1
|
Payne IP, Aubry B, Barrows JM, Brown PJB, Goley ED. The cell division protein FzlA performs a conserved function in diverse alphaproteobacteria. J Bacteriol 2024; 206:e0022524. [PMID: 39291979 PMCID: PMC11500498 DOI: 10.1128/jb.00225-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/25/2024] [Indexed: 09/19/2024] Open
Abstract
In almost all bacteria, the tubulin-like GTPase FtsZ polymerizes to form a "Z-ring" that marks the site of division. FtsZ recruits other proteins, collectively known as the divisome, that together remodel and constrict the envelope. Constriction is driven by peptidoglycan (PG) cell wall synthesis by the glycosyltransferase FtsW and the transpeptidase FtsI (FtsWI), but these enzymes require activation to function. How recruitment of FtsZ to the division site leads to FtsWI activation and constriction remains largely unknown. Previous work in our laboratory demonstrated that an FtsZ-binding protein, FzlA, is essential for activation of FtsWI in the alphaproteobacterium Caulobacter crescentus. Additionally, we found that FzlA binds to a DNA translocase called FtsK, suggesting that it may link constriction activation to chromosome segregation. FzlA is conserved throughout Alphaproteobacteria but has only been examined in detail in C. crescentus. Here, we explored whether FzlA function is conserved in diverse Alphaproteobacteria. We assessed FzlA homologs from Rickettsia parkeri and Agrobacterium tumefaciens, and found that, similar to C. crescentus FzlA, they bind directly to FtsZ and localize to midcell. The FtsZ-FzlA interaction interface is conserved, as we demonstrated that FzlA from each of the three species examined can bind to FtsZ from any of the three in vitro. Finally, we determined that A. tumefaciens FzlA can fulfill the essential function of FzlA when produced in C. crescentus, indicating conservation of function. These results suggest that FzlA serves as an important regulator that coordinates chromosome segregation with envelope constriction across diverse Alphaproteobacteria.IMPORTANCECell division is essential for bacterial replication and must be highly regulated to ensure robust remodeling of the cell wall in coordination with segregation of the genome to daughter cells. In Caulobacter crescentus, FzlA plays a major role in regulating this process by activating cell wall synthesis in a manner that couples constriction to chromosome segregation. FzlA is broadly conserved in Alphaproteobacteria, suggesting that it plays a similar function across this class of bacteria. Here, we have shown that, indeed, FzlA biochemical interactions and function are conserved in diverse Alphaproteobacteria. Because FzlA is conserved in Alphaproteobacterial human pathogens, understanding this protein and its interactome could present therapeutic benefits by identifying potential antibiotic targets to treat infections.
Collapse
Affiliation(s)
- Isaac P. Payne
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Brody Aubry
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA
| | - Jordan M. Barrows
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Pamela J. B. Brown
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA
| | - Erin D. Goley
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Gong H, Yan D, Cui Y, Li Y, Yang J, Yang W, Zhan R, Wan Q, Wang X, He H, Chen X, Lutkenhaus J, Yang X, Du S. The divisome is a self-enhancing machine in Escherichia coli and Caulobacter crescentus. Nat Commun 2024; 15:8198. [PMID: 39294118 PMCID: PMC11410940 DOI: 10.1038/s41467-024-52217-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/27/2024] [Indexed: 09/20/2024] Open
Abstract
During bacterial cytokinesis, polymers of the bacterial tubulin FtsZ coalesce into the Z ring to orchestrate divisome assembly and septal cell wall synthesis. Previous studies have found that Z ring condensation and stability is critical for successful cell division. However, how FtsZ filaments condense into a Z ring remains enigmatic and whether septal cell wall synthesis can feedback to the Z ring has not been investigated. Here, we show that FtsZ-associated proteins (Zaps) play important roles in Z ring condensation and stability, and discover septal cell wall synthesis as a novel player for Z ring condensation and stabilization in Escherichia coli and Caulobacter crescentus. Moreover, we find that the interaction between the Z ring membrane anchor, FtsA, and components of the septal cell wall synthetic complex are critical for septal cell wall synthesis-mediated Z ring condensation. Altogether, these findings suggest that the divisome is a self-enhancing machine in these two gram-negative bacteria, where the Z ring and the septal cell wall synthetic complex communicate with and reinforce each other to ensure robustness of cell division.
Collapse
Affiliation(s)
- Han Gong
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
- Key Laboratory of Polar Environment Monitoring and Public Governance (Ministry of Education), Wuhan University, Wuhan, China
| | - Di Yan
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yuanyuan Cui
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Ying Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Jize Yang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Wenjie Yang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Rui Zhan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Qianqian Wan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Xinci Wang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Haofeng He
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiangdong Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Joe Lutkenhaus
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Xinxing Yang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| | - Shishen Du
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China.
- Key Laboratory of Polar Environment Monitoring and Public Governance (Ministry of Education), Wuhan University, Wuhan, China.
| |
Collapse
|
3
|
Lariviere PJ, Ashraf AHMZ, Navarro-Escalante L, Leonard SP, Miller LG, Moran NA, Barrick JE. One-step genome engineering in bee gut bacterial symbionts. mBio 2024; 15:e0139224. [PMID: 39105596 PMCID: PMC11389375 DOI: 10.1128/mbio.01392-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/24/2024] [Indexed: 08/07/2024] Open
Abstract
Mechanistic understanding of interactions in many host-microbe systems, including the honey bee microbiome, is limited by a lack of easy-to-use genome engineering approaches. To this end, we demonstrate a one-step genome engineering approach for making gene deletions and insertions in the chromosomes of honey bee gut bacterial symbionts. Electroporation of linear or non-replicating plasmid DNA containing an antibiotic resistance cassette flanked by regions with homology to a symbiont genome reliably results in chromosomal integration. This lightweight approach does not require expressing any exogenous recombination machinery. The high concentrations of large DNAs with long homology regions needed to make the process efficient can be readily produced using modern DNA synthesis and assembly methods. We use this approach to knock out genes, including genes involved in biofilm formation, and insert fluorescent protein genes into the chromosome of the betaproteobacterial bee gut symbiont Snodgrassella alvi. We are also able to engineer the genomes of multiple strains of S. alvi and another species, Snodgrassella communis, which is found in the bumble bee gut microbiome. Finally, we use the same method to engineer the chromosome of another bee symbiont, Bartonella apis, which is an alphaproteobacterium. As expected, gene knockout in S. alvi using this approach is recA-dependent, suggesting that this straightforward procedure can be applied to other microbes that lack convenient genome engineering methods. IMPORTANCE Honey bees are ecologically and economically important crop pollinators with bacterial gut symbionts that influence their health. Microbiome-based strategies for studying or improving bee health have utilized wild-type or plasmid-engineered bacteria. We demonstrate that a straightforward, single-step method can be used to insert cassettes and replace genes in the chromosomes of multiple bee gut bacteria. This method can be used for investigating the mechanisms of host-microbe interactions in the bee gut community and stably engineering symbionts that benefit pollinator health.
Collapse
Affiliation(s)
- Patrick J Lariviere
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - A H M Zuberi Ashraf
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | | | - Sean P Leonard
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Laurel G Miller
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Nancy A Moran
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Jeffrey E Barrick
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
4
|
Perkins A, Mounange-Badimi MS, Margolin W. Role of the antiparallel double-stranded filament form of FtsA in activating the Escherichia coli divisome. mBio 2024; 15:e0168724. [PMID: 39041810 PMCID: PMC11323482 DOI: 10.1128/mbio.01687-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 06/28/2024] [Indexed: 07/24/2024] Open
Abstract
The actin-like FtsA protein is essential for function of the cell division machinery, or divisome, in many bacteria including Escherichia coli. Previous in vitro studies demonstrated that purified wild-type FtsA assembles into closed mini-rings on lipid membranes, but oligomeric variants of FtsA such as FtsAR286W and FtsAG50E can bypass certain divisome defects and form arc and double-stranded (DS) oligomeric states, respectively, which may reflect conversion of an inactive to an active form of FtsA. However, it remains unproven which oligomeric forms of FtsA are responsible for assembling and activating the divisome. Here, we used an in vivo crosslinking assay for FtsA DS filaments to show that they largely depend on proper divisome assembly and are prevalent at later stages of cell division. We also used a previously reported variant that fails to assemble DS filaments, FtsAM96E R153D, to investigate the roles of FtsA oligomeric states in divisome assembly and activation. We show that FtsAM96E R153D cannot form DS filaments in vivo, fails to replace native FtsA, and confers a dominant negative phenotype, underscoring the importance of the DS filament stage for FtsA function. Surprisingly, however, activation of the divisome through the ftsL* or ftsW* superfission alleles suppressed the dominant negative phenotype and rescued the functionality of FtsAM96E R153D. Our results suggest that FtsA DS filaments are needed for divisome activation once it is assembled, but they are not essential for divisome assembly or guiding septum synthesis.IMPORTANCECell division is fundamental for cellular duplication. In simple cells like Escherichia coli bacteria, the actin homolog FtsA is essential for cell division and assembles into a variety of protein filaments at the cytoplasmic membrane. These filaments not only help tether polymers of the tubulin-like FtsZ to the membrane at early stages of cell division but also play crucial roles in recruiting other cell division proteins to a complex called the divisome. Once assembled, the E. coli divisome subsequently activates synthesis of the division septum that splits the cell in two. One recently discovered oligomeric conformation of FtsA is an antiparallel double-stranded filament. Using a combination of in vivo crosslinking and genetics, we provide evidence suggesting that these FtsA double filaments have a crucial role in activating the septum synthesis enzymes.
Collapse
Affiliation(s)
- Abbigale Perkins
- Department of Microbiology and Molecular Genetics, UTHealth Houston McGovern Medical School, Houston, Texas, USA
| | - Mwidy Sava Mounange-Badimi
- Department of Microbiology and Molecular Genetics, UTHealth Houston McGovern Medical School, Houston, Texas, USA
| | - William Margolin
- Department of Microbiology and Molecular Genetics, UTHealth Houston McGovern Medical School, Houston, Texas, USA
| |
Collapse
|
5
|
Joshi K, Wright CS, Biswas RR, Iyer-Biswas S. Architectural underpinnings of stochastic intergenerational homeostasis. Phys Rev E 2024; 110:024405. [PMID: 39295040 DOI: 10.1103/physreve.110.024405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 07/24/2024] [Indexed: 09/21/2024]
Abstract
Living systems are naturally complex and adaptive and offer unique insights into the strategies for achieving and sustaining stochastic homeostasis in different conditions. Here we focus on homeostasis in the context of stochastic growth and division of individual bacterial cells. We take advantage of high-precision long-term dynamical data that have recently been used to extract emergent simplicities and to articulate empirical intra- and intergenerational scaling laws governing these stochastic dynamics. From these data, we identify the core motif in the mechanistic coupling between division and growth, which naturally yields these precise rules, thus also bridging the intra- and intergenerational phenomenologies. By developing and utilizing techniques for solving a broad class of first-passage processes, we derive the exact analytic necessary and sufficient condition for sustaining stochastic intergenerational cell-size homeostasis within this framework. Furthermore, we provide predictions for the precision kinematics of cell-size homeostasis and the shape of the interdivision time distribution, which are compellingly borne out by the high-precision data. Taken together, these results provide insights into the functional architecture of control systems that yield robust yet flexible stochastic homeostasis.
Collapse
|
6
|
Perkins A, Mounange-Badimi MS, Margolin W. Role of the antiparallel double-stranded filament form of FtsA in activating the Escherichia coli divisome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.600433. [PMID: 38979378 PMCID: PMC11230281 DOI: 10.1101/2024.06.24.600433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The actin-like FtsA protein is essential for function of the cell division machinery, or divisome, in many bacteria including Escherichia coli. Previous in vitro studies demonstrated that purified wild-type FtsA assembles into closed mini-rings on lipid membranes, but oligomeric variants of FtsA such as FtsAR286W and FtsAG50E can bypass certain divisome defects and form arc and double-stranded (DS) oligomeric states, respectively, which may reflect conversion of an inactive to an active form of FtsA. Yet, it remains unproven which oligomeric forms of FtsA are responsible for assembling and activating the divisome. Here we used an in vivo crosslinking assay for FtsA DS filaments to show that they largely depend on proper divisome assembly and are prevalent at later stages of cell division. We also used a previously reported variant that fails to assemble DS filaments, FtsAM96E R153D, to investigate the roles of FtsA oligomeric states in divisome assembly and activation. We show that FtsAM96E R153D cannot form DS filaments in vivo, fails to replace native FtsA, and confers a dominant negative phenotype, underscoring the importance of the DS filament stage for FtsA function. Surprisingly, however, activation of the divisome through the ftsL* or ftsW* superfission alleles suppressed the dominant negative phenotype and rescued the functionallity of FtsAM96E R153D. Our results suggest that FtsA DS filaments are needed for divisome activation once it is assembled, but they are not essential for divisome assembly or guiding septum synthesis.
Collapse
Affiliation(s)
- Abbigale Perkins
- Microbiology and Molecular Genetics, UTHealth McGovern Medical School, 6431 Fannin Street, Houston, TX 77030
| | - Mwidy Sava Mounange-Badimi
- Microbiology and Molecular Genetics, UTHealth McGovern Medical School, 6431 Fannin Street, Houston, TX 77030
| | - William Margolin
- Microbiology and Molecular Genetics, UTHealth McGovern Medical School, 6431 Fannin Street, Houston, TX 77030
| |
Collapse
|
7
|
Perez AJ, Xiao J. Stay on track - revelations of bacterial cell wall synthesis enzymes and things that go by single-molecule imaging. Curr Opin Microbiol 2024; 79:102490. [PMID: 38821027 PMCID: PMC11162910 DOI: 10.1016/j.mib.2024.102490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 06/02/2024]
Abstract
In this review, we explore the regulation of septal peptidoglycan (sPG) synthesis in bacterial cell division, a critical process for cell viability and proper morphology. Recent single-molecule imaging studies have revealed the processive movement of the FtsW:bPBP synthase complex along the septum, shedding light on the spatiotemporal dynamics of sPG synthases and their regulators. In diderm bacteria (E. coli and C. crescentus), the movement occurs at two distinct speeds, reflecting active synthesis or inactivity driven by FtsZ-treadmilling. In monoderm bacteria (B. subtilis, S. pneumoniae, and S. aureus), however, these enzymes exhibit only the active sPG-track-coupled processive movement. By comparing the dynamics of sPG synthases in these organisms and that of class-A penicillin-binding proteins in vivo and in vitro, we propose a unifying model for septal cell wall synthesis regulation across species, highlighting the roles of the sPG- and Z-tracks in orchestrating a robust bacterial cell wall constriction process.
Collapse
Affiliation(s)
- Amilcar J Perez
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jie Xiao
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
8
|
Herdman M, Isbilir B, von Kügelgen A, Schulze U, Wainman A, Bharat TAM. Cell cycle dependent coordination of surface layer biogenesis in Caulobacter crescentus. Nat Commun 2024; 15:3355. [PMID: 38637514 PMCID: PMC11026435 DOI: 10.1038/s41467-024-47529-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 04/04/2024] [Indexed: 04/20/2024] Open
Abstract
Surface layers (S-layers) are proteinaceous, two-dimensional paracrystalline arrays that constitute a major component of the cell envelope in many prokaryotic species. In this study, we investigated S-layer biogenesis in the bacterial model organism Caulobacter crescentus. Fluorescence microscopy revealed localised incorporation of new S-layer at the poles and mid-cell, consistent with regions of cell growth in the cell cycle. Light microscopy and electron cryotomography investigations of drug-treated bacteria revealed that localised S-layer insertion is retained when cell division is inhibited, but is disrupted upon dysregulation of MreB or lipopolysaccharide. We further uncovered that S-layer biogenesis follows new peptidoglycan synthesis and localises to regions of high cell wall turnover. Finally, correlated cryo-light microscopy and electron cryotomographic analysis of regions of S-layer insertion showed the presence of discontinuities in the hexagonal S-layer lattice, contrasting with other S-layers completed by defined symmetric defects. Our findings present insights into how C. crescentus cells form an ordered S-layer on their surface in coordination with the biogenesis of other cell envelope components.
Collapse
Affiliation(s)
- Matthew Herdman
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Buse Isbilir
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Andriko von Kügelgen
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Ulrike Schulze
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Alan Wainman
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Tanmay A M Bharat
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK.
| |
Collapse
|
9
|
Schäper S, Brito AD, Saraiva BM, Squyres GR, Holmes MJ, Garner EC, Hensel Z, Henriques R, Pinho MG. Cell constriction requires processive septal peptidoglycan synthase movement independent of FtsZ treadmilling in Staphylococcus aureus. Nat Microbiol 2024; 9:1049-1063. [PMID: 38480900 PMCID: PMC10994846 DOI: 10.1038/s41564-024-01629-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 02/01/2024] [Indexed: 04/06/2024]
Abstract
Bacterial cell division requires recruitment of peptidoglycan (PG) synthases to the division site by the tubulin homologue, FtsZ. Septal PG synthases promote septum growth. FtsZ treadmilling is proposed to drive the processive movement of septal PG synthases and septal constriction in some bacteria; however, the precise mechanisms spatio-temporally regulating PG synthase movement and activity and FtsZ treadmilling are poorly understood. Here using single-molecule imaging of division proteins in the Gram-positive pathogen Staphylococcus aureus, we showed that the septal PG synthase complex FtsW/PBP1 and its putative activator protein, DivIB, move with similar velocity around the division site. Impairing FtsZ treadmilling did not affect FtsW or DivIB velocities or septum constriction rates. Contrarily, PG synthesis inhibition decelerated or stopped directional movement of FtsW and DivIB, and septum constriction. Our findings suggest that a single population of processively moving FtsW/PBP1 associated with DivIB drives cell constriction independently of FtsZ treadmilling in S. aureus.
Collapse
Affiliation(s)
- Simon Schäper
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal.
| | - António D Brito
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Bruno M Saraiva
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Georgia R Squyres
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Matthew J Holmes
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Ethan C Garner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Zach Hensel
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Ricardo Henriques
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- MRC-Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Mariana G Pinho
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal.
| |
Collapse
|
10
|
Santiago-Collazo G, Brown PJB, Randich AM. The divergent early divisome: is there a functional core? Trends Microbiol 2024; 32:231-240. [PMID: 37741788 DOI: 10.1016/j.tim.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/25/2023]
Abstract
The bacterial divisome is a complex nanomachine that drives cell division and separation. The essentiality of these processes leads to the assumption that proteins with core roles will be strictly conserved across all bacterial genomes. However, recent studies in diverse proteobacteria have revealed considerable variation in the early divisome compared with Escherichia coli. While some proteins are highly conserved, their specific functions and interacting partners vary. Meanwhile, different subphyla use clade-specific proteins with analogous functions. Thus, instead of focusing on gene conservation, we must also explore how key functions are maintained during early division by diverging protein networks. An enhanced awareness of these complex genetic networks will clarify the physical and evolutionary constraints of bacterial division.
Collapse
Affiliation(s)
- Gustavo Santiago-Collazo
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri-Columbia, Columbia, MO, USA
| | - Pamela J B Brown
- Division of Biological Sciences, College of Arts and Sciences, University of Missouri-Columbia, Columbia, MO, USA
| | - Amelia M Randich
- Department of Biology, College of Arts and Sciences, University of Scranton, Scranton, PA, USA.
| |
Collapse
|
11
|
Mahone CR, Payne IP, Lyu Z, McCausland JW, Barrows JM, Xiao J, Yang X, Goley ED. Integration of cell wall synthesis and chromosome segregation during cell division in Caulobacter. J Cell Biol 2024; 223:e202211026. [PMID: 38015166 PMCID: PMC10683668 DOI: 10.1083/jcb.202211026] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 10/17/2023] [Accepted: 11/10/2023] [Indexed: 11/29/2023] Open
Abstract
To divide, bacteria must synthesize their peptidoglycan (PG) cell wall, a protective meshwork that maintains cell shape. FtsZ, a tubulin homolog, dynamically assembles into a midcell band, recruiting division proteins, including the PG synthases FtsW and FtsI. FtsWI are activated to synthesize PG and drive constriction at the appropriate time and place. However, their activation pathway remains unresolved. In Caulobacter crescentus, FtsWI activity requires FzlA, an essential FtsZ-binding protein. Through time-lapse imaging and single-molecule tracking of Caulobacter FtsW and FzlA, we demonstrate that FzlA is a limiting constriction activation factor that signals to promote conversion of inactive FtsW to an active, slow-moving state. We find that FzlA interacts with the DNA translocase FtsK and place FtsK genetically in a pathway with FzlA and FtsWI. Misregulation of the FzlA-FtsK-FtsWI pathway leads to heightened DNA damage and cell death. We propose that FzlA integrates the FtsZ ring, chromosome segregation, and PG synthesis to ensure robust and timely constriction during Caulobacter division.
Collapse
Affiliation(s)
- Christopher R. Mahone
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Isaac P. Payne
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zhixin Lyu
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joshua W. McCausland
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jordan M. Barrows
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jie Xiao
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xinxing Yang
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Division of Life Sciences and Medicine, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, School of Basic Medical Sciences, University of Science and Technology of China, Hefei, China
| | - Erin D. Goley
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
12
|
Cameron TA, Margolin W. Insights into the assembly and regulation of the bacterial divisome. Nat Rev Microbiol 2024; 22:33-45. [PMID: 37524757 PMCID: PMC11102604 DOI: 10.1038/s41579-023-00942-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2023] [Indexed: 08/02/2023]
Abstract
The ability to split one cell into two is fundamental to all life, and many bacteria can accomplish this feat several times per hour with high accuracy. Most bacteria call on an ancient homologue of tubulin, called FtsZ, to localize and organize the cell division machinery, the divisome, into a ring-like structure at the cell midpoint. The divisome includes numerous other proteins, often including an actin homologue (FtsA), that interact with each other at the cytoplasmic membrane. Once assembled, the protein complexes that comprise the dynamic divisome coordinate membrane constriction with synthesis of a division septum, but only after overcoming checkpoints mediated by specialized protein-protein interactions. In this Review, we summarize the most recent evidence showing how the divisome proteins of Escherichia coli assemble at the cell midpoint, interact with each other and regulate activation of septum synthesis. We also briefly discuss the potential of divisome proteins as novel antibiotic targets.
Collapse
Affiliation(s)
- Todd A Cameron
- Department of Microbiology and Molecular Genetics, McGovern Medical School, Houston, TX, USA
| | - William Margolin
- Department of Microbiology and Molecular Genetics, McGovern Medical School, Houston, TX, USA.
| |
Collapse
|
13
|
Daitch AK, Orsburn BC, Chen Z, Alvarez L, Eberhard CD, Sundararajan K, Zeinert R, Kreitler DF, Jakoncic J, Chien P, Cava F, Gabelli SB, Goley ED. EstG is a novel esterase required for cell envelope integrity in Caulobacter. Curr Biol 2023; 33:228-240.e7. [PMID: 36516849 PMCID: PMC9877181 DOI: 10.1016/j.cub.2022.11.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 10/17/2022] [Accepted: 11/17/2022] [Indexed: 12/15/2022]
Abstract
Proper regulation of the bacterial cell envelope is critical for cell survival. Identification and characterization of enzymes that maintain cell envelope homeostasis is crucial, as they can be targets for effective antibiotics. In this study, we have identified a novel enzyme, called EstG, whose activity protects cells from a variety of lethal assaults in the ⍺-proteobacterium Caulobacter crescentus. Despite homology to transpeptidase family cell wall enzymes and an ability to protect against cell-wall-targeting antibiotics, EstG does not demonstrate biochemical activity toward cell wall substrates. Instead, EstG is genetically connected to the periplasmic enzymes OpgH and BglX, responsible for synthesis and hydrolysis of osmoregulated periplasmic glucans (OPGs), respectively. The crystal structure of EstG revealed similarities to esterases and transesterases, and we demonstrated esterase activity of EstG in vitro. Using biochemical fractionation, we identified a cyclic hexamer of glucose as a likely substrate of EstG. This molecule is the first OPG described in Caulobacter and establishes a novel class of OPGs, the regulation and modification of which are important for stress survival and adaptation to fluctuating environments. Our data indicate that EstG, BglX, and OpgH comprise a previously unknown OPG pathway in Caulobacter. Ultimately, we propose that EstG is a novel enzyme that instead of acting on the cell wall, acts on cyclic OPGs to provide resistance to a variety of cellular stresses.
Collapse
Affiliation(s)
- Allison K Daitch
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205, USA
| | - Benjamin C Orsburn
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205, USA
| | - Zan Chen
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205, USA
| | - Laura Alvarez
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, Umeå University, 901 87 Umeå, Sweden
| | - Colten D Eberhard
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205, USA
| | - Kousik Sundararajan
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205, USA
| | - Rilee Zeinert
- Department of Biochemistry and Molecular Biology, University of Massachusetts-Amherst, 240 Thatcher Road, Amherst, MA 01003, USA
| | - Dale F Kreitler
- National Synchrotron Light Source II, Bldg 745, Brookhaven National Laboratory, P.O. Box 5000, Upton, NY 11973-5000, USA
| | - Jean Jakoncic
- National Synchrotron Light Source II, Bldg 745, Brookhaven National Laboratory, P.O. Box 5000, Upton, NY 11973-5000, USA
| | - Peter Chien
- Department of Biochemistry and Molecular Biology, University of Massachusetts-Amherst, 240 Thatcher Road, Amherst, MA 01003, USA
| | - Felipe Cava
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, Umeå University, 901 87 Umeå, Sweden
| | - Sandra B Gabelli
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205, USA; Department of Oncology, Johns Hopkins University School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205, USA; Department of Medicine, Johns Hopkins University School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205, USA
| | - Erin D Goley
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
14
|
Cao Y, Oh J, Xue M, Martin AL, Song D, Crawford JM, Herzon SB, Palm NW. Commensal microbiota from patients with inflammatory bowel disease produce genotoxic metabolites. Science 2022; 378:eabm3233. [PMID: 36302024 PMCID: PMC9993714 DOI: 10.1126/science.abm3233] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Microbiota-derived metabolites that elicit DNA damage can contribute to colorectal cancer (CRC). However, the full spectrum of genotoxic chemicals produced by indigenous gut microbes remains to be defined. We established a pipeline to systematically evaluate the genotoxicity of an extensive collection of gut commensals from inflammatory bowel disease patients. We identified isolates from divergent phylogenies whose metabolites caused DNA damage and discovered a distinctive family of genotoxins-termed the indolimines-produced by the CRC-associated species Morganella morganii. A non-indolimine-producing M. morganii mutant lacked genotoxicity and failed to exacerbate colon tumorigenesis in mice. These studies reveal the existence of a previously unexplored universe of genotoxic small molecules from the microbiome that may affect host biology in homeostasis and disease.
Collapse
Affiliation(s)
- Yiyun Cao
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Joonseok Oh
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA
| | - Mengzhao Xue
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, New York, NY 10065, USA
| | - Anjelica L. Martin
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Deguang Song
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Jason M. Crawford
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Seth B. Herzon
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Noah W. Palm
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| |
Collapse
|
15
|
Abstract
Most bacteria are surrounded by a peptidoglycan cell wall that defines their shape and protects them from osmotic lysis. The expansion and division of this structure therefore plays an integral role in bacterial growth and division. Additionally, the biogenesis of the peptidoglycan layer is the target of many of our most effective antibiotics. Thus, a better understanding of how the cell wall is built will enable the development of new therapies to combat the rise of drug-resistant bacterial infections. This review covers recent advances in defining the mechanisms involved in assembling the peptidoglycan layer with an emphasis on discoveries related to the function and regulation of the cell elongation and division machineries in the model organisms Escherichia coli and Bacillus subtilis. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Patricia D A Rohs
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA; .,Current affiliation: Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Thomas G Bernhardt
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA; .,Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
16
|
The Chaperonin GroESL Facilitates Caulobacter crescentus Cell Division by Supporting the Functions of the Z-Ring Regulators FtsA and FzlA. mBio 2021; 12:mBio.03564-20. [PMID: 33947758 PMCID: PMC8262945 DOI: 10.1128/mbio.03564-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The highly conserved chaperonin GroESL performs a crucial role in protein folding; however, the essential cellular pathways that rely on this chaperone are underexplored. Loss of GroESL leads to severe septation defects in diverse bacteria, suggesting the folding function of GroESL may be integrated with the bacterial cell cycle at the point of cell division. Here, we describe new connections between GroESL and the bacterial cell cycle using the model organism Caulobacter crescentus. Using a proteomics approach, we identify candidate GroESL client proteins that become insoluble or are degraded specifically when GroESL folding is insufficient, revealing several essential proteins that participate in cell division and peptidoglycan biosynthesis. We demonstrate that other cell cycle events, such as DNA replication and chromosome segregation, are able to continue when GroESL folding is insufficient. We further find that deficiency of two FtsZ-interacting proteins, the bacterial actin homologue FtsA and the constriction regulator FzlA, mediate the GroESL-dependent block in cell division. Our data show that sufficient GroESL is required to maintain normal dynamics of the FtsZ scaffold and divisome functionality in C. crescentus. In addition to supporting divisome function, we show that GroESL is required to maintain the flow of peptidoglycan precursors into the growing cell wall. Linking a chaperone to cell division may be a conserved way to coordinate environmental and internal cues that signal when it is safe to divide.
Collapse
|
17
|
An SQ, Lopes BS, Connolly JPR, Sharp C, Nguyen TKL, Kirkpatrick CL. Going virtual: a report from the sixth Young Microbiologists Symposium on 'Microbe Signalling, Organisation and Pathogenesis'. MICROBIOLOGY (READING, ENGLAND) 2021; 167. [PMID: 33529149 DOI: 10.1099/mic.0.001024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The sixth Young Microbiologists Symposium on 'Microbe Signalling, Organisation and Pathogenesis' was scheduled to be held at the University of Southampton, UK, in late August 2020. However, due to the health and safety guidelines and travel restrictions as a response to the COVID-19 pandemic, the symposium was transitioned to a virtual format, a change embraced enthusiastically as the meeting attracted over 200 microbiologists from 40 countries. The event allowed junior scientists to present their work to a broad audience and was supported by the European Molecular Biology Organization, the Federation of European Microbiological Societies, the Society of Applied Microbiology, the Biochemical Society, the Microbiology Society and the National Biofilms Innovation Centre. Sessions covered recent advances in all areas of microbiology including: Secretion and transport across membranes, Gene regulation and signalling, Host-microbe interactions, and Microbial communities and biofilm formation. This report focuses on several of the highlights and exciting developments communicated during the talks and poster presentations.
Collapse
Affiliation(s)
- Shi-Qi An
- School of Biological Sciences, National Biofilms Innovation Centre, University of Southampton, Southampton, UK
| | | | | | - Connor Sharp
- Department of Biochemistry, University of Oxford, Oxford, UK
- Department of Zoology, University of Oxford, Oxford, UK
| | | | - Clare Louise Kirkpatrick
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
18
|
Bandekar AC, Subedi S, Ioerger TR, Sassetti CM. Cell-Cycle-Associated Expression Patterns Predict Gene Function in Mycobacteria. Curr Biol 2020; 30:3961-3971.e6. [PMID: 32916109 PMCID: PMC7578119 DOI: 10.1016/j.cub.2020.07.070] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/26/2020] [Accepted: 07/22/2020] [Indexed: 12/20/2022]
Abstract
Although the major events in prokaryotic cell cycle progression are likely to be coordinated with transcriptional and metabolic changes, these processes remain poorly characterized. Unlike many rapidly growing bacteria, DNA replication and cell division are temporally resolved in mycobacteria, making these slow-growing organisms a potentially useful system to investigate the prokaryotic cell cycle. To determine whether cell-cycle-dependent gene regulation occurs in mycobacteria, we characterized the temporal changes in the transcriptome of synchronously replicating populations of Mycobacterium tuberculosis (Mtb). By enriching for genes that display a sinusoidal expression pattern, we discover 485 genes that oscillate with a period consistent with the cell cycle. During cytokinesis, the timing of gene induction could be used to predict the timing of gene function, as mRNA abundance was found to correlate with the order in which proteins were recruited to the developing septum. Similarly, the expression pattern of primary metabolic genes could be used to predict the relative importance of these pathways for different cell cycle processes. Pyrimidine synthetic genes peaked during DNA replication, and their depletion caused a filamentation phenotype that phenocopied defects in this process. In contrast, the inosine monophasphate dehydrogenase dedicated to guanosine synthesis, GuaB2, displayed the opposite expression pattern and its depletion perturbed septation. Together, these data imply obligate coordination between primary metabolism and cell division and identify periodically regulated genes that can be related to specific cell biological functions.
Collapse
Affiliation(s)
- Aditya C Bandekar
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Sishir Subedi
- Department of Computer Science and Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Thomas R Ioerger
- Department of Computer Science and Engineering, Texas A&M University, College Station, TX 77843, USA.
| | - Christopher M Sassetti
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA.
| |
Collapse
|
19
|
Daitch AK, Goley ED. Uncovering Unappreciated Activities and Niche Functions of Bacterial Cell Wall Enzymes. Curr Biol 2020; 30:R1170-R1175. [PMID: 33022262 PMCID: PMC7930900 DOI: 10.1016/j.cub.2020.07.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A peptidoglycan (PG) cell wall is an essential component of nearly all bacteria, providing protection against turgor pressure. Metabolism of this PG meshwork must be spatially and temporally regulated in order to support cell growth and division. Despite being an active area of research for decades, we have only recently identified the primary PG synthesis complexes that function during cell elongation (RodA-PBP2) and cell division (FtsW-FtsI), and we are still uncovering the importance of the other seemingly redundant cell wall enzymes. In this minireview, we highlight the discovery of the monofunctional glycosyltransferases RodA and FtsW and describe how these findings have prompted a re-evaluation of the auxiliary role of the bifunctional class A penicillin-binding proteins (aPBPs) as well as the L,D-transpeptidases (LDTs). Specifically, recent work indicates that the aPBPs and LDTs function independently of the primary morphogenetic complexes to support growth, provide protection from stresses, mediate morphogenesis, and/or allow adaptation to different growth conditions. These paradigm-shifting studies have reframed our understanding of bacterial cell wall metabolism, which will only become more refined as emerging technology allows us to tackle the remaining questions surrounding PG biosynthesis.
Collapse
Affiliation(s)
- Allison K Daitch
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 20215, USA
| | - Erin D Goley
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 20215, USA.
| |
Collapse
|
20
|
All living cells are cognitive. Biochem Biophys Res Commun 2020; 564:134-149. [PMID: 32972747 DOI: 10.1016/j.bbrc.2020.08.120] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/28/2020] [Accepted: 08/19/2020] [Indexed: 12/24/2022]
Abstract
All living cells sense and respond to changes in external or internal conditions. Without that cognitive capacity, they could not obtain nutrition essential for growth, survive inevitable ecological changes, or correct accidents in the complex processes of reproduction. Wherever examined, even the smallest living cells (prokaryotes) display sophisticated regulatory networks establishing appropriate adaptations to stress conditions that maximize the probability of survival. Supposedly "simple" prokaryotic organisms also display remarkable capabilities for intercellular signalling and multicellular coordination. These observations indicate that all living cells are cognitive.
Collapse
|
21
|
A conserved subcomplex within the bacterial cytokinetic ring activates cell wall synthesis by the FtsW-FtsI synthase. Proc Natl Acad Sci U S A 2020; 117:23879-23885. [PMID: 32907942 DOI: 10.1073/pnas.2004598117] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cell division in bacteria is mediated by a multiprotein assembly called the divisome. A major function of this machinery is the synthesis of the peptidoglycan (PG) cell wall that caps the daughter poles and prevents osmotic lysis of the newborn cells. Recent studies have implicated a complex of FtsW and FtsI (FtsWI) as the essential PG synthase within the divisome; however, how PG polymerization by this synthase is regulated and coordinated with other activities within the machinery is not well understood. Previous results have implicated a conserved subcomplex of division proteins composed of FtsQ, FtsL, and FtsB (FtsQLB) in the regulation of FtsWI, but whether these proteins act directly as positive or negative regulators of the synthase has been unclear. To address this question, we purified a five-member Pseudomonas aeruginosa division complex consisting of FtsQLB-FtsWI. The PG polymerase activity of this complex was found to be greatly stimulated relative to FtsWI alone. Purification of complexes lacking individual components indicated that FtsL and FtsB are sufficient for FtsW activation. Furthermore, support for this activity being important for the cellular function of FtsQLB was provided by the identification of two division-defective variants of FtsL that still form normal FtsQLB-FtsWI complexes but fail to activate PG synthesis. Thus, our results indicate that the conserved FtsQLB complex is a direct activator of PG polymerization by the FtsWI synthase and thereby define an essential regulatory step in the process of bacterial cell division.
Collapse
|
22
|
The Lon Protease Links Nucleotide Metabolism with Proteotoxic Stress. Mol Cell 2020; 79:758-767.e6. [PMID: 32755596 DOI: 10.1016/j.molcel.2020.07.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 04/29/2020] [Accepted: 07/07/2020] [Indexed: 12/24/2022]
Abstract
During proteotoxic stress, bacteria maintain critical processes like DNA replication while removing misfolded proteins, which are degraded by the Lon protease. Here, we show that in Caulobacter crescentus Lon controls deoxyribonucleoside triphosphate (dNTP) pools during stress through degradation of the transcription factor CcrM. Elevated dNTP/nucleotide triphosphate (NTP) ratios in Δlon cells protects them from deletion of otherwise essential deoxythymidine triphosphate (dTTP)-producing pathways and shields them from hydroxyurea-induced loss of dNTPs. Increased dNTP production in Δlon results from higher expression of ribonucleotide reductase driven by increased CcrM. We show that misfolded proteins can stabilize CcrM by competing for limited protease and that Lon-dependent control of dNTPs improves fitness during protein misfolding conditions. We propose that linking dNTP production with availability of Lon allows Caulobacter to maintain replication capacity when misfolded protein burden increases, such as during rapid growth. Because Lon recognizes misfolded proteins regardless of the stress, this mechanism allows for response to a variety of unanticipated conditions.
Collapse
|
23
|
Abstract
Bacterial cell division is initiated by the midcell assembly of polymers of the tubulin-like GTPase FtsZ. The FtsZ ring (Z-ring) is a discontinuous structure made of dynamic patches of FtsZ that undergo treadmilling motion. Roughly a dozen additional essential proteins are recruited to the division site by the dynamic Z-ring scaffold and subsequently activate cell wall synthesis to drive cell envelope constriction during division. In this Cell Science at a Glance article and the accompanying poster, we summarize our understanding of the assembly and activation of the bacterial cell division machinery. We introduce polymerization properties of FtsZ and discuss our current knowledge of divisome assembly and activation. We further highlight the intimate relationship between the structure and dynamics of FtsZ and the movement and activity of cell wall synthases at the division site, before concluding with a perspective on the most important open questions on bacterial cell division.
Collapse
Affiliation(s)
- Christopher R Mahone
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Erin D Goley
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
24
|
Squeglia F, Moreira M, Ruggiero A, Berisio R. The Cell Wall Hydrolytic NlpC/P60 Endopeptidases in Mycobacterial Cytokinesis: A Structural Perspective. Cells 2019; 8:cells8060609. [PMID: 31216697 PMCID: PMC6628586 DOI: 10.3390/cells8060609] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/12/2019] [Accepted: 06/14/2019] [Indexed: 12/11/2022] Open
Abstract
In preparation for division, bacteria replicate their DNA and segregate the newly formed chromosomes. A division septum then assembles between the chromosomes, and the mother cell splits into two identical daughters due to septum degradation. A major constituent of bacterial septa and of the whole cell wall is peptidoglycan (PGN), an essential cell wall polymer, formed by glycan chains of β−(1-4)-linked-N-acetylglucosamine (GlcNAc) and N-acetylmuramic acid (MurNAc), cross-linked by short peptide stems. Depending on the amino acid located at the third position of the peptide stem, PGN is classified as either Lys-type or meso-diaminopimelic acid (DAP)-type. Hydrolytic enzymes play a crucial role in the degradation of bacterial septa to split the cell wall material shared by adjacent daughter cells to promote their separation. In mycobacteria, a key PGN hydrolase, belonging to the NlpC/P60 endopeptidase family and denoted as RipA, is responsible for the degradation of septa, as the deletion of the gene encoding for this enzyme generates abnormal bacteria with multiple septa. This review provides an update of structural and functional data highlighting the central role of RipA in mycobacterial cytokinesis and the fine regulation of its catalytic activity, which involves multiple molecular partners.
Collapse
Affiliation(s)
- Flavia Squeglia
- Institute of Biostructures and Bioimaging (IBB), CNR, 80134 Naples, Italy.
| | - Miguel Moreira
- Institute of Biostructures and Bioimaging (IBB), CNR, 80134 Naples, Italy.
| | - Alessia Ruggiero
- Institute of Biostructures and Bioimaging (IBB), CNR, 80134 Naples, Italy.
| | - Rita Berisio
- Institute of Biostructures and Bioimaging (IBB), CNR, 80134 Naples, Italy.
| |
Collapse
|