1
|
Frank SM. Transfer of Tactile Learning to Untrained Body Parts: Emerging Cortical Mechanisms. Neuroscientist 2024:10738584241256277. [PMID: 38813891 DOI: 10.1177/10738584241256277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Pioneering investigations in the mid-19th century revealed that the perception of tactile cues presented to the surface of the skin improves with training, which is referred to as tactile learning. Surprisingly, tactile learning also occurs for body parts and skin locations that are not physically involved in the training. For example, after training of a finger, tactile learning transfers to adjacent untrained fingers. This suggests that the transfer of tactile learning follows a somatotopic pattern and involves brain regions such as the primary somatosensory cortex (S1), in which the trained and untrained body parts and skin locations are represented close to each other. However, other results showed that transfer occurs between body parts that are not represented close to each other in S1-for example, between the hand and the foot. These and similar findings have led to the suggestion of additional cortical mechanisms to explain the transfer of tactile learning. Here, different mechanisms are reviewed, and the extent to which they can explain the transfer of tactile learning is discussed. What all of these mechanisms have in common is that they assume a representational or functional relationship between the trained and untrained body parts and skin locations. However, none of these mechanisms alone can explain the complex pattern of transfer results, and it is likely that different mechanisms interact to enable transfer, perhaps in concert with higher somatosensory and decision-making areas.
Collapse
Affiliation(s)
- Sebastian M Frank
- Institute for Experimental Psychology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
2
|
Peviani VC, Miller LE, Medendorp WP. Biases in hand perception are driven by somatosensory computations, not a distorted hand model. Curr Biol 2024; 34:2238-2246.e5. [PMID: 38718799 DOI: 10.1016/j.cub.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/09/2024] [Accepted: 04/04/2024] [Indexed: 05/23/2024]
Abstract
To sense and interact with objects in the environment, we effortlessly configure our fingertips at desired locations. It is therefore reasonable to assume that the underlying control mechanisms rely on accurate knowledge about the structure and spatial dimensions of our hand and fingers. This intuition, however, is challenged by years of research showing drastic biases in the perception of finger geometry.1,2,3,4,5 This perceptual bias has been taken as evidence that the brain's internal representation of the body's geometry is distorted,6 leading to an apparent paradox regarding the skillfulness of our actions.7 Here, we propose an alternative explanation of the biases in hand perception-they are the result of the Bayesian integration of noisy, but unbiased, somatosensory signals about finger geometry and posture. To address this hypothesis, we combined Bayesian reverse engineering with behavioral experimentation on joint and fingertip localization of the index finger. We modeled the Bayesian integration either in sensory or in space-based coordinates, showing that the latter model variant led to biases in finger perception despite accurate representation of finger length. Behavioral measures of joint and fingertip localization responses showed similar biases, which were well fitted by the space-based, but not the sensory-based, model variant. The space-based model variant also outperformed a distorted hand model with built-in geometric biases. In total, our results suggest that perceptual distortions of finger geometry do not reflect a distorted hand model but originate from near-optimal Bayesian inference on somatosensory signals.
Collapse
Affiliation(s)
- Valeria C Peviani
- Donders Institute for Cognition and Behavior, Radboud University, Nijmegen 6525 GD, the Netherlands.
| | - Luke E Miller
- Donders Institute for Cognition and Behavior, Radboud University, Nijmegen 6525 GD, the Netherlands
| | - W Pieter Medendorp
- Donders Institute for Cognition and Behavior, Radboud University, Nijmegen 6525 GD, the Netherlands
| |
Collapse
|
3
|
Badde S. Body schema: Resolving the conundrum of the distorted body. Curr Biol 2024; 34:R494-R496. [PMID: 38772335 DOI: 10.1016/j.cub.2024.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Humans show perceptual biases that suggest distorted internal representations of their own body. New research reveals that these perceptual biases can reflect integration of prior assumptions about body posture rather than a misshaped representation of the body's geometry.
Collapse
Affiliation(s)
- Stephanie Badde
- Department of Psychology, Tufts University, 490 Boston Avenue, Medford, MA 02155, USA.
| |
Collapse
|
4
|
Möllmann A, Heinrichs N, Herwig A. A conceptual framework on body representations and their relevance for mental disorders. Front Psychol 2024; 14:1231640. [PMID: 38250111 PMCID: PMC10796836 DOI: 10.3389/fpsyg.2023.1231640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024] Open
Abstract
Many mental disorders are accompanied by distortions in the way the own body is perceived and represented (e.g., eating disorders, body dysmorphic disorder including muscle dysmorphia, or body integrity dysphoria). We are interested in the way these distortions develop and aim at better understanding their role in mental health across the lifespan. For this purpose, we first propose a conceptual framework of body representation that defines this construct and integrates different perspectives (e.g., cognitive neuroscience, clinical psychology) on body representations. The framework consists of a structural and a process model of body representation emphasizing different goals: the structural model aims to support researchers from different disciplines to structure results from studies and help collectively accumulate knowledge about body representations and their role in mental disorders. The process model is reflecting the dynamics during the information processing of body-related stimuli. It aims to serve as a motor for (experimental) study development on how distorted body representations emerge and might be changed. Second, we use this framework to review the normative development of body representations as well as the development of mental disorders that relate to body representations with the aim to further clarify the potential transdiagnostic role of body representations.
Collapse
Affiliation(s)
- Anne Möllmann
- Department of Psychology, Faculty of Psychology and Sports Science, Bielefeld University, Bielefeld, Germany
| | | | | |
Collapse
|
5
|
Amoruso E, Terhune DB, Kromm M, Kirker S, Muret D, Makin TR. Reassessing referral of touch following peripheral deafferentation: The role of contextual bias. Cortex 2023; 167:167-177. [PMID: 37567052 PMCID: PMC11139647 DOI: 10.1016/j.cortex.2023.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 01/28/2023] [Accepted: 04/21/2023] [Indexed: 08/13/2023]
Abstract
Some amputees have been famously reported to perceive facial touch as arising from their phantom hand. These referred sensations have since been replicated across multiple neurological disorders and were classically interpreted as a perceptual correlate of cortical plasticity. Common to all these and related studies is that participants might have been influenced in their self-reports by the experimental design or related contextual biases. Here, we investigated whether referred sensations reports might be confounded by demand characteristics (e.g., compliance, expectation, suggestion). Unilateral upper-limb amputees (N = 18), congenital one-handers (N = 19), and two-handers (N = 22) were repeatedly stimulated with computer-controlled vibrations on 10 body-parts and asked to report the occurrence of any concurrent sensations on their hand(s). To further manipulate expectations, we gave participants the suggestion that some of these vibrations had a higher probability to evoke referred sensations. We also assessed similarity between (phantom) hand and face representation in primary somatosensory cortex (S1), using functional Magnetic Resonance Imaging (fMRI) multivariate representational similarity analysis. We replicated robust reports of referred sensations in amputees towards their phantom hand; however, the frequency and distribution of reported referred sensations were similar across groups. Moreover, referred sensations were evoked by stimulation of multiple body-parts and similarly reported on both the intact and phantom hand in amputees. Face-to-phantom-hand representational similarity was not different in amputees' missing hand region, compared with controls. These findings weaken the interpretation of referred sensations as a perceptual correlate of S1 plasticity and reveal the need to account for contextual biases when evaluating anomalous perceptual phenomena.
Collapse
Affiliation(s)
- Elena Amoruso
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, UK
| | - Devin B Terhune
- Department of Psychology, Goldsmiths, University of London, London SE14 6NW, UK
| | - Maria Kromm
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, UK
| | - Stephen Kirker
- Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Dollyane Muret
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, UK.
| | - Tamar R Makin
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, UK; Wellcome Trust Centre for Neuroimaging, University College London, London WC1N 3AR, UK
| |
Collapse
|
6
|
Klautke J, Foster C, Medendorp WP, Heed T. Dynamic spatial coding in parietal cortex mediates tactile-motor transformation. Nat Commun 2023; 14:4532. [PMID: 37500625 PMCID: PMC10374589 DOI: 10.1038/s41467-023-39959-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 07/05/2023] [Indexed: 07/29/2023] Open
Abstract
Movements towards touch on the body require integrating tactile location and body posture information. Tactile processing and movement planning both rely on posterior parietal cortex (PPC) but their interplay is not understood. Here, human participants received tactile stimuli on their crossed and uncrossed feet, dissociating stimulus location relative to anatomy versus external space. Participants pointed to the touch or the equivalent location on the other foot, which dissociates sensory and motor locations. Multi-voxel pattern analysis of concurrently recorded fMRI signals revealed that tactile location was coded anatomically in anterior PPC but spatially in posterior PPC during sensory processing. After movement instructions were specified, PPC exclusively represented the movement goal in space, in regions associated with visuo-motor planning and with regional overlap for sensory, rule-related, and movement coding. Thus, PPC flexibly updates its spatial codes to accommodate rule-based transformation of sensory input to generate movement to environment and own body alike.
Collapse
Affiliation(s)
- Janina Klautke
- Biological Psychology and Neuropsychology, University of Hamburg, Hamburg, Germany
| | - Celia Foster
- Biopsychology & Cognitive Neuroscience, Bielefeld University, Bielefeld, Germany
- Center of Excellence in Cognitive Interaction Technology (CITEC), Bielefeld University, Bielefeld, Germany
| | - W Pieter Medendorp
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Tobias Heed
- Biopsychology & Cognitive Neuroscience, Bielefeld University, Bielefeld, Germany.
- Center of Excellence in Cognitive Interaction Technology (CITEC), Bielefeld University, Bielefeld, Germany.
- Cognitive Psychology, Department of Psychology, University of Salzburg, Salzburg, Austria.
- Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria.
| |
Collapse
|
7
|
Smeets JBJ, Brenner E. The cost of aiming for the best answers: Inconsistent perception. Front Integr Neurosci 2023; 17:1118240. [PMID: 37090903 PMCID: PMC10114592 DOI: 10.3389/fnint.2023.1118240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
The laws of physics and mathematics describe the world we live in as internally consistent. As these rules provide a very effective description, and our interaction with the world is also very effective, it seems self-evident that our perception follows these laws. As a result, when trying to explain imperfections in perception, we tend to impose consistency and introduce concepts such as deformations of visual space. In this review, we provide numerous examples that show that in many situations we perceive related attributes to have inconsistent values. We discuss how our tendency to assume consistency leads to erroneous conclusions on how we process sensory information. We propose that perception is not about creating a consistent internal representation of the outside world, but about answering specific questions about the outside world. As the information used to answer a question is specific for that question, this naturally leads to inconsistencies in perception and to an apparent dissociation between some perceptual judgments and related actions.
Collapse
|
8
|
Do motor plans affect sensorimotor state estimates during temporal decision-making with crossed vs. uncrossed hands? Failure to replicate the dynamic crossed-hand effect. Exp Brain Res 2022; 240:1529-1545. [PMID: 35332358 DOI: 10.1007/s00221-022-06349-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 03/10/2022] [Indexed: 11/04/2022]
Abstract
Hermosillo et al. (J Neurosci 31: 10019-10022, 2011) have suggested that action planning of hand movements impacts decisions about the temporal order judgments regarding vibrotactile stimulation of the hands. Specifically, these authors reported that the crossed-hand effect, a confusion about which hand is which when held in a crossed posture, gradually reverses some 320 ms before the arms begin to move from an uncrossed to a crossed posture or vice versa, such that the crossed-hand is reversed at the time of movement onset in anticipation of the movement's end position. However, to date, no other study has attempted to replicate this dynamic crossed-hand effect. Therefore, in the present study, we conducted four experiments to revisit the question whether preparing uncrossed-to-crossed or crossed-to-uncrossed movements affects the temporo-spatial perception of tactile stimulation of the hands. We used a temporal order judgement (TOJ) task at different time stages during action planning to test whether TOJs are more difficult with crossed than uncrossed hands ("static crossed-hand effect") and, crucially, whether planning to cross or uncross the hands shows the opposite pattern of difficulties ("dynamic crossed-hand effect"). As expected, our results confirmed the static crossed-hand effect. However, the dynamic crossed-hand effect could not be replicated. In addition, we observed that participants delayed their movements with late somatosensory stimulation from the TOJ task, even when the stimulations were meaningless, suggesting that the TOJ task resulted in cross-modal distractions. Whereas the current findings are not inconsistent with a contribution of motor signals to posture perception, they cast doubt on observations that motor signals impact state estimates well before movement onset.
Collapse
|
9
|
Muret D, Root V, Kieliba P, Clode D, Makin TR. Beyond body maps: Information content of specific body parts is distributed across the somatosensory homunculus. Cell Rep 2022; 38:110523. [PMID: 35294887 PMCID: PMC8938902 DOI: 10.1016/j.celrep.2022.110523] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/10/2021] [Accepted: 02/21/2022] [Indexed: 11/23/2022] Open
Abstract
The homunculus in primary somatosensory cortex (S1) is famous for its body part selectivity, but this dominant feature may eclipse other representational features, e.g., information content, also relevant for S1 organization. Using multivariate fMRI analysis, we ask whether body part information content can be identified in S1 beyond its primary region. Throughout S1, we identify significant representational dissimilarities between body parts but also subparts in distant non-primary regions (e.g., between the hand and the lips in the foot region and between different face parts in the foot region). Two movements performed by one body part (e.g., the hand) could also be dissociated well beyond its primary region (e.g., in the foot and face regions), even within Brodmann area 3b. Our results demonstrate that information content is more distributed across S1 than selectivity maps suggest. This finding reveals underlying information contents in S1 that could be harnessed for rehabilitation and brain-machine interfaces.
Collapse
Affiliation(s)
- Dollyane Muret
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AZ, UK.
| | - Victoria Root
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AZ, UK; Wellcome Centre of Integrative Neuroimaging, University of Oxford, Oxford OX3 9DU, UK
| | - Paulina Kieliba
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AZ, UK
| | - Danielle Clode
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AZ, UK; Dani Clode Design, 40 Hillside Road, London SW2 3HW, UK
| | - Tamar R Makin
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AZ, UK; Wellcome Trust Centre for Neuroimaging, University College London, London WC1N 3AR, UK
| |
Collapse
|
10
|
Martel M, Fuchs X, Trojan J, Gockel V, Habets B, Heed T. Illusory tactile movement crosses arms and legs and is coded in external space. Cortex 2022; 149:202-225. [DOI: 10.1016/j.cortex.2022.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/08/2021] [Accepted: 01/24/2022] [Indexed: 11/03/2022]
|
11
|
Ricci R, Caldano M, Sabatelli I, Cirillo E, Gammeri R, Cesim E, Salatino A, Berti A. When Right Goes Left: Phantom Touch Induced by Mirror Box Procedure in Healthy Individuals. Front Hum Neurosci 2021; 15:734235. [PMID: 34924978 PMCID: PMC8671635 DOI: 10.3389/fnhum.2021.734235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/11/2021] [Indexed: 11/13/2022] Open
Abstract
In the present article, we investigated the possibility of inducing phantom tactile sensations in healthy individuals similar to those that we observed in patients after stroke. On the basis of previous research, we assumed that manipulating visual feedbacks may guide and influence, under certain conditions, the phenomenal experience of touch. To this aim, we used the Tactile Quadrant Stimulation (TQS) test in which subjects, in the crucial condition, must indicate whether and where they perceive a double tactile stimulation applied simultaneously in different quadrants of the two hands (asymmetrical Double Simultaneous Stimulation trial, Asym-DSS). The task was performed with the left-hand out of sight and the right-hand reflected in a mirror so that the right-hand reflected in the mirror looks like the own left-hand. We found that in the Asym-DSS trial, the vision of the right-hand reflected in the mirror and stimulated by a tactile stimulus elicited on the left-hand the sensation of having been touched in the same quadrant as the right-hand. In other words, we found in healthy subjects the same phantom touch effect that we previously found in patients. We interpreted these results as modulation of tactile representation by bottom-up (multisensory integration of stimuli coming from the right real and the right reflected hand) and possibly top-down (body ownership distortion) processing triggered by our experimental setup, unveiling bilateral representation of touch.
Collapse
Affiliation(s)
| | | | | | | | | | - Ezgi Cesim
- Department of Psychology, University of Turin, Turin, Italy.,Department of Neuroscience, Dokuz Eylul University, Alsancak, Turkey
| | - Adriana Salatino
- Department of Psychology, University of Turin, Turin, Italy.,Institute of Neuroscience (IoN), Université Catholique de Louvain Brussels, Brussels, Belgium
| | - Anna Berti
- Department of Psychology, University of Turin, Turin, Italy
| |
Collapse
|
12
|
Gori M, Campus C, Signorini S, Rivara E, Bremner AJ. Multisensory spatial perception in visually impaired infants. Curr Biol 2021; 31:5093-5101.e5. [PMID: 34555348 PMCID: PMC8612739 DOI: 10.1016/j.cub.2021.09.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 07/29/2021] [Accepted: 09/03/2021] [Indexed: 12/02/2022]
Abstract
Congenitally blind infants are not only deprived of visual input but also of visual influences on the intact senses. The important role that vision plays in the early development of multisensory spatial perception1, 2, 3, 4, 5, 6, 7 (e.g., in crossmodal calibration8, 9, 10 and in the formation of multisensory spatial representations of the body and the world1,2) raises the possibility that impairments in spatial perception are at the heart of the wide range of difficulties that visually impaired infants show across spatial,8, 9, 10, 11, 12 motor,13, 14, 15, 16, 17 and social domains.8,18,19 But investigations of early development are needed to clarify how visually impaired infants’ spatial hearing and touch support their emerging ability to make sense of their body and the outside world. We compared sighted (S) and severely visually impaired (SVI) infants’ responses to auditory and tactile stimuli presented on their hands. No statistically reliable differences in the direction or latency of responses to auditory stimuli emerged, but significant group differences emerged in responses to tactile and audiotactile stimuli. The visually impaired infants showed attenuated audiotactile spatial integration and interference, weighted more tactile than auditory cues when the two were presented in conflict, and showed a more limited influence of representations of the external layout of the body on tactile spatial perception.20 These findings uncover a distinct phenotype of multisensory spatial perception in early postnatal visual deprivation. Importantly, evidence of audiotactile spatial integration in visually impaired infants, albeit to a lesser degree than in sighted infants, signals the potential of multisensory rehabilitation methods in early development. Video abstract
Visually impaired infants have a distinct phenotype of audiotactile perception Infants with severe visual impairment (SVI) place more weight on tactile locations SVI infants show attenuated audiotactile spatial integration and interference SVI infants do not show an influence of body representations on tactile space
Collapse
Affiliation(s)
- Monica Gori
- Unit for Visually Impaired People, Istituto Italiano di Technologia, 16152 Genova, Italy.
| | - Claudio Campus
- Unit for Visually Impaired People, Istituto Italiano di Technologia, 16152 Genova, Italy
| | - Sabrina Signorini
- Centre of Child Neurophthalmology, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | | | - Andrew J Bremner
- School of Psychology, University of Birmingham, Birmingham B15 2SB, UK
| |
Collapse
|
13
|
Lorentz L, Unwalla K, Shore DI. Imagine Your Crossed Hands as Uncrossed: Visual Imagery Impacts the Crossed-Hands Deficit. Multisens Res 2021; 35:1-29. [PMID: 34690111 DOI: 10.1163/22134808-bja10065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 10/06/2021] [Indexed: 11/19/2022]
Abstract
Successful interaction with our environment requires accurate tactile localization. Although we seem to localize tactile stimuli effortlessly, the processes underlying this ability are complex. This is evidenced by the crossed-hands deficit, in which tactile localization performance suffers when the hands are crossed. The deficit results from the conflict between an internal reference frame, based in somatotopic coordinates, and an external reference frame, based in external spatial coordinates. Previous evidence in favour of the integration model employed manipulations to the external reference frame (e.g., blindfolding participants), which reduced the deficit by reducing conflict between the two reference frames. The present study extends this finding by asking blindfolded participants to visually imagine their crossed arms as uncrossed. This imagery manipulation further decreased the magnitude of the crossed-hands deficit by bringing information in the two reference frames into alignment. This imagery manipulation differentially affected males and females, which was consistent with the previously observed sex difference in this effect: females tend to show a larger crossed-hands deficit than males and females were more impacted by the imagery manipulation. Results are discussed in terms of the integration model of the crossed-hands deficit.
Collapse
Affiliation(s)
- Lisa Lorentz
- Department of Psychology, Neuroscience and Behaviour, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Kaian Unwalla
- Department of Psychology, Neuroscience and Behaviour, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - David I Shore
- Department of Psychology, Neuroscience and Behaviour, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
- Multisensory Perception Laboratory, a Division of the Multisensory Mind Inc., Hamilton, ON, Canada
| |
Collapse
|
14
|
Abstract
Perception of distance between two touches varies with orientation on the hand, with distances aligned with hand width perceived as larger than those aligned with hand length. Similar anisotropies are found on other body parts (e.g., the face), suggesting they may reflect a general feature of tactile organization, but appear absent on other body parts (e.g., the belly). Here, we investigated tactile-distance anisotropy on the foot, a body part structurally and embryologically similar to the hand, but with very different patterns of functional usage in humans. In three experiments, we compared the perceived distance between pairs of touches aligned with the medio-lateral and proximal-distal foot axes. On the hairy skin of the foot dorsum, anisotropy was consistently found, with distances aligned with the medio-lateral foot axis perceived as larger than those in the proximo-distal axis. In contrast, on the glabrous skin of the sole, inconsistent results were found across experiments, with no overall evidence for anisotropy. This shows a pattern of anisotropy on the foot broadly similar to that on the hand, adding to the list of body parts showing tactile-distance anisotropy, and providing further evidence that such biases are a general aspect of tactile spatial organization across the body. Significance: The perception of tactile distance has been widely used to understand the spatial structure of touch. On the hand, anisotropy of tactile distance perception is well established, with distances oriented across hand width perceived larger than those oriented along hand length. We investigated tactile-distance anisotropy on the feet, a body part structurally, genetically, and developmentally homologous to the hands, but with strikingly different patterns of functional usage. We report highly similar patterns of anisotropy on the hairy skin of the hand dorsum and foot dorsum. This suggests that anisotropy arises from the general organization of touch across the body.
Collapse
|
15
|
Abstract
Accurate localization of touch requires the integration of two reference frames-an internal (e.g., anatomical) and an external (e.g., spatial). Using a tactile temporal order judgement task with the hands crossed over the midline, we investigated the integration of these two reference frames. We manipulated the reliability of the visual and vestibular information, both of which contribute to the external reference frame. Visual information was manipulated between experiments (Experiment 1 was done with full vision and Experiment 2 was done while wearing a blindfold). Vestibular information was manipulated in both experiments by having the two groups of participants complete the task in both an upright posture and one where they were lying down on their side. Using a Bayesian hierarchical model, we estimated the perceptual weight applied to these reference frames. Lying participants on their side reduced the weight applied to the external reference frame and produced a smaller deficit; blindfolding resulted in similar reductions. These findings reinforce the importance of the visual system when weighting tactile reference frames, and highlight the importance of the vestibular system in this integration.
Collapse
Affiliation(s)
- Kaian Unwalla
- Department of Psychology, Neuroscience and Behaviour, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada.
| | - Michelle L Cadieux
- Department of Psychology, Neuroscience and Behaviour, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - David I Shore
- Department of Psychology, Neuroscience and Behaviour, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
- Multisensory Perception Laboratory, a Division of the Multisensory Mind Inc., Hamilton, ON, Canada
| |
Collapse
|
16
|
Measuring the sensitivity of tactile temporal order judgments in sighted and blind participants using the adaptive psi method. Atten Percept Psychophys 2021; 83:2995-3007. [PMID: 34036536 DOI: 10.3758/s13414-021-02301-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2021] [Indexed: 11/08/2022]
Abstract
Spatial locations of somatosensory stimuli are coded according to somatotopic (anatomical distribution of the sensory receptors on the skin surface) and spatiotopic (position of the body parts in external space) reference frames. This was mostly evidenced by means of temporal order judgment (TOJ) tasks in which participants discriminate the temporal order of two tactile stimuli, one applied on each hand. Because crossing the hands generates a conflict between anatomical and spatial responses, TOJ performance is decreased in such posture, except for congenitally blind people, suggesting a role of visual experience in somatosensory perception. In previous TOJ studies, stimuli were generally presented using the method of constant stimuli-that is, the repetition of a predefined sample of stimulus-onset asynchronies (SOA) separating the two stimuli. This method has the disadvantage that a large number of trials is needed to obtain reliable data when aiming at dissociating performances of groups characterized by different cognitive abilities. Indeed, each SOA among a large variety of different SOAs should be presented the same number of times irrespective of the participant's performance. This study aimed to replicate previous tactile TOJ data in sighted and blind participants with the adaptive psi method in order to validate a novel method that adapts the presented SOA according to the participant's performance. This allows to precisely estimate the temporal sensitivity of each participant while the presented stimuli are adapted to the participant's individual discrimination threshold. We successfully replicated previous findings in both sighted and blind participants, corroborating previous data using a more suitable psychophysical tool.
Collapse
|
17
|
Liu P, Chrysidou A, Doehler J, Hebart MN, Wolbers T, Kuehn E. The organizational principles of de-differentiated topographic maps in somatosensory cortex. eLife 2021; 10:e60090. [PMID: 34003108 PMCID: PMC8186903 DOI: 10.7554/elife.60090] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 05/17/2021] [Indexed: 01/09/2023] Open
Abstract
Topographic maps are a fundamental feature of cortex architecture in the mammalian brain. One common theory is that the de-differentiation of topographic maps links to impairments in everyday behavior due to less precise functional map readouts. Here, we tested this theory by characterizing de-differentiated topographic maps in primary somatosensory cortex (SI) of younger and older adults by means of ultra-high resolution functional magnetic resonance imaging together with perceptual finger individuation and hand motor performance. Older adults' SI maps showed similar amplitude and size to younger adults' maps, but presented with less representational similarity between distant fingers. Larger population receptive field sizes in older adults' maps did not correlate with behavior, whereas reduced cortical distances between D2 and D3 related to worse finger individuation but better motor performance. Our data uncover the drawbacks of a simple de-differentiation model of topographic map function, and motivate the introduction of feature-based models of cortical reorganization.
Collapse
Affiliation(s)
- Peng Liu
- Institute for Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University MagdeburgMagdeburgGermany
- German Center for Neurodegenerative Diseases (DZNE)MagdeburgGermany
| | - Anastasia Chrysidou
- Institute for Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University MagdeburgMagdeburgGermany
- German Center for Neurodegenerative Diseases (DZNE)MagdeburgGermany
| | - Juliane Doehler
- Institute for Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University MagdeburgMagdeburgGermany
- German Center for Neurodegenerative Diseases (DZNE)MagdeburgGermany
| | - Martin N Hebart
- Vision and Computational Cognition Group, Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Thomas Wolbers
- German Center for Neurodegenerative Diseases (DZNE)MagdeburgGermany
- Center for Behavioral Brain Sciences (CBBS) MagdeburgMagdeburgGermany
| | - Esther Kuehn
- Institute for Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University MagdeburgMagdeburgGermany
- German Center for Neurodegenerative Diseases (DZNE)MagdeburgGermany
- Center for Behavioral Brain Sciences (CBBS) MagdeburgMagdeburgGermany
| |
Collapse
|
18
|
Moharramipour A, Kitazawa S. What Underlies a Greater Reversal in Tactile Temporal Order Judgment When the Hands Are Crossed? A Structural MRI Study. Cereb Cortex Commun 2021; 2:tgab025. [PMID: 34296170 PMCID: PMC8152922 DOI: 10.1093/texcom/tgab025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 03/31/2021] [Accepted: 03/31/2021] [Indexed: 02/02/2023] Open
Abstract
Our subjective temporal order of two successive tactile stimuli, delivered one to each hand, is often inverted when our hands are crossed. However, there is great variability among different individuals. We addressed the question of why some show almost complete reversal, but others show little reversal. To this end, we obtained structural magnetic resonance imaging data from 42 participants who also participated in the tactile temporal order judgment (TOJ) task. We extracted the cortical thickness and the convoluted surface area as cortical characteristics in 68 regions. We found that the participants with a thinner, larger, and more convoluted cerebral cortex in 10 regions, including the right pars-orbitalis, right and left postcentral gyri, left precuneus, left superior parietal lobule, right middle temporal gyrus, left superior temporal gyrus, right cuneus, left supramarginal gyrus, and right rostral middle frontal gyrus, showed a smaller degree of judgment reversal. In light of major theoretical accounts, we suggest that cortical elaboration in the aforementioned regions improve the crossed-hand TOJ performance through better integration of the tactile stimuli with the correct spatial representations in the left parietal regions, better representation of spatial information in the postcentral gyrus, or improvement of top-down inhibitory control by the right pars-orbitalis.
Collapse
Affiliation(s)
- Ali Moharramipour
- Dynamic Brain Network Laboratory, Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
| | - Shigeru Kitazawa
- Dynamic Brain Network Laboratory, Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
- Department of Brain Physiology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
19
|
O’Kane SH, Ehrsson HH. The contribution of stimulating multiple body parts simultaneously to the illusion of owning an entire artificial body. PLoS One 2021; 16:e0233243. [PMID: 33493178 PMCID: PMC7833142 DOI: 10.1371/journal.pone.0233243] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022] Open
Abstract
The full-body ownership illusion exploits multisensory perception to induce a feeling of ownership of an entire artificial body. Although previous research has shown that synchronous visuotactile stimulation of a single body part is sufficient for illusory ownership of the whole body, the effect of combining multisensory stimulation across multiple body parts remains unknown. Therefore, 48 healthy adults participated in a full-body ownership illusion with conditions involving synchronous (illusion) or asynchronous (control) visuotactile stimulation to one, two, or three body parts simultaneously (2×3 design). We used questionnaires to isolate illusory ownership of five specific body parts (left arm, right arm, trunk, left leg, right leg) from the full-body ownership experience and sought to test not only for increased ownership in synchronous versus asynchronous conditions but also for potentially varying degrees of full-body ownership illusion intensity related to the number of body parts stimulated. Illusory full-body ownership and all five body-part ownership ratings were significantly higher following synchronous stimulation than asynchronous stimulation (p-values < .01). Since non-stimulated body parts also received significantly increased ownership ratings following synchronous stimulation, the results are consistent with an illusion that engages the entire body. Furthermore, we noted that ownership ratings for right body parts (which were often but not always stimulated in this experiment) were significantly higher than ownership ratings for left body parts (which were never stimulated). Regarding the effect of stimulating multiple body parts simultaneously on explicit full-body ownership ratings, there was no evidence of a significant main effect of the number of stimulations (p = .850) or any significant interaction with stimulation synchronicity (p = .160), as assessed by linear mixed modelling. Instead, median ratings indicated a moderate affirmation (+1) of an illusory full-body sensation in all three synchronous conditions, a finding mirrored by comparable full-body illusion onset times. In sum, illusory full-body ownership appears to be an 'all-or-nothing' phenomenon and depends upon the synchronicity of visuotactile stimulation, irrespective of the number of stimulated body parts.
Collapse
Affiliation(s)
- Sophie H. O’Kane
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - H. Henrik Ehrsson
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
20
|
Maij F, Seegelke C, Medendorp WP, Heed T. External location of touch is constructed post-hoc based on limb choice. eLife 2020; 9:57804. [PMID: 32945257 PMCID: PMC7561349 DOI: 10.7554/elife.57804] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/18/2020] [Indexed: 11/13/2022] Open
Abstract
When humans indicate on which hand a tactile stimulus occurred, they often err when their hands are crossed. This finding seemingly supports the view that the automatically determined touch location in external space affects limb assignment: the crossed right hand is localized in left space, and this conflict presumably provokes hand assignment errors. Here, participants judged on which hand the first of two stimuli, presented during a bimanual movement, had occurred, and then indicated its external location by a reach-to-point movement. When participants incorrectly chose the hand stimulated second, they pointed to where that hand had been at the correct, first time point, though no stimulus had occurred at that location. This behavior suggests that stimulus localization depended on hand assignment, not vice versa. It is, thus, incompatible with the notion of automatic computation of external stimulus location upon occurrence. Instead, humans construct external touch location post-hoc and on demand.
Collapse
Affiliation(s)
- Femke Maij
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Christian Seegelke
- Faculty of Psychology and Sports Science, Bielefeld University, Bielefeld, Germany.,Center for Cognitive Interaction Technology, Bielefeld University, Bielefeld, Germany
| | - W Pieter Medendorp
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Tobias Heed
- Faculty of Psychology and Sports Science, Bielefeld University, Bielefeld, Germany.,Center for Cognitive Interaction Technology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
21
|
Intact tactile detection yet biased tactile localization in a hand-centered frame of reference: Evidence from a dissociation. Neuropsychologia 2020; 147:107585. [PMID: 32841632 DOI: 10.1016/j.neuropsychologia.2020.107585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 04/20/2020] [Accepted: 08/10/2020] [Indexed: 11/21/2022]
Abstract
We examined the performance of an individual with subcortical damage, but an intact somatosensory thalamocortical pathway, to examine the functional architecture of tactile detection and tactile localization processes. Consistent with the intact somatosensory thalamocortical pathway, tactile detection on the contralesional hand was well within the normal range. Despite intact detection, the individual demonstrated substantial localization biases. Across all localization experiments, he consistently localized tactile stimuli to the left side in space relative to the long axis of his hand. This was observed when the contralesional hand was palm up, palm down, rotated 90° relative to the trunk, and when making verbal responses. Furthermore, control experiments demonstrated that this response pattern was unlikely a motor response error. These findings indicate that tactile localization on the body is influenced by proprioceptive information specifically in a hand-centered frame of reference. Furthermore, this also provides evidence that aspects of tactile localization are mediated by pathways outside of the primary somatosensory thalamocortical pathway.
Collapse
|
22
|
Abstract
Our body is central to our sense of self and personal identity, yet it can be manipulated in the laboratory in surprisingly easy ways. Several multisensory illusions have shown the flexibility of the mental representation of our bodies by inducing the illusion of owning an artificial body part or having a body part with altered features. Recently, new studies showed we can embody additional body parts such as a supernumerary finger. Newport et al. recently reported a novel six-finger illusion using conflicting visual and tactile signals induced with the mirror box to create the illusory perception of having a sixth finger for a brief moment. In this study, we aimed to replicate this result and to investigate whether the experience of embodiment of a sixth finger could be prolonged for an extended duration by applying continuous visual-tactile stimulation. Results showed that a continuous illusion of having a sixth finger can be clearly induced. This shows that the six-finger illusion does not reflect merely a momentary confusion due to conflicting multisensory signals but can reflect an enduring representation of a supernumerary finger.
Collapse
Affiliation(s)
- Denise Cadete
- Department of Psychological Sciences, Birkbeck, University of London, United Kingdom
| | - Matthew R Longo
- Department of Psychological Sciences, Birkbeck, University of London, United Kingdom
| |
Collapse
|
23
|
Badde S, Myers CF, Yuval-Greenberg S, Carrasco M. Oculomotor freezing reflects tactile temporal expectation and aids tactile perception. Nat Commun 2020; 11:3341. [PMID: 32620746 PMCID: PMC7335189 DOI: 10.1038/s41467-020-17160-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/08/2020] [Indexed: 01/10/2023] Open
Abstract
The oculomotor system keeps the eyes steady in expectation of visual events. Here, recording microsaccades while people performed a tactile, frequency discrimination task enabled us to test whether the oculomotor system shows an analogous preparatory response for unrelated tactile events. We manipulated the temporal predictability of tactile targets using tactile cues, which preceded the target by either constant (high predictability) or variable (low predictability) time intervals. We find that microsaccades are inhibited prior to tactile targets and more so for constant than variable intervals, revealing a tight crossmodal link between tactile temporal expectation and oculomotor action. These findings portray oculomotor freezing as a marker of crossmodal temporal expectation. Moreover, microsaccades occurring around the tactile target presentation are associated with reduced task performance, suggesting that oculomotor freezing mitigates potential detrimental, concomitant effects of microsaccades and revealing a crossmodal coupling between tactile perception and oculomotor action.
Collapse
Affiliation(s)
- Stephanie Badde
- Department of Psychology, New York University, 6 Washington Place, New York, NY, 10003, USA.
- Center for Neural Science, New York University, 6 Washington Place, New York, NY, 10003, USA.
| | - Caroline F Myers
- Department of Psychology, New York University, 6 Washington Place, New York, NY, 10003, USA
| | - Shlomit Yuval-Greenberg
- School of Psychological Sciences, Tel-Aviv University, Ramat Aviv, 6997801, Tel Aviv-Yafo, Israel
- Sagol School of Neuroscience, Tel-Aviv University, Ramat Aviv, 6997801, Tel Aviv-Yafo, Israel
| | - Marisa Carrasco
- Department of Psychology, New York University, 6 Washington Place, New York, NY, 10003, USA
- Center for Neural Science, New York University, 6 Washington Place, New York, NY, 10003, USA
| |
Collapse
|
24
|
Immersive virtual reality reveals that visuo-proprioceptive discrepancy enlarges the hand-centred peripersonal space. Neuropsychologia 2020; 146:107540. [PMID: 32593721 DOI: 10.1016/j.neuropsychologia.2020.107540] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/11/2020] [Accepted: 06/19/2020] [Indexed: 12/23/2022]
Abstract
Vision and proprioception, informing the system about the body position in space, seem crucial in defining the boundary of the peripersonal space (PPS). What happens to the PPS representation when a conflict between vision and proprioception arises? We capitalize on the Immersive Virtual Reality to dissociate vision and proprioception by presenting the participants' 3D hand image in congruent/incongruent positions with respect to the participants' real hand. To measure the hand-centred PPS, we exploit multisensory integration occurring when visual stimuli are delivered simultaneously with tactile stimuli applied to a body district; i.e., visual enhancement of touch (VET). Participants are instructed to respond to tactile stimuli while ignoring visual stimuli (red LED), which can appear either near to or far from the hand receiving tactile (electrical) stimuli. The results show that, when vision and proprioception are congruent (i.e., real and virtual hand coincide), a space-dependent modulation of the VET effect occurs (with faster responses when visual stimuli are near to than far from the stimulated hand). Contrarily, when vision and proprioception are incongruent (i.e., a discrepancy between real and virtual hand is present), a comparable VET effect is observed when visual stimuli occur near to the real hand and when they occur far from it, but close to the virtual hand. These findings, also confirmed by the independent estimate of a Bayesian Causal Inference model, suggest that, when the visuo-proprioceptive discrepancy makes the coding of the hand position less precise, the hand-centred PPS is enlarged, likely to optimize reactions to external events.
Collapse
|
25
|
Chen S, Shi Z, Zang X, Zhu X, Assumpção L, Müller HJ, Geyer T. Crossmodal learning of target-context associations: When would tactile context predict visual search? Atten Percept Psychophys 2020; 82:1682-1694. [PMID: 31845105 PMCID: PMC7297845 DOI: 10.3758/s13414-019-01907-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It is well established that statistical learning of visual target locations in relation to constantly positioned visual distractors facilitates visual search. In the present study, we investigated whether such a contextual-cueing effect would also work crossmodally, from touch onto vision. Participants responded to the orientation of a visual target singleton presented among seven homogenous visual distractors. Four tactile stimuli, two to different fingers of each hand, were presented either simultaneously with or prior to the visual stimuli. The identity of the stimulated fingers provided the crossmodal context cue: in half of the trials, a given visual target location was consistently paired with a given tactile configuration. The visual stimuli were presented above the unseen fingers, ensuring spatial correspondence between vision and touch. We found no evidence of crossmodal contextual cueing when the two sets of items (tactile, visual) were presented simultaneously (Experiment 1). However, a reliable crossmodal effect emerged when the tactile distractors preceded the onset of visual stimuli 700 ms (Experiment 2). But crossmodal cueing disappeared again when, after an initial learning phase, participants flipped their hands, making the tactile distractors appear at different positions in external space while their somatotopic positions remained unchanged (Experiment 3). In all experiments, participants were unable to explicitly discriminate learned from novel multisensory arrays. These findings indicate that search-facilitating context memory can be established across vision and touch. However, in order to guide visual search, the (predictive) tactile configurations must be remapped from their initial somatotopic into a common external representational format.
Collapse
Affiliation(s)
- Siyi Chen
- General and Experimental Psychology, Department of Psychology, LMU Munich, Leopoldstr 13, 80802, Munich, Germany.
| | - Zhuanghua Shi
- General and Experimental Psychology, Department of Psychology, LMU Munich, Leopoldstr 13, 80802, Munich, Germany
| | - Xuelian Zang
- Center for Cognition and Brain Disorders, Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, China
| | - Xiuna Zhu
- General and Experimental Psychology, Department of Psychology, LMU Munich, Leopoldstr 13, 80802, Munich, Germany
| | - Leonardo Assumpção
- General and Experimental Psychology, Department of Psychology, LMU Munich, Leopoldstr 13, 80802, Munich, Germany
| | - Hermann J Müller
- General and Experimental Psychology, Department of Psychology, LMU Munich, Leopoldstr 13, 80802, Munich, Germany
| | - Thomas Geyer
- General and Experimental Psychology, Department of Psychology, LMU Munich, Leopoldstr 13, 80802, Munich, Germany
| |
Collapse
|
26
|
Azañón E, Longo MR. Tactile Perception: Beyond the Somatotopy of the Somatosensory Cortex. Curr Biol 2020; 29:R322-R324. [PMID: 31063723 DOI: 10.1016/j.cub.2019.03.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
New research demonstrates systematic errors of tactile localisation, involving confusions of body parts and body sides. Such errors do not follow the organisation of topographic maps in somatosensory cortex, suggesting that tactile localisation involves coding of abstract features of limbs.
Collapse
Affiliation(s)
- Elena Azañón
- Institute of Psychology, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany; Center for Behavioral Brain Sciences, 39106 Magdeburg, Germany; Department of Behavioral Neurology, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany.
| | - Matthew R Longo
- Department of Psychological Sciences, Birkbeck, University of London, London WC1E 7HX, UK.
| |
Collapse
|
27
|
Abstract
Humans localize touch on hand-held tools by interpreting the unique vibratory patterns elicited by impact to different parts of the tool. This perceptual strategy differs markedly from localizing touch on the skin. A new study shows that, nonetheless, touch location is probably processed similarly for skin and tool already early in somatosensory cortex.
Collapse
Affiliation(s)
- Tobias Heed
- Faculty of Psychology and Sports Science and Cluster of Excellence "Cognitive Interaction Technology", Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany.
| |
Collapse
|
28
|
Medendorp WP, Heed T. State estimation in posterior parietal cortex: Distinct poles of environmental and bodily states. Prog Neurobiol 2019; 183:101691. [DOI: 10.1016/j.pneurobio.2019.101691] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 08/12/2019] [Accepted: 08/29/2019] [Indexed: 01/06/2023]
|
29
|
Hense M, Badde S, Köhne S, Dziobek I, Röder B. Visual and Proprioceptive Influences on Tactile Spatial Processing in Adults with Autism Spectrum Disorders. Autism Res 2019; 12:1745-1757. [PMID: 31507084 DOI: 10.1002/aur.2202] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/25/2019] [Accepted: 08/14/2019] [Indexed: 12/19/2022]
Abstract
Children with autism spectrum disorders (ASDs) often exhibit altered representations of the external world. Consistently, when localizing touch, children with ASDs were less influenced than their peers by changes of the stimulated limb's location in external space [Wada et al., Scientific Reports 2015, 4(1), 5985]. However, given the protracted development of an external-spatial dominance in tactile processing in typically developing children, this difference might reflect a developmental delay rather than a set suppression of external space in ASDs. Here, adults with ASDs and matched control-participants completed (a) the tactile temporal order judgment (TOJ) task previously used to test external-spatial representation of touch in children with ASDs and (b) a tactile-visual cross-modal congruency (CC) task which assesses benefits of task-irrelevant visual stimuli on tactile localization in external space. In both experiments, participants localized tactile stimuli to the fingers of each hand, while holding their hands either crossed or uncrossed. Performance differences between hand postures reflect the influence of external-spatial codes. In both groups, tactile TOJ-performance markedly decreased when participants crossed their hands and CC-effects were especially large if the visual stimulus was presented at the same side of external space as the task-relevant touch. The absence of group differences was statistically confirmed using Bayesian statistical modeling: adults with ASDs weighted external-spatial codes comparable to typically developed adults during tactile and visual-tactile spatio-temporal tasks. Thus, atypicalities in the spatial coding of touch for children with ASDs appear to reflect a developmental delay rather than a stable characteristic of ASD. Autism Res 2019, 12: 1745-1757. © 2019 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: A touched limb's location can be described twofold, with respect to the body (right hand) or the external world (right side). Children and adolescents with autism spectrum disorder (ASD) reportedly rely less than their peers on the external world. Here, adults with and without ASDs completed two tactile localization tasks. Both groups relied to the same degree on external world locations. This opens the possibility that the tendency to relate touch to the external world is typical in individuals with ASDs but emerges with a delay.
Collapse
Affiliation(s)
- Marlene Hense
- Biological Psychology and Neuropsychology, University of Hamburg, Hamburg, Germany
| | - Stephanie Badde
- Biological Psychology and Neuropsychology, University of Hamburg, Hamburg, Germany.,Department of Psychology, New York University, New York, New York
| | - Svenja Köhne
- Berlin School of Mind and Brain, Department of Psychology, Humboldt University Berlin, Berlin, Germany
| | - Isabel Dziobek
- Berlin School of Mind and Brain, Department of Psychology, Humboldt University Berlin, Berlin, Germany
| | - Brigitte Röder
- Biological Psychology and Neuropsychology, University of Hamburg, Hamburg, Germany
| |
Collapse
|