investigated by asking participants to repeatedly align to vertical a rod presented visually (visual-vertical) or haptically (haptic-vertical). PCA and tAD groups exhibited not only greater perceptual uncertainty than controls, but also exaggerated bias induced by tilted visual orientation cues (visual-vertical) and grip side (haptic-vertical). When modelled, these abnormalities, which were particularly evident in PCA haptic-vertical performance, were compatible with disruption of a mechanism that spatially transforms verticality information between body parts. The findings suggest an important role of posterior parietal cortex in verticality perception, and have implications for understanding spatial disorientation in dementia.
Collapse
Affiliation(s)
- Brian L Day
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Dilek Ocal
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK.,Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, DE
| | - Amy Peters
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Matthew J Bancroft
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - David Cash
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Diego Kaski
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Sebastian J Crutch
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Keir X X Yong
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
11
|
Li F, Xu J, Li GR, Gao R, Shang CY, Tian E, Kong WJ, Zhuang JH, Zhang SL. The Value of Subjective Visual Vertical in Diagnosis of Vestibular Migraine. Curr Med Sci 2021; 41:654-660. [PMID: 34403088 DOI: 10.1007/s11596-021-2418-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/30/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To study the value of the subjective visual vertical (SVV) in the diagnosis of vestibular migraine (VM). METHODS This study recruited 128 VM patients and 64 age-matched normal subjects. We detected the SVV during the interval between attacks in both groups, in sitting upright, and the head tilted at 45° to the left or right. We then examined the correlation between the SVV results with the vestibular evoked myogenic potential (VEMP) and canal paresis (CP). RESULTS It was found there was a significant difference in SVV at the upright position between VM patients and normal controls (P=0.006) and no significant difference was found at the tilts of 45° to the left or right between the two groups. The SVV results at the upright position were significantly correlated with cervical VEMP (P=0.042) whereas not significantly correlated with CP and VEMP. There existed no significant difference in the conformity to the Müller effect (M effect) between the two groups. ROC analysis exhibited that the sensitivity, specificity of SVVs at the upright were 67.200% and 62.500% respectively. The diagnostic value of SVV at the upright position was significantly higher than that at tilts of 45° to the left and right (P=0.006). Nonetheless the diagnostic accuracy was relatively low. CONCLUSION Abnormality in SVV possibly stems from the lasting functional disorder of cerebellar or high-level cortical centers in VM patients or is linked to the vestibular compensation. The SVV is of low diagnostic value for VM and the value of SVV in VM warrants further study.
Collapse
Affiliation(s)
- Fei Li
- Department of Neurology, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Jin Xu
- Department of Neurology, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Gen-Ru Li
- Department of Neurology, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Rui Gao
- Department of Neurology, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Chen-Yong Shang
- Department of Neurology, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - E Tian
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei-Jia Kong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Neurological Disorders of Education Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jian-Hua Zhuang
- Department of Neurology, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China.
| | - Su-Lin Zhang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
12
|
Totilienė M, Uloza V, Lesauskaitė V, Damulevičienė G, Kregždytė R, Kaski D, Ulozienė I. Impaired Subjective Visual Vertical and Increased Visual Dependence in Older Adults With Falls. Front Aging Neurosci 2021; 13:667608. [PMID: 34177553 PMCID: PMC8232053 DOI: 10.3389/fnagi.2021.667608] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 05/11/2021] [Indexed: 12/15/2022] Open
Abstract
Aging affects the vestibular system and may disturb the perception of verticality and lead to increased visual dependence (VD). Studies have identified that abnormal upright perception influences the risk of falling. The aim of our study was to evaluate subjective visual vertical (SVV) and VD using a mobile virtual reality-based system for SVV assessment (VIRVEST) in older adults with falls and evaluate its relationship with clinical balance assessment tools, dizziness, mental state, and depression level. This study included 37 adults >65 years who experienced falls and 40 non-faller age-matched controls. Three tests were performed using the VIRVEST system: a static SVV, dynamic SVV with clockwise and counter-clockwise background stimulus motion. VD was calculated as the mean of absolute values of the rod tilt from each trial of dynamic SVV minus the mean static SVV rod tilt. Older adults who experienced falls manifested significantly larger biases in static SVV (p = 0.012), dynamic SVV (p < 0.001), and VD (p = 0.014) than controls. The increase in static SVV (odds ratio = 1.365, p = 0.023), dynamic SVV (odds ratio = 1.623, p < 0.001) and VD (odds ratio = 1.460, p = 0.010) tilt by one degree significantly related to falls risk in the faller group. Fallers who had a high risk of falling according to the Tinetti test exhibited significantly higher tilts of dynamic SVV than those who had a low or medium risk (p = 0.037). In the faller group, the increase of the dynamic SVV tilt by one degree was significantly related to falls risk according to the Tinetti test (odds ratio = 1.356, p = 0.049). SVV errors, particularly with the dynamic SVV test (i.e., greater VD) were associated with an increased risk of falling in the faller group. The VIRVEST system may be applicable in clinical settings for SVV testing and predicting falls in older adults.
Collapse
Affiliation(s)
- Milda Totilienė
- Department of Otorhinolaryngology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Virgilijus Uloza
- Department of Otorhinolaryngology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Vita Lesauskaitė
- Department of Geriatrics, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Gytė Damulevičienė
- Department of Geriatrics, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Rima Kregždytė
- Department of Preventive Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Diego Kaski
- Department of Clinical and Movement Neurosciences, University College London, London, United Kingdom
| | - Ingrida Ulozienė
- Department of Otorhinolaryngology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
13
|
Dynamic arm movements attenuate the perceptual distortion of visual vertical induced during prolonged whole-body tilt. PLoS One 2021; 16:e0250851. [PMID: 33930085 PMCID: PMC8087117 DOI: 10.1371/journal.pone.0250851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 04/14/2021] [Indexed: 11/19/2022] Open
Abstract
Concurrent body movements have been shown to enhance the accuracy of spatial
judgment, but it remains unclear whether they also contribute to perceptual
estimates of gravitational space not involving body movements. To address this,
we evaluated the effects of static or dynamic arm movements during prolonged
whole-body tilt on the subsequent perceptual estimates of visual or postural
vertical. In Experiment 1, participants were asked to continuously perform
static or dynamic arm movements during prolonged tilt, and we assessed their
effects on the prolonged tilt-induced shifts of subjective visual vertical (SVV)
at a tilted position (during-tilt session) or near upright
(post-tilt session). In Experiment 2, we evaluated how
static or dynamic arm movements during prolonged tilt subsequently affected the
subjective postural vertical (SPV). In Experiment 1, we observed that the SVV
was significantly shifted toward the direction of prolonged tilt in both
sessions. The SVV shifts decreased when performing dynamic arm movements in the
during-tilt session, but not in the
post-tilt session. In Experiment 2, as well as SVV, the SPV
was shifted toward the direction of prolonged tilt, but it was not significantly
attenuated by the performance of static or dynamic arm movements. The results of
the during-tilt session suggest that the central nervous system
utilizes additional information generated by dynamic body movements for
perceptual estimates of visual vertical.
Collapse
|
14
|
Hannan KB, Todd MK, Pearson NJ, Forbes PA, Dakin CJ. Vestibular attenuation to random-waveform galvanic vestibular stimulation during standing and treadmill walking. Sci Rep 2021; 11:8127. [PMID: 33854124 PMCID: PMC8046779 DOI: 10.1038/s41598-021-87485-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 03/24/2021] [Indexed: 11/09/2022] Open
Abstract
The ability to move and maintain posture is critically dependent on motion and orientation information provided by the vestibular system. When this system delivers noisy or erred information it can, in some cases, be attenuated through habituation. Here we investigate whether multiple mechanisms of attenuation act to decrease vestibular gain due to noise added using supra-threshold random-waveform galvanic vestibular stimulation (GVS). Forty-five participants completed one of three conditions. Each condition consisted of two 4-min standing periods with stimulation surrounding a 1-h period of either walking with stimulation, walking without stimulation, or sitting quietly. An instrumented treadmill recorded horizontal forces at the feet during standing and walking. We quantified response attenuation to GVS by comparing vestibular stimulus-horizontal force gain between conditions. First stimulus exposure caused an 18% decrease in gain during the first 40 s of standing. Attenuation recommenced only when subjects walked with stimulation, resulting in a 38% decrease in gain over 60 min that did not transfer to standing following walking. The disparity in attenuation dynamics and absent carry over between standing and walking suggests that two mechanisms of attenuation, one associated with first exposure to the stimulus and another that is task specific, may act to decrease vestibulomotor gain.
Collapse
Affiliation(s)
- Kelci B Hannan
- Department of Kinesiology and Health Science, Utah State University, Logan, UT, USA
| | - Makina K Todd
- Department of Kinesiology and Health Science, Utah State University, Logan, UT, USA
| | - Nicole J Pearson
- Department of Kinesiology and Health Science, Utah State University, Logan, UT, USA
| | - Patrick A Forbes
- Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Christopher J Dakin
- Department of Kinesiology and Health Science, Utah State University, Logan, UT, USA.
| |
Collapse
|
15
|
The Effects of Visual Parabolic Motion on the Subjective Vertical and on Interception. Neuroscience 2020; 453:124-137. [PMID: 33010347 DOI: 10.1016/j.neuroscience.2020.09.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 11/22/2022]
Abstract
Observers typically present a strong bias in estimating the orientation of a visual bar when their body is tilted >60° in the roll plane and in the absence of visual background information. Known as the A-effect, this phenomenon likely results from the under-compensation of body tilt. Static visual cues can reduce such bias in the perceived vertical. Yet, it is unknown whether dynamic visual cues would be also effective. Here we presented projectile motions of a visual target along parabolic trajectories with different orientations relative to physical gravity. The aim of the experiment was twofold: First, we assessed whether the projectile motions could bias the estimation of the perceived orientation of a visual bar, measured with a classical subjective visual vertical (SVV) task. Second, we evaluated whether the ability to estimate time-to-contact of the visual target in an interception task was influenced by the orientation of these parabolic trajectories. Two groups of participants performed the experiment, either with their head and body tilted 90° along the roll plane or in an upright position. We found that the perceived orientation of the visual bar in the SVV task was affected by the orientation of the parabolic trajectories. This result was present in the tilted but not in the upright participants. In the interception task, the timing error increased linearly as a function of the orientation of the parabola. These results support the hypothesis that a gravity vector estimated from dynamic visual stimuli contributes to the subjective visual vertical.
Collapse
|
16
|
Ulozienė I, Totilienė M, Balnytė R, Kuzminienė A, Kregždytė R, Paulauskas A, Blažauskas T, Marozas V, Uloza V, Kaski D. Subjective visual vertical and visual dependency in patients with multiple sclerosis. Mult Scler Relat Disord 2020; 44:102255. [DOI: 10.1016/j.msard.2020.102255] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/05/2020] [Accepted: 05/31/2020] [Indexed: 01/19/2023]
|
17
|
White O, Gaveau J, Bringoux L, Crevecoeur F. The gravitational imprint on sensorimotor planning and control. J Neurophysiol 2020; 124:4-19. [PMID: 32348686 DOI: 10.1152/jn.00381.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Humans excel at learning complex tasks, and elite performers such as musicians or athletes develop motor skills that defy biomechanical constraints. All actions require the movement of massive bodies. Of particular interest in the process of sensorimotor learning and control is the impact of gravitational forces on the body. Indeed, efficient control and accurate internal representations of the body configuration in space depend on our ability to feel and anticipate the action of gravity. Here we review studies on perception and sensorimotor control in both normal and altered gravity. Behavioral and modeling studies together suggested that the nervous system develops efficient strategies to take advantage of gravitational forces across a wide variety of tasks. However, when the body was exposed to altered gravity, the rate and amount of adaptation exhibited substantial variation from one experiment to another and sometimes led to partial adjustment only. Overall, these results support the hypothesis that the brain uses a multimodal and flexible representation of the effect of gravity on our body and movements. Future work is necessary to better characterize the nature of this internal representation and the extent to which it can adapt to novel contexts.
Collapse
Affiliation(s)
- O White
- INSERM UMR1093-CAPS, UFR des Sciences du Sport, Université Bourgogne Franche-Comté, Dijon, France
| | - J Gaveau
- INSERM UMR1093-CAPS, UFR des Sciences du Sport, Université Bourgogne Franche-Comté, Dijon, France
| | - L Bringoux
- Institut des Sciences du Mouvement, CNRS, Aix Marseille Université, Marseille, France
| | - F Crevecoeur
- Institute of Communication and Information Technologies, Electronics and Applied Mathematics (ICTEAM), UCLouvain, Belgium.,Institute of Neuroscience (IoNS), UCLouvain, Belgium
| |
Collapse
|
18
|
Variance based weighting of multisensory head rotation signals for verticality perception. PLoS One 2020; 15:e0227040. [PMID: 31940387 PMCID: PMC6961893 DOI: 10.1371/journal.pone.0227040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/10/2019] [Indexed: 11/19/2022] Open
Abstract
We tested the hypothesis that the brain uses a variance-based weighting of multisensory cues to estimate head rotation to perceive which way is up. The hypothesis predicts that the known bias in perceived vertical, which occurs when the visual environment is rotated in a vertical-plane, will be reduced by the addition of visual noise. Ten healthy participants sat head-fixed in front of a vertical screen presenting an annulus filled with coloured dots, which could rotate clockwise or counter-clockwise at six angular velocities (1, 2, 4, 6, 8, 16°/s) and with six levels of noise (0, 25, 50, 60, 75, 80%). Participants were required to keep a central bar vertical by rotating a hand-held dial. Continuous adjustments of the bar were required to counteract low-amplitude low-frequency noise that was added to the bar's angular position. During visual rotation, the bias in verticality perception increased over time to reach an asymptotic value. Increases in visual rotation velocity significantly increased this bias, while the addition of visual noise significantly reduced it, but did not affect perception of visual rotation velocity. The biasing phenomena were reproduced by a model that uses a multisensory variance-weighted estimate of head rotation velocity combined with a gravito-inertial acceleration signal (GIA) from the vestibular otoliths. The time-dependent asymptotic behaviour depends on internal feedback loops that act to pull the brain's estimate of gravity direction towards the GIA signal. The model's prediction of our experimental data furthers our understanding of the neural processes underlying human verticality perception.
Collapse
|
19
|
Tani K, Ishimaru S, Yamamoto S, Kodaka Y, Kushiro K. Effect of dynamic visual motion on perception of postural vertical through the modulation of prior knowledge of gravity. Neurosci Lett 2019; 716:134687. [PMID: 31838018 DOI: 10.1016/j.neulet.2019.134687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 12/07/2019] [Accepted: 12/11/2019] [Indexed: 11/24/2022]
Abstract
To internally estimate gravitational direction and body orientation, the central nervous system considers several sensory inputs from the periphery and prior knowledge of gravity. It is hypothesized that the modulation of visual inputs, supplying indirect information of gravity, affects the prior knowledge established internally by other sensory inputs from vestibular and somatosensory systems, leading to the alteration of perceived body orientation relative to gravity. In order to test the hypothesis, we examined the effect of presenting a visual motion stimulus during a whole-body static tilt on the subsequent evaluation of the perceived postural vertical. Fifteen subjects watched a target moving along the body longitudinal axis directing from head to feet with constant downward acceleration (CA condition) or constant velocity (CV condition), or they did not receive any visual stimulation (NV condition) during the whole-body static tilt. Subsequently, the direction of the subjective postural vertical (SPV) was evaluated. The result showed that the SPV in the CA condition was significantly tilted toward the direction of the preceding tilt compared to that in the NV condition while those in the CV and NV conditions were not significantly different. The present result suggests that dynamic visual motion along body longitudinal axis with downward acceleration can modulate prior knowledge of gravity, and in turn this affects the perception of body verticality.
Collapse
Affiliation(s)
- Keisuke Tani
- Laboratory of Psychology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan.
| | - Sho Ishimaru
- Faculty of Integrated Human Studies, Kyoto University, Yoshida-nihonmatsu-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| | - Shinji Yamamoto
- Faculty of Sport Sciences, Nihon Fukushi University, Okuda, Mihama-cho, Chita-gun, Aichi, 470-3295, Japan.
| | - Yasushi Kodaka
- National Institute of Advanced Industrial Science and Technology (AIST), Automotive Human Factors Research Center, 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8568, Japan.
| | - Keisuke Kushiro
- Faculty of Integrated Human Studies, Kyoto University, Yoshida-nihonmatsu-cho, Sakyo-ku, Kyoto, 606-8501, Japan; Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-nihonmatsu-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
20
|
Khosravi‐Hashemi N, Forbes PA, Dakin CJ, Blouin J. Virtual signals of head rotation induce gravity‐dependent inferences of linear acceleration. J Physiol 2019; 597:5231-5246. [DOI: 10.1113/jp278642] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/03/2019] [Indexed: 12/11/2022] Open
Affiliation(s)
| | - Patrick A. Forbes
- Department of NeuroscienceErasmus MCUniversity Medical Center Rotterdam Rotterdam The Netherlands
| | | | | |
Collapse
|
21
|
Niehof N, Perdreau F, Koppen M, Medendorp WP. Time course of the subjective visual vertical during sustained optokinetic and galvanic vestibular stimulation. J Neurophysiol 2019; 122:788-796. [DOI: 10.1152/jn.00083.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The brain is thought to use rotation cues from both the vestibular and optokinetic system to disambiguate the gravito-inertial force, as measured by the otoliths, into components of linear acceleration and gravity direction relative to the head. Hence, when the head is stationary and upright, an erroneous percept of tilt arises during optokinetic roll stimulation (OKS) or when an artificial canal-like signal is delivered by means of galvanic vestibular stimulation (GVS). It is still unknown how this percept is affected by the combined presence of both cues or how it develops over time. Here, we measured the time course of the subjective visual vertical (SVV), as a proxy of perceived head tilt, in human participants ( n = 16) exposed to constant-current GVS (1 and 2 mA, cathodal and anodal) and constant-velocity OKS (30°/s clockwise and counterclockwise) or their combination. In each trial, participants continuously adjusted the orientation of a visual line, which drifted randomly, to Earth vertical. We found that both GVS and OKS evoke an exponential time course of the SVV. These time courses have different amplitudes and different time constants, 4 and 7 s respectively, and combine linearly when the two stimulations are presented together. We discuss these results in the framework of observer theory and Bayesian state estimation. NEW & NOTEWORTHY While it is known that both roll optokinetic stimuli and galvanic vestibular stimulation affect the percept of vertical, how their effects combine and develop over time is still unclear. Here we show that both effects combined linearly but are characterized by different time constants, which we discuss from a probabilistic perspective.
Collapse
Affiliation(s)
- Nynke Niehof
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Florian Perdreau
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Mathieu Koppen
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - W. Pieter Medendorp
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
22
|
Abstract
The cerebellum is known to support motor behaviors, including postural stability, but new research supports the view that cerebellar function is also critical for perception of spatial orientation, particularly because of its role in vestibular processing.
Collapse
Affiliation(s)
- Paul R MacNeilage
- Department of Psychology, Cognitive and Brain Sciences, University of Nevada, Reno, USA.
| | - Stefan Glasauer
- Computational Neuroscience, Institute of Medical Technology, Brandenburg University of Technology Cottbus - Senftenberg, Germany.
| |
Collapse
|
23
|
Dakin CJ, Rosenberg A. Gravity estimation and verticality perception. HANDBOOK OF CLINICAL NEUROLOGY 2018; 159:43-59. [PMID: 30482332 DOI: 10.1016/b978-0-444-63916-5.00003-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Gravity is a defining force that governs the evolution of mechanical forms, shapes and anchors our perception of the environment, and imposes fundamental constraints on our interactions with the world. Within the animal kingdom, humans are relatively unique in having evolved a vertical, bipedal posture. Although a vertical posture confers numerous benefits, it also renders us less stable than quadrupeds, increasing susceptibility to falls. The ability to accurately and precisely estimate our orientation relative to gravity is therefore of utmost importance. Here we review sensory information and computational processes underlying gravity estimation and verticality perception. Central to gravity estimation and verticality perception is multisensory cue combination, which serves to improve the precision of perception and resolve ambiguities in sensory representations by combining information from across the visual, vestibular, and somatosensory systems. We additionally review experimental paradigms for evaluating verticality perception, and discuss how particular disorders affect the perception of upright. Together, the work reviewed here highlights the critical role of multisensory cue combination in gravity estimation, verticality perception, and creating stable gravity-centered representations of our environment.
Collapse
Affiliation(s)
- Christopher J Dakin
- Department of Kinesiology and Health Science, Utah State University, Logan, UT, United States.
| | - Ari Rosenberg
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, United States
| |
Collapse
|