1
|
English HM, Börger L, Kane A, Ciuti S. Advances in biologging can identify nuanced energetic costs and gains in predators. MOVEMENT ECOLOGY 2024; 12:7. [PMID: 38254232 PMCID: PMC10802026 DOI: 10.1186/s40462-024-00448-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024]
Abstract
Foraging is a key driver of animal movement patterns, with specific challenges for predators which must search for mobile prey. These patterns are increasingly impacted by global changes, principally in land use and climate. Understanding the degree of flexibility in predator foraging and social strategies is pertinent to wildlife conservation under global change, including potential top-down effects on wider ecosystems. Here we propose key future research directions to better understand foraging strategies and social flexibility in predators. In particular, rapid continued advances in biologging technology are helping to record and understand dynamic behavioural and movement responses of animals to environmental changes, and their energetic consequences. Data collection can be optimised by calibrating behavioural interpretation methods in captive settings and strategic tagging decisions within and between social groups. Importantly, many species' social systems are increasingly being found to be more flexible than originally described in the literature, which may be more readily detectable through biologging approaches than behavioural observation. Integrating the effects of the physical landscape and biotic interactions will be key to explaining and predicting animal movements and energetic balance in a changing world.
Collapse
Affiliation(s)
- Holly M English
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin, Ireland.
| | - Luca Börger
- Department of Biosciences, Swansea University, Swansea, UK
| | - Adam Kane
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin, Ireland
| | - Simone Ciuti
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
2
|
Cooper JA, Hutchinson JR, Bernvi DC, Cliff G, Wilson RP, Dicken ML, Menzel J, Wroe S, Pirlo J, Pimiento C. The extinct shark Otodus megalodon was a transoceanic superpredator: Inferences from 3D modeling. SCIENCE ADVANCES 2022; 8:eabm9424. [PMID: 35977007 PMCID: PMC9385135 DOI: 10.1126/sciadv.abm9424] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Although shark teeth are abundant in the fossil record, their bodies are rarely preserved. Thus, our understanding of the anatomy of the extinct Otodus megalodon remains rudimentary. We used an exceptionally well-preserved fossil to create the first three-dimensional model of the body of this giant shark and used it to infer its movement and feeding ecology. We estimate that an adult O. megalodon could cruise at faster absolute speeds than any shark species today and fully consume prey the size of modern apex predators. A dietary preference for large prey potentially enabled O. megalodon to minimize competition and provided a constant source of energy to fuel prolonged migrations without further feeding. Together, our results suggest that O. megalodon played an important ecological role as a transoceanic superpredator. Hence, its extinction likely had large impacts on global nutrient transfer and trophic food webs.
Collapse
Affiliation(s)
- Jack A. Cooper
- Department of Biosciences, Swansea University, Swansea SA2 8PP, UK
| | - John R. Hutchinson
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, Hawkshead Lane, Hatfield, Hertfordshire AL9 7TA, UK
| | - David C. Bernvi
- KwaZulu-Natal Sharks Board, Umhlanga Rocks 4320, South Africa
| | - Geremy Cliff
- KwaZulu-Natal Sharks Board, Umhlanga Rocks 4320, South Africa
- School of Life Sciences, University of KwaZulu-Natal, Durban, KZN, South Africa
| | - Rory P. Wilson
- Department of Biosciences, Swansea University, Swansea SA2 8PP, UK
| | - Matt L. Dicken
- KwaZulu-Natal Sharks Board, Umhlanga Rocks 4320, South Africa
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Jan Menzel
- JanMenzelArt, Stellenbosch 7600, South Africa
| | - Stephen Wroe
- Function, Evolution, and Anatomy Research Lab, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - Jeanette Pirlo
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
- Department of Biological Sciences, California State University Stanislaus, Turlock, CA 95382, USA
| | - Catalina Pimiento
- Department of Biosciences, Swansea University, Swansea SA2 8PP, UK
- Paleontological Institute and Museum, University of Zurich, Zurich CH-8006, Switzerland
- Smithsonian Tropical Research Institution, Balboa, Panama
| |
Collapse
|
3
|
Uncertainty in foraging success and its consequences on fitness. Behav Processes 2022; 198:104643. [DOI: 10.1016/j.beproc.2022.104643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 03/27/2022] [Accepted: 04/12/2022] [Indexed: 11/22/2022]
|
4
|
De Pascalis F, Austin RE, Green JA, Arnould JPY, Imperio S, Maugeri M, Haakonsson J, Cecere JG, Rubolini D. Influence of rainfall on foraging behavior of a tropical seabird. Behav Ecol 2021. [DOI: 10.1093/beheco/arab134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Acquiring resources for self-maintenance and reproduction is a key challenge for wild animals, and the methods that individuals employ are, in part, shaped by environmental conditions that vary in time and space. For birds, rainfall may affect behavior, impairing senses and increasing energetic costs, but its consequences on movement patterns are poorly explored. We investigated the influence of rainfall on the foraging behavior of the magnificent frigatebird, Fregata magnificens. This peculiar tropical seabird lacks feather waterproofing and is known to track environmental conditions while searching for food. Thus, its foraging behavior should be highly sensitive to the effects of rainfall. By GPS-tracking chick-rearing adults, we showed that frigatebirds did not avoid areas with rainfall during foraging trips, nor did rainfall influence trip characteristics. However, rainfall decreased time devoted to foraging and increased time spent perching. Moreover, it affected flight mode, inducing birds to fly slower and at lower altitudes. Wind speed, which was not correlated with rainfall, only affected behavior during night-time, with strong winds decreasing time spent perching. Our results indicate that rainfall does not affect the spatial distribution of foraging frigatebirds but does alter fine-scale foraging behavior by reducing flight activity. We suggest that the ongoing environmental change in this region, including an increase in rainfall events, has the potential to impair foraging and negatively affect fitness.
Collapse
Affiliation(s)
- Federico De Pascalis
- Dipartimento di Scienze e Politiche Ambientali, Università degli studi di Milano, via Celoria 2, 20133 Milano, Italy
- School of Environmental Sciences, University of Liverpool, 4 Brownlow Street, L69 3GP Liverpool, UK
| | - Rhiannon E Austin
- School of Environmental Sciences, University of Liverpool, 4 Brownlow Street, L69 3GP Liverpool, UK
| | - Jonathan A Green
- School of Environmental Sciences, University of Liverpool, 4 Brownlow Street, L69 3GP Liverpool, UK
| | - John P Y Arnould
- School of Life and Environmental Science, Deakin University, 221 Burwood Highway, 3125 Burwood, Australia
| | - Simona Imperio
- Area Avifauna Migratrice, ISPRA, via Ca’ Fornacetta 9, 40064 Ozzano dell’Emilia, Italy
- Istituto di Geoscienze e Georisorse, IGG CNR, Via G. Moruzzi 1, 56124 Pisa, Italy
| | - Maurizio Maugeri
- Dipartimento di Scienze e Politiche Ambientali, Università degli studi di Milano, via Celoria 2, 20133 Milano, Italy
| | - Jane Haakonsson
- Department of Environment, Cayman Islands Government, 580 North Sound Road, KY1-1002 Grand Cayman, Cayman Islands
| | - Jacopo G Cecere
- Area Avifauna Migratrice, ISPRA, via Ca’ Fornacetta 9, 40064 Ozzano dell’Emilia, Italy
| | - Diego Rubolini
- Dipartimento di Scienze e Politiche Ambientali, Università degli studi di Milano, via Celoria 2, 20133 Milano, Italy
- Istituto di Ricerca sulle Acque, IRSA CNR, Via del Mulino 19, 20861 Brugherio, Italy
| |
Collapse
|
5
|
Social exploitation of extensive, ephemeral, environmentally controlled prey patches by supergroups of rorqual whales. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2021.09.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
6
|
Ali M, Borgo R, Jones MW. Concurrent time-series selections using deep learning and dimension reduction. Knowl Based Syst 2021. [DOI: 10.1016/j.knosys.2021.107507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
7
|
Chimienti M, Beest FM, Beumer LT, Desforges J, Hansen LH, Stelvig M, Schmidt NM. Quantifying behavior and life‐history events of an Arctic ungulate from year‐long continuous accelerometer data. Ecosphere 2021. [DOI: 10.1002/ecs2.3565] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Marianna Chimienti
- Department of Bioscience Aarhus University Frederiksborgvej 399 Roskilde4000Denmark
| | - Floris M. Beest
- Department of Bioscience Aarhus University Frederiksborgvej 399 Roskilde4000Denmark
- Arctic Research Centre Aarhus University Ny Munkegade 116 Aarhus C8000Denmark
| | - Larissa T. Beumer
- Department of Bioscience Aarhus University Frederiksborgvej 399 Roskilde4000Denmark
- Arctic Research Centre Aarhus University Ny Munkegade 116 Aarhus C8000Denmark
| | - Jean‐Pierre Desforges
- Department of Bioscience Aarhus University Frederiksborgvej 399 Roskilde4000Denmark
- Arctic Research Centre Aarhus University Ny Munkegade 116 Aarhus C8000Denmark
- Natural Resource Sciences McGill University Ste Anne de Bellevue QuebecH9X 3V9Canada
| | - Lars H. Hansen
- Department of Bioscience Aarhus University Frederiksborgvej 399 Roskilde4000Denmark
- Arctic Research Centre Aarhus University Ny Munkegade 116 Aarhus C8000Denmark
| | - Mikkel Stelvig
- Centre for Zoo and Wild Animal Health Copenhagen Zoo Frederiksberg2000Denmark
| | - Niels Martin Schmidt
- Department of Bioscience Aarhus University Frederiksborgvej 399 Roskilde4000Denmark
- Arctic Research Centre Aarhus University Ny Munkegade 116 Aarhus C8000Denmark
| |
Collapse
|
8
|
Cade DE, Seakamela SM, Findlay KP, Fukunaga J, Kahane‐Rapport SR, Warren JD, Calambokidis J, Fahlbusch JA, Friedlaender AS, Hazen EL, Kotze D, McCue S, Meÿer M, Oestreich WK, Oudejans MG, Wilke C, Goldbogen JA. Predator‐scale spatial analysis of intra‐patch prey distribution reveals the energetic drivers of rorqual whale super‐group formation. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13763] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- David E. Cade
- Hopkins Marine Station Stanford University Pacific Grove CA USA
- Institute of Marine Science University of California, Santa Cruz Santa Cruz CA USA
| | - S. Mduduzi Seakamela
- Department of Environment, Forestry and Fisheries, Branch: Oceans and Coasts, Victoria & Alfred Waterfront Cape Town South Africa
| | - Ken P. Findlay
- Oceans Economy Cape Peninsula University of Technology Cape Town South Africa
- MRI Whale Unit Department of Zoology and Entomology University of Pretoria Hatfield South Africa
| | - Julie Fukunaga
- Hopkins Marine Station Stanford University Pacific Grove CA USA
| | | | - Joseph D. Warren
- School of Marine and Atmospheric Sciences Stony Brook University Southampton NY USA
| | | | - James A. Fahlbusch
- Hopkins Marine Station Stanford University Pacific Grove CA USA
- Cascadia Research Collective Olympia WA USA
| | - Ari S. Friedlaender
- Institute of Marine Science University of California, Santa Cruz Santa Cruz CA USA
| | - Elliott L. Hazen
- Environmental Research Division/Southwest Fisheries Science Center/National Marine Fisheries Service/National Oceanic and Atmospheric Administration Monterey CA USA
| | - Deon Kotze
- Department of Environment, Forestry and Fisheries, Branch: Oceans and Coasts, Victoria & Alfred Waterfront Cape Town South Africa
| | - Steven McCue
- Department of Environment, Forestry and Fisheries, Branch: Oceans and Coasts, Victoria & Alfred Waterfront Cape Town South Africa
| | - Michael Meÿer
- Department of Environment, Forestry and Fisheries, Branch: Oceans and Coasts, Victoria & Alfred Waterfront Cape Town South Africa
| | | | | | - Christopher Wilke
- Department of Environment, Forestry and Fisheries, Branch: Fisheries Management Cape Town South Africa
| | | |
Collapse
|
9
|
Chakravarty P, Cozzi G, Dejnabadi H, Léziart P, Manser M, Ozgul A, Aminian K. Seek and learn: Automated identification of microevents in animal behaviour using envelopes of acceleration data and machine learning. Methods Ecol Evol 2020. [DOI: 10.1111/2041-210x.13491] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Pritish Chakravarty
- School of Engineering Ecole Polytechnique Fédérale de Lausanne Lausanne Switzerland
| | - Gabriele Cozzi
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zürich Switzerland
- Kalahari Research Centre Kuruman River Reserve Van Zylsrus South Africa
| | | | - Pierre‐Alexandre Léziart
- School of Engineering Ecole Polytechnique Fédérale de Lausanne Lausanne Switzerland
- Sciences Industrielles de l'Ingénieur Ecole Normale Supérieure de Rennes Rennes France
| | - Marta Manser
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zürich Switzerland
- Kalahari Research Centre Kuruman River Reserve Van Zylsrus South Africa
| | - Arpat Ozgul
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zürich Switzerland
- Kalahari Research Centre Kuruman River Reserve Van Zylsrus South Africa
| | - Kamiar Aminian
- School of Engineering Ecole Polytechnique Fédérale de Lausanne Lausanne Switzerland
| |
Collapse
|
10
|
Dunford CE, Marks NJ, Wilmers CC, Bryce CM, Nickel B, Wolfe LL, Scantlebury DM, Williams TM. Surviving in steep terrain: a lab-to-field assessment of locomotor costs for wild mountain lions ( Puma concolor). MOVEMENT ECOLOGY 2020; 8:34. [PMID: 32782806 PMCID: PMC7414561 DOI: 10.1186/s40462-020-00215-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/09/2020] [Indexed: 05/28/2023]
Abstract
BACKGROUND Under current scenarios of climate change and habitat loss, many wild animals, especially large predators, are moving into novel energetically challenging environments. Consequently, changes in terrain associated with such moves may heighten energetic costs and effect the decline of populations in new localities. METHODS To examine locomotor costs of a large carnivorous mammal moving in mountainous habitats, the oxygen consumption of captive pumas (Puma concolor) was measured during treadmill locomotion on level and incline (6.8°) surfaces. These data were used to predict energetic costs of locomotor behaviours of free-ranging pumas equipped with GPS/accelerometer collars in California's Santa Cruz Mountains. RESULTS Incline walking resulted in a 42.0% ± 7.2 SEM increase in the costs of transport compared to level performance. Pumas negotiated steep terrain by traversing across hillsides (mean hill incline 17.2° ± 0.3 SEM; mean path incline 7.3° ± 0.1 SEM). Pumas also walked more slowly up steeper paths, thereby minimizing the energetic impact of vertical terrains. Estimated daily energy expenditure (DEE) based on GPS-derived speeds of free-ranging pumas was 18.3 MJ day- 1 ± 0.2 SEM. Calculations show that a 20 degree increase in mean steepness of the terrain would increase puma DEE by less than 1% as they only spend a small proportion (10%) of their day travelling. They also avoided elevated costs by utilizing slower speeds and shallower path angles. CONCLUSIONS While many factors influence survival in novel habitats, we illustrate the importance of behaviours which reduce locomotor costs when traversing new, energetically challenging environments, and demonstrate that these behaviours are utilised by pumas in the wild.
Collapse
Affiliation(s)
- Carolyn E. Dunford
- School of Biological Sciences, Institute of Global Food Security, Queen’s University of Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL Northern Ireland
| | - Nikki J. Marks
- School of Biological Sciences, Institute of Global Food Security, Queen’s University of Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL Northern Ireland
| | - Christopher C. Wilmers
- Center for Integrated Spatial Research, Environmental Studies Department, University of California- Santa Cruz, Santa Cruz, CA 95064 USA
| | | | - Barry Nickel
- Center for Integrated Spatial Research, Environmental Studies Department, University of California- Santa Cruz, Santa Cruz, CA 95064 USA
| | - Lisa L. Wolfe
- Colorado Division of Parks and Wildlife, Wildlife Health Program, 4330 Laporte Avenue, Fort Collins, CO 80521-2153 USA
| | - D. Michael Scantlebury
- School of Biological Sciences, Institute of Global Food Security, Queen’s University of Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL Northern Ireland
| | - Terrie M. Williams
- Department of Ecology and Evolutionary Biology, Coastal Biology Building, 130 McAllister Way, University of California- Santa Cruz, Santa Cruz, CA 95060 USA
| |
Collapse
|
11
|
De Pascalis F, Imperio S, Benvenuti A, Catoni C, Rubolini D, Cecere JG. Sex-specific foraging behaviour is affected by wind conditions in a sexually size dimorphic seabird. Anim Behav 2020. [DOI: 10.1016/j.anbehav.2020.05.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
Gunner RM, Wilson RP, Holton MD, Scott R, Hopkins P, Duarte CM. A new direction for differentiating animal activity based on measuring angular velocity about the yaw axis. Ecol Evol 2020; 10:7872-7886. [PMID: 32760571 PMCID: PMC7391348 DOI: 10.1002/ece3.6515] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 12/11/2022] Open
Abstract
The use of animal-attached data loggers to quantify animal movement has increased in popularity and application in recent years. High-resolution tri-axial acceleration and magnetometry measurements have been fundamental in elucidating fine-scale animal movements, providing information on posture, traveling speed, energy expenditure, and associated behavioral patterns. Heading is a key variable obtained from the tandem use of magnetometers and accelerometers, although few field investigations have explored fine-scale changes in heading to elucidate differences in animal activity (beyond the notable exceptions of dead-reckoning).This paper provides an overview of the value and use of animal heading and a prime derivative, angular velocity about the yaw axis, as an important element for assessing activity extent with potential to allude to behaviors, using "free-ranging" Loggerhead turtles (Caretta caretta) as a model species.We also demonstrate the value of yaw rotation for assessing activity extent, which varies over the time scales considered and show that various scales of body rotation, particularly rate of change of yaw, can help resolve differences between fine-scale behavior-specific movements. For example, oscillating yaw movements about a central point of the body's arc implies bouts of foraging, while unusual circling behavior, indicative of conspecific interactions, could be identified from complete revolutions of the longitudinal axis.We believe this approach should help identification of behaviors and "space-state" approaches to enhance our interpretation of behavior-based movements, particularly in scenarios where acceleration metrics have limited value, such as for slow-moving animals.
Collapse
Affiliation(s)
- Richard M. Gunner
- Swansea Lab for Animal Movement, BiosciencesCollege of ScienceSwansea UniversitySwanseaUK
| | - Rory P. Wilson
- Swansea Lab for Animal Movement, BiosciencesCollege of ScienceSwansea UniversitySwanseaUK
| | - Mark D. Holton
- Swansea Lab for Animal Movement, BiosciencesCollege of ScienceSwansea UniversitySwanseaUK
| | - Rebecca Scott
- Future Ocean Cluster of ExcellenceGEOMAR Helmholtz Centre for Ocean ResearchKielGermany
- Natural Environmental Research Council, Polaris HouseSwindonUK
| | - Phil Hopkins
- Swansea Lab for Animal Movement, BiosciencesCollege of ScienceSwansea UniversitySwanseaUK
| | - Carlos M. Duarte
- Red Sea Research CentreKing Abdullah University of Science and TechnologyThuwalSaudi Arabia
| |
Collapse
|
13
|
DeSantis DL, Mata-Silva V, Johnson JD, Wagler AE. Integrative Framework for Long-Term Activity Monitoring of Small and Secretive Animals: Validation With a Cryptic Pitviper. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
14
|
Williams HJ, Taylor LA, Benhamou S, Bijleveld AI, Clay TA, de Grissac S, Demšar U, English HM, Franconi N, Gómez-Laich A, Griffiths RC, Kay WP, Morales JM, Potts JR, Rogerson KF, Rutz C, Spelt A, Trevail AM, Wilson RP, Börger L. Optimizing the use of biologgers for movement ecology research. J Anim Ecol 2019; 89:186-206. [PMID: 31424571 DOI: 10.1111/1365-2656.13094] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 08/08/2019] [Indexed: 10/26/2022]
Abstract
The paradigm-changing opportunities of biologging sensors for ecological research, especially movement ecology, are vast, but the crucial questions of how best to match the most appropriate sensors and sensor combinations to specific biological questions and how to analyse complex biologging data, are mostly ignored. Here, we fill this gap by reviewing how to optimize the use of biologging techniques to answer questions in movement ecology and synthesize this into an Integrated Biologging Framework (IBF). We highlight that multisensor approaches are a new frontier in biologging, while identifying current limitations and avenues for future development in sensor technology. We focus on the importance of efficient data exploration, and more advanced multidimensional visualization methods, combined with appropriate archiving and sharing approaches, to tackle the big data issues presented by biologging. We also discuss the challenges and opportunities in matching the peculiarities of specific sensor data to the statistical models used, highlighting at the same time the large advances which will be required in the latter to properly analyse biologging data. Taking advantage of the biologging revolution will require a large improvement in the theoretical and mathematical foundations of movement ecology, to include the rich set of high-frequency multivariate data, which greatly expand the fundamentally limited and coarse data that could be collected using location-only technology such as GPS. Equally important will be the establishment of multidisciplinary collaborations to catalyse the opportunities offered by current and future biologging technology. If this is achieved, clear potential exists for developing a vastly improved mechanistic understanding of animal movements and their roles in ecological processes and for building realistic predictive models.
Collapse
Affiliation(s)
- Hannah J Williams
- Department of Biosciences, College of Science, Swansea University, Swansea, UK
| | - Lucy A Taylor
- Save the Elephants, Nairobi, Kenya.,Department of Zoology, University of Oxford, Oxford, UK
| | - Simon Benhamou
- Centre d'Ecologie Fonctionnelle et Evolutive, CNRS Montpellier, Montpellier, France
| | - Allert I Bijleveld
- NIOZ Royal Netherlands Institute for Sea Research, Department of Coastal Systems, Utrecht University, Den Burg, The Netherlands
| | - Thomas A Clay
- School of Environmental Sciences, University of Liverpool, Liverpool, UK
| | - Sophie de Grissac
- Department of Biosciences, College of Science, Swansea University, Swansea, UK
| | - Urška Demšar
- School of Geography & Sustainable Development, University of St Andrews, St Andrews, UK
| | - Holly M English
- Department of Biosciences, College of Science, Swansea University, Swansea, UK
| | - Novella Franconi
- Department of Biosciences, College of Science, Swansea University, Swansea, UK
| | - Agustina Gómez-Laich
- Instituto de Biología de Organismos Marinos (IBIOMAR), CONICET, Puerto Madryn, Chubut, Argentina
| | - Rachael C Griffiths
- Department of Biosciences, College of Science, Swansea University, Swansea, UK
| | - William P Kay
- Department of Biosciences, College of Science, Swansea University, Swansea, UK
| | - Juan Manuel Morales
- Grupo de Ecología Cuantitativa, INIBIOMA-Universidad Nacional del Comahue, CONICET, Bariloche, Argentina
| | - Jonathan R Potts
- School of Mathematics and Statistics, University of Sheffield, Sheffield, UK
| | | | - Christian Rutz
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, UK
| | - Anouk Spelt
- Department of Aerospace Engineering, University of Bristol, University Walk, UK
| | - Alice M Trevail
- School of Environmental Sciences, University of Liverpool, Liverpool, UK
| | - Rory P Wilson
- Department of Biosciences, College of Science, Swansea University, Swansea, UK
| | - Luca Börger
- Department of Biosciences, College of Science, Swansea University, Swansea, UK
| |
Collapse
|
15
|
Stephens PA. Ecology: Luck, Scarcity, and the Fate of Populations. Curr Biol 2018; 28:R1384-R1386. [PMID: 30562528 DOI: 10.1016/j.cub.2018.10.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
An animal's choice of diet plays a large part in determining whether it will find food during a period of searching. This has profound implications for the likelihood of reproductive success or starvation and many other important questions in ecology.
Collapse
Affiliation(s)
- Philip A Stephens
- Conservation Ecology Group, Department of Biosciences, Durham University South Road, Durham DH1 3LE, UK.
| |
Collapse
|