1
|
Scott TJ, Stephenson CJ, Rao S, Queller DC, Strassmann JE. Unpredictable soil conditions can affect the prevalence of a microbial symbiosis. PeerJ 2024; 12:e17445. [PMID: 38784393 PMCID: PMC11114107 DOI: 10.7717/peerj.17445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024] Open
Abstract
The evolution of symbiotic interactions may be affected by unpredictable conditions. However, a link between prevalence of these conditions and symbiosis has not been widely demonstrated. We test for these associations using Dictyostelium discoideum social amoebae and their bacterial endosymbionts. D. discoideum commonly hosts endosymbiotic bacteria from three taxa: Paraburkholderia, Amoebophilus and Chlamydiae. Three species of facultative Paraburkholderia endosymbionts are the best studied and give hosts the ability to carry prey bacteria through the dispersal stage to new environments. Amoebophilus and Chlamydiae are obligate endosymbiont lineages with no measurable impact on host fitness. We tested whether the frequency of both single infections and coinfections of these symbionts were associated with the unpredictability of their soil environments by using symbiont presence-absence data from D. discoideum isolates from 21 locations across the eastern United States. We found that symbiosis across all infection types, symbiosis with Amoebophilus and Chlamydiae obligate endosymbionts, and symbiosis involving coinfections were not associated with any of our measures. However, unpredictable precipitation was associated with symbiosis in two species of Paraburkholderia, suggesting a link between unpredictable conditions and symbiosis.
Collapse
Affiliation(s)
- Trey J. Scott
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - Calum J. Stephenson
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - Sandeep Rao
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - David C. Queller
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - Joan E. Strassmann
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
2
|
Stewart AJ, Pilgrim C, Raihani NJ. Resolving selfish and spiteful interdependent conflict. Proc Biol Sci 2024; 291:20240295. [PMID: 38593846 PMCID: PMC11003781 DOI: 10.1098/rspb.2024.0295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 03/06/2024] [Indexed: 04/11/2024] Open
Abstract
Interdependence occurs when individuals have a stake in the success or failure of others, such that the outcomes experienced by one individual also generate costs or benefits for others. Discussion on this topic has typically focused on positive interdependence (where gains for one individual result in gains for another) and on the consequences for cooperation. However, interdependence can also be negative (where gains for one individual result in losses for another), which can spark conflict. In this article, we explain when negative interdependence is likely to arise and, crucially, the role played by (mis)perception in shaping an individual's understanding of their interdependent relationships. We argue that, owing to the difficulty in accurately perceiving interdependence with others, individuals might often be mistaken about the stake they hold in each other's outcomes, which can spark needless, resolvable forms of conflict. We then discuss when and how reducing misperceptions can help to resolve such conflicts. We argue that a key mechanism for resolving interdependent conflict, along with better sources of exogenous information, is to reduce reliance on heuristics such as stereotypes when assessing the nature of our interdependent relationships.
Collapse
Affiliation(s)
| | - Charlie Pilgrim
- Department of Experimental Psychology, University College London, 26 Bedford Way, London WC1H 0AP, UK
| | - Nichola J. Raihani
- Department of Experimental Psychology, University College London, 26 Bedford Way, London WC1H 0AP, UK
- School of Psychology, University of Auckland, 23 Symonds Street, Auckland, 1011, New Zealand
| |
Collapse
|
3
|
Albery GF, Bansal S, Silk MJ. Comparative approaches in social network ecology. Ecol Lett 2024; 27:e14345. [PMID: 38069575 DOI: 10.1111/ele.14345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 01/31/2024]
Abstract
Social systems vary enormously across the animal kingdom, with important implications for ecological and evolutionary processes such as infectious disease dynamics, anti-predator defence, and the evolution of cooperation. Comparing social network structures between species offers a promising route to help disentangle the ecological and evolutionary processes that shape this diversity. Comparative analyses of networks like these are challenging and have been used relatively little in ecology, but are becoming increasingly feasible as the number of empirical datasets expands. Here, we provide an overview of multispecies comparative social network studies in ecology and evolution. We identify a range of advancements that these studies have made and key challenges that they face, and we use these to guide methodological and empirical suggestions for future research. Overall, we hope to motivate wider publication and analysis of open social network datasets in animal ecology.
Collapse
Affiliation(s)
- Gregory F Albery
- Department of Biology, Georgetown University, Washington, District of Columbia, USA
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Shweta Bansal
- Department of Biology, Georgetown University, Washington, District of Columbia, USA
| | - Matthew J Silk
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
4
|
Jones ME, Sheard C. The macroevolutionary dynamics of mammalian sexual size dimorphism. Proc Biol Sci 2023; 290:20231211. [PMID: 37964522 PMCID: PMC10646455 DOI: 10.1098/rspb.2023.1211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/13/2023] [Indexed: 11/16/2023] Open
Abstract
Sexual size dimorphism (SSD) is a common phenomenon across the animal kingdom. Mammals are unusual in primarily displaying male-biased SSD, where males of a species are typically larger than females. The driving factors behind the evolution of this SSD have been much debated, with popular hypotheses invoking the influence of mating system and social organization via sexual selection, dietary niche divergence and broad-scale correlations with body size (Rensch's rule). Here, we investigate the macroevolutionary origins and maintenance of SSD among mammals, using phylogenetic general mixed linear models and a comprehensive global dataset to evaluate correlations of diet, body mass, seasonality, social organization and mating system with SSD type. We find that SSD as a whole is lost at a greater rate than it is gained, with female-biased SSD being particularly unstable. Non-monogamous mating systems, vertebrate prey consumption and temperature seasonality correlate with male-biased SSD, while polyandry correlates with female-biased SSD, and both types of SSD are positively correlated with body mass. This is in partial contrast to the predictions of Rensch's rule, which predicts that female-biased SSD would correlate negatively with body size. Taken together, our results highlight the importance of considering multiple ecological and social drivers when evaluating the macroevolutionary trajectory of sex differences in body size.
Collapse
Affiliation(s)
- Megan E. Jones
- Department of Earth and Environmental Sciences, University of Manchester, 176 Oxford Road, Manchester M13 9QQ, UK
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Catherine Sheard
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
- School of Biological Sciences, University of Aberdeen, Tillydrone Ave, Aberdeen, AB24 2TZ, UK
| |
Collapse
|
5
|
Bourne AR, Ridley AR, Cunningham SJ. Helpers don't help when it's hot in a cooperatively breeding bird, the Southern Pied Babbler. Behav Ecol 2023; 34:562-570. [PMID: 37434640 PMCID: PMC10332451 DOI: 10.1093/beheco/arad023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 02/25/2023] [Accepted: 04/04/2023] [Indexed: 07/13/2023] Open
Abstract
Cooperative breeding, where more than two individuals invest in rearing a single brood, occurs in many bird species globally and often contributes to improved breeding outcomes. However, high temperatures are associated with poor breeding outcomes in many species, including cooperative species. We used data collected over three austral summer breeding seasons to investigate the contribution that helpers make to daytime incubation in a cooperatively breeding species, the Southern Pied Babbler Turdoides bicolor, and the ways in which their contribution is influenced by temperature. Helpers spent a significantly higher percentage of their time foraging (41.8 ± 13.7%) and a significantly lower percentage of their time incubating (18.5 ± 18.8%) than members of the breeding pair (31.3 ± 11% foraging and 37.4 ± 15.7% incubating). In groups with only one helper, the helper's contribution to incubation was similar to that of breeders. However, helpers in larger groups contributed less to incubation, individually, with some individuals investing no time in incubation on a given observation day. Helpers significantly decrease their investment in incubation on hot days (>35.5°C), while breeders tend to maintain incubation effort as temperatures increase. Our results demonstrate that pied babblers share the workload of incubation unequally between breeders and helpers, and this inequity is more pronounced during hot weather. These results may help to explain why recent studies have found that larger group size does not buffer against the impacts of high temperatures in this and other cooperatively breeding species.
Collapse
Affiliation(s)
- Amanda R Bourne
- FitzPatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa
- Australian Wildlife Conservancy, 322 Hay Street, Subiaco 6008, Western Australia
| | - Amanda R Ridley
- FitzPatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Crawley 6009, Australia
| | - Susan J Cunningham
- FitzPatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa
| |
Collapse
|
6
|
Qi XG, Wu J, Zhao L, Wang L, Guang X, Garber PA, Opie C, Yuan Y, Diao R, Li G, Wang K, Pan R, Ji W, Sun H, Huang ZP, Xu C, Witarto AB, Jia R, Zhang C, Deng C, Qiu Q, Zhang G, Grueter CC, Wu D, Li B. Adaptations to a cold climate promoted social evolution in Asian colobine primates. Science 2023; 380:eabl8621. [PMID: 37262163 DOI: 10.1126/science.abl8621] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 07/06/2022] [Indexed: 06/03/2023]
Abstract
The biological mechanisms that underpin primate social evolution remain poorly understood. Asian colobines display a range of social organizations, which makes them good models for investigating social evolution. By integrating ecological, geological, fossil, behavioral, and genomic analyses, we found that colobine primates that inhabit colder environments tend to live in larger, more complex groups. Specifically, glacial periods during the past 6 million years promoted the selection of genes involved in cold-related energy metabolism and neurohormonal regulation. More-efficient dopamine and oxytocin pathways developed in odd-nosed monkeys, which may have favored the prolongation of maternal care and lactation, increasing infant survival in cold environments. These adaptive changes appear to have strengthened interindividual affiliation, increased male-male tolerance, and facilitated the stepwise aggregation from independent one-male groups to large multilevel societies.
Collapse
Affiliation(s)
- Xiao-Guang Qi
- College of Life Sciences, Northwest University, Xi'an, China
| | - Jinwei Wu
- College of Life Sciences, Northwest University, Xi'an, China
| | - Lan Zhao
- College of Life Sciences, Northwest University, Xi'an, China
| | - Lu Wang
- College of Life Sciences, Northwest University, Xi'an, China
| | | | - Paul A Garber
- Department of Anthropology, University of Illinois, Urbana, IL, USA
| | - Christopher Opie
- Department of Anthropology and Archaeology, University of Bristol, Bristol, UK
| | - Yuan Yuan
- College of Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Runjie Diao
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Gang Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Kun Wang
- College of Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Ruliang Pan
- College of Life Sciences, Northwest University, Xi'an, China
| | - Weihong Ji
- School of Natural and Computational Sciences, Massey University, Auckland, New Zealand
| | | | - Zhi-Pang Huang
- College of Life Sciences, Northwest University, Xi'an, China
| | - Chunzhong Xu
- Shanghai Wild Animal Park Development Co., Shanghai, China
| | - Arief B Witarto
- Faculty of Medicine, Universitas Pertahanan, Jabodetabek, Indonesia
| | - Rui Jia
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | | | - Cheng Deng
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Qiang Qiu
- College of Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Guojie Zhang
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Cyril C Grueter
- School of Human Sciences, The University of Western Australia, Perth, WA, Australia
| | - Dongdong Wu
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Baoguo Li
- College of Life Sciences, Northwest University, Xi'an, China
| |
Collapse
|
7
|
Delgado R, Sánchez-Delgado H. The effect of seasonality in predicting the level of crime. A spatial perspective. PLoS One 2023; 18:e0285727. [PMID: 37256849 DOI: 10.1371/journal.pone.0285727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 04/28/2023] [Indexed: 06/02/2023] Open
Abstract
This paper presents an innovative methodology to study the application of seasonality (the existence of cyclical patterns) to help predict the level of crime. This methodology combines the simplicity of entropy-based metrics that describe temporal patterns of a phenomenon, on the one hand, and the predictive power of machine learning on the other. First, the classical Colwell's metrics Predictability and Contingency are used to measure different aspects of seasonality in a geographical unit. Second, if those metrics turn out to be significantly different from zero, supervised machine learning classification algorithms are built, validated and compared, to predict the level of crime based on the time unit. The methodology is applied to a case study in Barcelona (Spain), with month as the unit of time, and municipal district as the geographical unit, the city being divided into 10 of them, from a set of property crime data covering the period 2010-2018. The results show that (a) Colwell's metrics are significantly different from zero in all municipal districts, (b) the month of the year is a good predictor of the level of crime, and (c) Naive Bayes is the most competitive classifier, among those who have been tested. The districts can be ordered using the Naive Bayes, based on the strength of the month as a predictor for each of them. Surprisingly, this order coincides with that obtained using Contingency. This fact is very revealing, given the apparent disconnection between entropy-based metrics and machine learning classifiers.
Collapse
Affiliation(s)
- Rosario Delgado
- Department of Mathematics, Universitat Autonoma de Barcelona, Cerdanyola del Valles, Spain
| | | |
Collapse
|
8
|
Lin YH, Chen YY, Rubenstein DR, Liu M, Liu M, Shen SF. Environmental quality mediates the ecological dominance of cooperatively breeding birds. Ecol Lett 2023. [PMID: 37127410 DOI: 10.1111/ele.14226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/08/2023] [Accepted: 03/30/2023] [Indexed: 05/03/2023]
Abstract
Although social species as diverse as humans and ants are among the most abundant organisms on Earth, animals cooperate and form groups for many reasons. How these different reasons for grouping affect a species' ecological dominance remains unknown. Here we use a theoretical model to demonstrate that the different fitness benefits that animals receive by forming groups depend on the quality of their environment, which in turn impacts their ecological dominance and resilience to global change. We then test the model's key predictions using phylogenetic comparative analysis of >6500 bird species. As predicted, we find that cooperative breeders occurring in harsh and fluctuating environments have larger ranges and greater abundances than non-cooperative breeders, but cooperative breeders occurring in benign and stable environments do not. Using our model, we further show that social species living in harsh and fluctuating environments will be less vulnerable to climate change than non-social species.
Collapse
Affiliation(s)
- Yu-Heng Lin
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Ying-Yu Chen
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Dustin R Rubenstein
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York City, New York, USA
- Center for Integrative Animal Behavior, Columbia University, New York City, New York, USA
| | - Ming Liu
- Department of Biology, University of Oxford, Oxford, UK
| | - Mark Liu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Sheng-Feng Shen
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
9
|
Rodrigues AMM, Barker JL, Robinson EJH. The evolution of intergroup cooperation. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220074. [PMID: 36802776 PMCID: PMC9939261 DOI: 10.1098/rstb.2022.0074] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023] Open
Abstract
Sociality is widespread among animals, and involves complex relationships within and between social groups. While intragroup interactions are often cooperative, intergroup interactions typically involve conflict, or at best tolerance. Active cooperation between members of distinct, separate groups occurs very rarely, predominantly in some primate and ant species. Here, we ask why intergroup cooperation is so rare, and what conditions favour its evolution. We present a model incorporating intra- and intergroup relationships and local and long-distance dispersal. We show that dispersal modes play a pivotal role in the evolution of intergroup interactions. Both long-distance and local dispersal processes drive population social structure, and the costs and benefits of intergroup conflict, tolerance and cooperation. Overall, the evolution of multi-group interaction patterns, including both intergroup aggression and intergroup tolerance, or even altruism, is more likely with mostly localized dispersal. However, the evolution of these intergroup relationships may have significant ecological impacts, and this feedback may alter the ecological conditions that favour its own evolution. These results show that the evolution of intergroup cooperation is favoured by a specific set of conditions, and may not be evolutionarily stable. We discuss how our results relate to empirical evidence of intergroup cooperation in ants and primates. This article is part of a discussion meeting issue 'Collective behaviour through time'.
Collapse
Affiliation(s)
- António M. M. Rodrigues
- School of Biology, University of St Andrews, St Andrews, KY16 9TH, UK,Schools of Medicine and Engineering, Stanford University, Stanford, CA 94305, USA,Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA
| | - Jessica L. Barker
- Surgo Ventures, Washington, DC 20036, USA,Interacting Minds Centre, Aarhus University, 8000 Aarhus, Denmark,Division of Population Health Sciences, University of Alaska Anchorage, Anchorage, AK 99508, USA
| | | |
Collapse
|
10
|
Carmelet‐Rescan D, Morgan‐Richards M, Pattabiraman N, Trewick SA. Time-calibrated phylogeny and ecological niche models indicate Pliocene aridification drove intraspecific diversification of brushtail possums in Australia. Ecol Evol 2022; 12:e9633. [PMID: 36540081 PMCID: PMC9755819 DOI: 10.1002/ece3.9633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Major aridification events in Australia during the Pliocene may have had significant impact on the distribution and structure of widespread species. To explore the potential impact of Pliocene and Pleistocene climate oscillations, we estimated the timing of population fragmentation and past connectivity of the currently isolated but morphologically similar subspecies of the widespread brushtail possum (Trichosurus vulpecula). We use ecological niche modeling (ENM) with the current fragmented distribution of brushtail possums to estimate the environmental envelope of this marsupial. We projected the ENM on models of past climatic conditions in Australia to infer the potential distribution of brushtail possums over 6 million years. D-loop haplotypes were used to describe population structure. From shotgun sequencing, we assembled whole mitochondrial DNA genomes and estimated the timing of intraspecific divergence. Our projections of ENMs suggest current possum populations were unlikely to have been in contact during the Pleistocene. Although lowered sea level during glacial periods enabled connection with habitat in Tasmania, climate fluctuation during this time would not have facilitated gene flow over much of Australia. The most recent common ancestor of sampled intraspecific diversity dates to the early Pliocene when continental aridification caused significant changes to Australian ecology and Trichosurus vulpecula distribution was likely fragmented. Phylogenetic analysis revealed that the subspecies T. v. hypoleucus (koomal; southwest), T. v. arnhemensis (langkurr; north), and T. v. vulpecula (bilda; southeast) correspond to distinct mitochondrial lineages. Despite little phenotypic differentiation, Trichosurus vulpecula populations probably experienced little gene flow with one another since the Pliocene, supporting the recognition of several subspecies and explaining their adaptations to the regional plant assemblages on which they feed.
Collapse
Affiliation(s)
- David Carmelet‐Rescan
- Wildlife and Ecology, School of Natural SciencesMassey UniversityPalmerston NorthNew Zealand
| | - Mary Morgan‐Richards
- Wildlife and Ecology, School of Natural SciencesMassey UniversityPalmerston NorthNew Zealand
| | - Nimeshika Pattabiraman
- Wildlife and Ecology, School of Natural SciencesMassey UniversityPalmerston NorthNew Zealand
| | - Steven A. Trewick
- Wildlife and Ecology, School of Natural SciencesMassey UniversityPalmerston NorthNew Zealand
| |
Collapse
|
11
|
Qiu J, Olivier CA, Jaeggi AV, Schradin C. The evolution of marsupial social organization. Proc Biol Sci 2022; 289:20221589. [PMID: 36285501 PMCID: PMC9597405 DOI: 10.1098/rspb.2022.1589] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 10/05/2022] [Indexed: 10/28/2023] Open
Abstract
It is generally believed that marsupials are more primitive than placentals mammals and mainly solitary living, representing the ancestral form of social organization of all mammals. However, field studies have observed pair and group-living in marsupial species, but no comparative study about their social evolution was ever done. Here, we describe the results of primary literature research on marsupial social organization which indicates that most species can live in pairs or groups and many show intra-specific variation in social organization. Using Bayesian phylogenetic mixed-effects models with a weak phylogenetic signal of 0.18, we found that solitary living was the most likely ancestral form (35% posterior probability), but had high uncertainty, and the combined probability of a partly sociable marsupial ancestor (65%) should not be overlooked. For Australian marsupials, group-living species were less likely to be found in tropical rainforest, and species with a variable social organization were associated with low and unpredictable precipitation representing deserts. Our results suggest that modern marsupials are more sociable than previously believed and that there is no strong support that their ancestral state was strictly solitary living, such that the assumption of a solitary ancestral state of all mammals may also need reconsideration.
Collapse
Affiliation(s)
- J. Qiu
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Private Bag 3, WITS 2050, Johannesburg, South Africa
- IPHC, UNISTRA, CNRS, 23 rue du Loess, 67200 Strasbourg, France
| | - C. A. Olivier
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Private Bag 3, WITS 2050, Johannesburg, South Africa
- IPHC, UNISTRA, CNRS, 23 rue du Loess, 67200 Strasbourg, France
| | - A. V. Jaeggi
- Institute of Evolutionary Medicine, University of Zurich, Wintherthurerstrasse 190, 8057 Zurich, Switzerland
| | - C. Schradin
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Private Bag 3, WITS 2050, Johannesburg, South Africa
- IPHC, UNISTRA, CNRS, 23 rue du Loess, 67200 Strasbourg, France
| |
Collapse
|
12
|
Riehl C, Smart ZF. Climate fluctuations influence variation in group size in a cooperative bird. Curr Biol 2022; 32:4264-4269.e3. [PMID: 35998636 DOI: 10.1016/j.cub.2022.07.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/25/2022] [Accepted: 07/21/2022] [Indexed: 12/14/2022]
Abstract
Variation in group size is ubiquitous in social animals, but explaining the range of group sizes seen in nature remains challenging.1-3 Group-living species occur most frequently in climatically unpredictable environments, such that the costs and benefits of sociality may change from year to year.4-6 It is, therefore, possible that variation in climate may help to maintain a range of group sizes, but this hypothesis is rarely tested empirically.7,8 Here, we examine selection on breeding group size in the greater ani (Crotophaga major), a tropical bird that nests in cooperative groups containing multiple co-breeders and non-breeding helpers.9 We found that larger groups experience lower nest predation (due to cooperative nest defense) but suffer higher nestling starvation (due to intra-clutch competition). Long-term data revealed that the relative magnitude of these costs and benefits depends on climate, with frequent changes across years in the strength and direction of selection on group size. In wet years, individual reproductive success was higher in large groups than in small groups, whereas the opposite was true in dry years. This was partly a consequence of competition among nestlings in large clutches, which suffered significantly higher mortality in dry years than in wet years. Averaged over the 13-year study period, annual reproductive success was approximately equal for females in small and large groups. These results suggest that temporal changes in the direction of selection may help explain the persistence of a range of group sizes and that a full understanding of the selective pressures shaping sociality requires long-term fitness data.
Collapse
Affiliation(s)
- Christina Riehl
- Princeton University, Department of Ecology and Evolutionary Biology, Princeton, NJ 08544, USA.
| | - Zachariah Fox Smart
- Princeton University, Department of Ecology and Evolutionary Biology, Princeton, NJ 08544, USA
| |
Collapse
|
13
|
Baudier KM, Ostwald MM, Haney BR, Calixto JM, Cossio FJ, Fewell JH. Social Factors in Heat Survival: Multiqueen Desert Ant Colonies Have Higher and More Uniform Heat Tolerance. Physiol Biochem Zool 2022; 95:379-389. [PMID: 35914287 DOI: 10.1086/721251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractInvestigations of thermally adaptive behavioral phenotypes are critical for both understanding climate as a selective force and predicting global species distributions under climate change conditions. Cooperative nest founding is a common strategy in harsh environments for many species and can enhance growth and competitive advantage, but whether this social strategy has direct effects on thermal tolerance was previously unknown. We examined the effects of alternative social strategies on thermal tolerance in a facultatively polygynous (multiqueen) desert ant, Pogonomyrmex californicus, asking whether and how queen number affects worker thermal tolerances. We established and reared lab colonies with one to four queens, then quantified all colony member heat tolerances (maximum critical temperature [CTmax]). Workers from colonies with more queens had higher and less variant CTmax. Our findings resemble weak link patterns, in which colony group thermal performance is improved by reducing frequencies of the most temperature-vulnerable individuals. Using ambient temperatures from our collection site, we show that multiqueen colonies have thermal tolerance distributions that enable increased midday foraging in hot desert environments. Our results suggest advantages to polygyny under climate change scenarios and raise the question of whether improved thermal tolerance is a factor that has enabled the success of polygyne species in other climatically extreme environments.
Collapse
|
14
|
Hart DW, van Vuuren AKJ, Erasmus A, Süess T, Hagenah N, Ganswindt A, Bennett NC. The endocrine control of reproductive suppression in an aseasonally breeding social subterranean rodent, the Mahali mole-rat (Cryptomys hottentotus mahali). Horm Behav 2022; 142:105155. [PMID: 35334327 DOI: 10.1016/j.yhbeh.2022.105155] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/01/2022] [Accepted: 03/10/2022] [Indexed: 12/24/2022]
Abstract
Cooperative behaviour, sociality and reproductive suppression in African mole-rats have been extensively studied. Nevertheless, endocrine correlates of some species of social mole-rats have been neglected, and these species may hold the key to understanding the behavioural and physiological complexity that allows the maintenance of social groups in African mole-rats. In this study, we investigated endocrine correlates implicated in the suppression of reproduction and cooperative behaviours, namely glucocorticoids (a stress-related indicator) through faecal glucocorticoid metabolites (fGCMs), plasma testosterone (an indicator of aggression) and plasma prolactin in the Mahali mole-rat (Cryptomys hottentotus mahali) across reproductive classes (breeding females and males, non-breeding females and males) and season (wet and dry). Breeders possessed higher levels of testosterone than non-breeders. In reproductively suppressed non-breeding females, fGCMs were significantly higher than in breeders. Furthermore, an adrenocorticotropic hormone stimulation test (ACTH challenge test) on both male and female non-breeders revealed that female non-breeders show a more significant response to the ACTH challenge than males. At the same time, plasma prolactin levels were equally elevated to similar levels in breeding and non-breeding females. Chronically high levels of prolactin and fGCM are reported to cause reproductive suppression and promote cooperative behaviours in non-breeding animals. Furthermore, there was a negative relationship between plasma prolactin and progesterone in non-breeding females. However, during the wet season, a relaxation of suppression occurs through reduced prolactin which corresponds with elevated levels of plasma progesterone in non-breeding females. Therefore, prolactin is hypothesised to be the primary hormone controlling reproductive suppression and cooperative behaviours in non-breeding females. This study provides new endocrine findings for the maintenance of social suppression in the genus Cryptomys.
Collapse
Affiliation(s)
- D W Hart
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa.
| | - A K Janse van Vuuren
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - A Erasmus
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - T Süess
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - N Hagenah
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa; Mammal Research Institute, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - A Ganswindt
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa; Mammal Research Institute, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - N C Bennett
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa; Mammal Research Institute, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| |
Collapse
|
15
|
Lutermann H. Socializing in an Infectious World: The Role of Parasites in Social Evolution of a Unique Rodent Family. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.879031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Transmission of parasites between hosts is facilitated by close contact of hosts. Consequently, parasites have been proposed as an important constraint to the evolution of sociality accounting for its rarity. Despite the presumed costs associated with parasitism, the majority of species of African mole-rats (Family: Bathyergidae) are social. In fact, only the extremes of sociality (i.e., solitary and singular breeding) are represented in this subterranean rodent family. But how did bathyergids overcome the costs of parasitism? Parasite burden is a function of the exposure and susceptibility of a host to parasites. In this review I explore how living in sealed burrow systems and the group defenses that can be employed by closely related group members can effectively reduce the exposure and susceptibility of social bathyergids to parasites. Evidence suggests that this can be achieved largely by investment in relatively cheap and flexible behavioral rather than physiological defense mechanisms. This also shifts the selection pressure for parasites on successful transmission between group members rather than transmission between groups. In turn, this constrains the evolution of virulence and favors socially transmitted parasites (e.g., mites and lice) further reducing the costs of parasitism for social Bathyergidae. I conclude by highlighting directions for future research to evaluate the mechanisms proposed and to consider parasites as facilitators of social evolution not only in this rodent family but also other singular breeders.
Collapse
|
16
|
Firman RC, Rubenstein DR, Buzatto BA. The spatial and temporal distribution of females influence the evolution of testes size in Australian rodents. Biol Lett 2022; 18:20220058. [PMID: 35506236 PMCID: PMC9065955 DOI: 10.1098/rsbl.2022.0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Male-male competition after mating (sperm competition) favours adaptations in male traits, such as elevated sperm numbers facilitated by larger testes. Ultimately, patterns of female distribution will affect the strength of sperm competition by dictating the extent to which males are able to prevent female remating. Despite this, our understanding of how the spatial and temporal distributions of mating opportunities have shaped the evolutionary course of sperm competition is limited. Here, we use phylogenetic comparative methods to explore interspecific variation in testes size in relation to patterns of female distribution in Australian rodents. We find that as mating season length (temporal distribution of females) increases, testes size decreases, which is consistent with the idea that it is difficult for males to prevent females from remating when overlap among oestrous females is temporally concentrated. Additionally, we find that social species (spatially clustered) have smaller testes than non-social species (spatially dispersed). This result suggests that males may be effective in monopolizing reproduction within social groups, which leads to reduced levels of sperm competition relative to non-social species where free-ranging females cannot be controlled. Overall, our results show that patterns of female distribution, in both space and time, can influence the strength of post-mating sexual selection among species.
Collapse
Affiliation(s)
- Renée C. Firman
- Centre for Evolutionary Biology, School of Biological Sciences (M092), The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Dustin R. Rubenstein
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY 10027, USA
| | - Bruno A. Buzatto
- College of Science and Engineering, Flinders University, Bedford Park, SA 5052, Australia,Department of Natural Sciences, Macquarie University, Balaclava Road, Macquarie Park, NSW 2109, Australia
| |
Collapse
|
17
|
Beltrão P, Gomes ACR, Cardoso GC. Collective foraging: experimentally‐increased competition decreases group performance exploiting a permanent resource. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Patrícia Beltrão
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485‐661 Vairão Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485‐661 Vairão Portugal
| | - Ana Cristina R. Gomes
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485‐661 Vairão Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485‐661 Vairão Portugal
| | - Gonçalo C. Cardoso
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485‐661 Vairão Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485‐661 Vairão Portugal
| |
Collapse
|
18
|
Chen YY, Rubenstein DR, Shen SF. Cooperation and Lateral Forces: Moving Beyond Bottom-Up and Top-Down Drivers of Animal Population Dynamics. Front Psychol 2022; 13:768773. [PMID: 35185719 PMCID: PMC8847757 DOI: 10.3389/fpsyg.2022.768773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/10/2022] [Indexed: 11/21/2022] Open
Abstract
Biologists have long known that animal population dynamics are regulated by a combination of bottom-up (resource availability) and top-down forces (predation). Yet, economists have argued that human population dynamics can also be influenced by intraspecific cooperation. Despite awareness of the role of interspecific cooperation (mutualism) in influencing resource availability and animal population dynamics, the role of intraspecific cooperation (sociality) under different environmental conditions has rarely been considered. Here we examine the role of what we call "lateral forces" that act within populations and interact with external top-down and bottom-up forces in influencing population dynamics using an individual-based model linking environmental quality, intraspecific cooperation, and population size. We find that the proportion of cooperators is higher when the environment is poor and population sizes are greatest under intermediate resources levels due to the contrasting effects of resource availability on behavior and population size. We also show that social populations are more resilient to environmental change than non-social ones because the benefits of intraspecific cooperation can outweigh the effects of constrained resource availability. Our study elucidates the complex relationship between environmental harshness, cooperation, and population dynamics, which is important for understanding the ecological consequences of cooperation.
Collapse
Affiliation(s)
- Ying-Yu Chen
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Dustin R. Rubenstein
- Department of Ecology, Evolution and Environmental Biology, Center for Integrative Animal Behavior, Columbia University, New York, NY, United States
| | - Sheng-Feng Shen
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Institute of Ecology and Evolutionary Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
19
|
Vásárhelyi Z, Scheuring I, Aviles L. The ecology of spider sociality – A Spatial Model. Am Nat 2022; 199:776-788. [DOI: 10.1086/719182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
20
|
Makuya L, Olivier C, Schradin C. Field studies need to report essential information on social organisation – independent of the study focus. Ethology 2021. [DOI: 10.1111/eth.13249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Lindelani Makuya
- School of Animal, Plant and Environmental Sciences University of the Witwatersrand Johannesburg South Africa
| | - Charlotte‐Anaïs Olivier
- School of Animal, Plant and Environmental Sciences University of the Witwatersrand Johannesburg South Africa
- IPHCUNISTRACNRS Strasbourg France
| | - Carsten Schradin
- School of Animal, Plant and Environmental Sciences University of the Witwatersrand Johannesburg South Africa
- IPHCUNISTRACNRS Strasbourg France
| |
Collapse
|
21
|
D'Amelio PB, Ferreira AC, Fortuna R, Paquet M, Silva LR, Theron F, Doutrelant C, Covas R. Disentangling climatic and nest predator impact on reproductive output reveals adverse high-temperature effects regardless of helper number in an arid-region cooperative bird. Ecol Lett 2021; 25:151-162. [PMID: 34787354 PMCID: PMC9299450 DOI: 10.1111/ele.13913] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/04/2021] [Accepted: 09/29/2021] [Indexed: 01/20/2023]
Abstract
Climate exerts a major influence on reproductive processes, and an understanding of the mechanisms involved and which factors might mitigate adverse weather is fundamental under the ongoing climate change. Here, we study how weather and nest predation influence reproductive output in a social species, and examine whether larger group sizes can mitigate the adverse effects of these factors. We used a 7‐year nest predator‐exclusion experiment on an arid‐region cooperatively breeding bird, the sociable weaver. We found that dry and, especially, hot weather were major drivers of nestling mortality through their influence on nest predation. However, when we experimentally excluded nest predators, these conditions were still strongly associated with nestling mortality. Group size was unimportant against nest predation and, although positively associated with reproductive success, it did not mitigate the effects of adverse weather. Hence, cooperative breeding might have a limited capacity to mitigate extreme weather effects.
Collapse
Affiliation(s)
- Pietro B D'Amelio
- FitzPatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Rondebosch, 7701, South Africa.,Centre d'Ecologie Fonctionnelle et Evolutive, CEFE, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, 34293, France
| | - André C Ferreira
- Centre d'Ecologie Fonctionnelle et Evolutive, CEFE, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, 34293, France.,BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, 4485-661, Portugal.,CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, 4485-661, Portugal
| | - Rita Fortuna
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, 4485-661, Portugal.,CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, 4485-661, Portugal.,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002, Porto, Portugal
| | - Matthieu Paquet
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, SE-75007, Sweden
| | - Liliana R Silva
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, 4485-661, Portugal.,CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, 4485-661, Portugal
| | - Franck Theron
- Centre d'Ecologie Fonctionnelle et Evolutive, CEFE, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, 34293, France.,BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, 4485-661, Portugal.,CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, 4485-661, Portugal
| | - Claire Doutrelant
- FitzPatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Rondebosch, 7701, South Africa.,Centre d'Ecologie Fonctionnelle et Evolutive, CEFE, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, 34293, France
| | - Rita Covas
- FitzPatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Rondebosch, 7701, South Africa.,BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, 4485-661, Portugal.,CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, 4485-661, Portugal
| |
Collapse
|
22
|
Capilla-Lasheras P, Harrison X, Wood EM, Wilson AJ, Young AJ. Altruistic bet-hedging and the evolution of cooperation in a Kalahari bird. SCIENCE ADVANCES 2021; 7:eabe8980. [PMID: 34550732 PMCID: PMC8457656 DOI: 10.1126/sciadv.abe8980] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Altruism is globally associated with unpredictable environments, but we do not understand why. New theory has highlighted that unpredictable environments could favor the evolution of altruism if altruistic acts reduce environmentally induced variance in the reproductive success of relatives (“altruistic bet-hedging”). Here, we show that altruism does indeed reduce environmentally induced reproductive variance in a wild cooperative bird. Our decade-long field study reveals that altruistic helping actually has no overall effect on the mean reproductive success of relatives but instead reduces their reproductive variance. This remarkable pattern arises because helpers improve reproductive performance in dry conditions but reduce it in wet conditions. Helpers thereby specifically reduce rainfall-induced reproductive variance, the very mechanism required for altruistic bet-hedging to explain the enigmatic global association between avian altruism and unpredictable rainfall.
Collapse
|
23
|
Hart D, Medger K, van Jaarsveld B, Bennett N. Filling in the holes: The reproductive biology of the understudied Mahali mole-rat (Cryptomys hottentotus mahali). CAN J ZOOL 2021. [DOI: 10.1139/cjz-2020-0158] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
African mole-rats have provided great insight into mammalian evolution of sociality and reproductive strategy. However, some species have not received attention, and these may provide further insights into these evolutionary questions. The cooperatively breeding Mahali mole-rat (Cryptomys hottentotus mahali (Roberts, 1913)) is one such species. Body mass, reproductive-tract morphometrics, gonad histology, and plasma reproductive hormone concentrations were studied for breeding and non-breeding males and females over 1 year. This study aimed to discern if this species exhibits a seasonal or aseasonal breeding pattern and whether there is a relaxation of reproductive suppression at any point in the year in non-breeding animals. The pattern of reproductive relaxation during the wetter months is similar to other African mole-rat species. Interestingly, births and pregnant breeding females were recorded throughout the year, thus indicating an aseasonal breeding strategy, despite inhabiting a region that experiences seasonal rainfall. However, there were periods of the year favouring increased reproduction to enable an increased likelihood of offspring survival. This suggests that the Mahali mole-rat may be an opportunistic breeder possibly brought about by the benefits of living in a cooperatively breeding group and potentially moving into more arid environments that were previously unexploited by the genus Cryptomys Gray, 1864.
Collapse
Affiliation(s)
- D.W. Hart
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - K. Medger
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - B. van Jaarsveld
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - N.C. Bennett
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| |
Collapse
|
24
|
Moss JB, While GM. The thermal environment as a moderator of social evolution. Biol Rev Camb Philos Soc 2021; 96:2890-2910. [PMID: 34309173 DOI: 10.1111/brv.12784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/09/2021] [Accepted: 07/16/2021] [Indexed: 11/29/2022]
Abstract
Animal sociality plays a crucial organisational role in evolution. As a result, understanding the factors that promote the emergence, maintenance, and diversification of animal societies is of great interest to biologists. Climate is among the foremost ecological factors implicated in evolutionary transitions in social organisation, but we are only beginning to unravel the possible mechanisms and specific climatic variables that underlie these associations. Ambient temperature is a key abiotic factor shaping the spatio-temporal distribution of individuals and has a particularly strong influence on behaviour. Whether such effects play a broader role in social evolution remains to be seen. In this review, we develop a conceptual framework for understanding how thermal effects integrate into pathways that mediate the opportunities, nature, and context of social interactions. We then implement this framework to discuss the capacity for temperature to initiate organisational changes across three broad categories of social evolution: group formation, group maintenance, and group elaboration. For each category, we focus on pivotal traits likely to have underpinned key social transitions and explore the potential for temperature to affect changes in these traits by leveraging empirical examples from the literature on thermal and behavioural ecology. Finally, we discuss research directions that should be prioritised to understand the potentially constructive and/or destructive effects of future warming on the origins, maintenance, and diversification of animal societies.
Collapse
Affiliation(s)
- Jeanette B Moss
- School of Natural Sciences, University of Tasmania, Sandy Bay, TAS, 7005, Australia
| | - Geoffrey M While
- School of Natural Sciences, University of Tasmania, Sandy Bay, TAS, 7005, Australia
| |
Collapse
|
25
|
Fisher DN, Kilgour RJ, Siracusa ER, Foote JR, Hobson EA, Montiglio PO, Saltz JB, Wey TW, Wice EW. Anticipated effects of abiotic environmental change on intraspecific social interactions. Biol Rev Camb Philos Soc 2021; 96:2661-2693. [PMID: 34212487 DOI: 10.1111/brv.12772] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/30/2022]
Abstract
Social interactions are ubiquitous across the animal kingdom. A variety of ecological and evolutionary processes are dependent on social interactions, such as movement, disease spread, information transmission, and density-dependent reproduction and survival. Social interactions, like any behaviour, are context dependent, varying with environmental conditions. Currently, environments are changing rapidly across multiple dimensions, becoming warmer and more variable, while habitats are increasingly fragmented and contaminated with pollutants. Social interactions are expected to change in response to these stressors and to continue to change into the future. However, a comprehensive understanding of the form and magnitude of the effects of these environmental changes on social interactions is currently lacking. Focusing on four major forms of rapid environmental change currently occurring, we review how these changing environmental gradients are expected to have immediate effects on social interactions such as communication, agonistic behaviours, and group formation, which will thereby induce changes in social organisation including mating systems, dominance hierarchies, and collective behaviour. Our review covers intraspecific variation in social interactions across environments, including studies in both the wild and in laboratory settings, and across a range of taxa. The expected responses of social behaviour to environmental change are diverse, but we identify several general themes. First, very dry, variable, fragmented, or polluted environments are likely to destabilise existing social systems. This occurs as these conditions limit the energy available for complex social interactions and affect dissimilar phenotypes differently. Second, a given environmental change can lead to opposite responses in social behaviour, and the direction of the response often hinges on the natural history of the organism in question. Third, our review highlights the fact that changes in environmental factors are not occurring in isolation: multiple factors are changing simultaneously, which may have antagonistic or synergistic effects, and more work should be done to understand these combined effects. We close by identifying methodological and analytical techniques that might help to study the response of social interactions to changing environments, highlight consistent patterns among taxa, and predict subsequent evolutionary change. We expect that the changes in social interactions that we document here will have consequences for individuals, groups, and for the ecology and evolution of populations, and therefore warrant a central place in the study of animal populations, particularly in an era of rapid environmental change.
Collapse
Affiliation(s)
- David N Fisher
- School of Biological Sciences, University of Aberdeen, King's College, Aberdeen, AB24 3FX, U.K
| | - R Julia Kilgour
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, U.S.A
| | - Erin R Siracusa
- Centre for Research in Animal Behaviour, School of Psychology, University of Exeter, Stocker Road, Exeter, EX4 4PY, U.K
| | - Jennifer R Foote
- Department of Biology, Algoma University, 1520 Queen Street East, Sault Ste. Marie, ON, P6A 2G4, Canada
| | - Elizabeth A Hobson
- Department of Biological Sciences, University of Cincinnati, 318 College Drive, Cincinnati, OH, 45221, U.S.A
| | - Pierre-Olivier Montiglio
- Département des Sciences Biologiques, Université du Québec à Montréal, 141 Avenue Président-Kennedy, Montréal, QC, H2X 3X8, Canada
| | - Julia B Saltz
- Department of Biosciences, Rice University, 6100 Main Street, Houston, TX, 77005-1827, U.S.A
| | - Tina W Wey
- Maelstrom Research, The Research Institute of the McGill University Health Centre, Montreal General Hospital, 1650 Cedar Avenue, Montréal, QC, H3G 1A4, Canada
| | - Eric W Wice
- Department of Biosciences, Rice University, 6100 Main Street, Houston, TX, 77005-1827, U.S.A
| |
Collapse
|
26
|
Socioecological conditions predict degu social instability and provide limited cues to forecast subsequent breeding conditions. Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-021-03017-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
27
|
West SA, Cooper GA, Ghoul MB, Griffin AS. Ten recent insights for our understanding of cooperation. Nat Ecol Evol 2021; 5:419-430. [PMID: 33510431 PMCID: PMC7612052 DOI: 10.1038/s41559-020-01384-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 12/11/2020] [Indexed: 01/29/2023]
Abstract
Since Hamilton published his seminal papers in 1964, our understanding of the importance of cooperation for life on Earth has evolved beyond recognition. Early research was focused on altruism in the social insects, where the problem of cooperation was easy to see. In more recent years, research into cooperation has expanded across the entire tree of life, and has been revolutionized by advances in genetic, microbiological and analytical techniques. We highlight ten insights that have arisen from these advances, which have illuminated generalizations across different taxa, making the world simpler to explain. Furthermore, progress in these areas has opened up numerous new problems to solve, suggesting exciting directions for future research.
Collapse
Affiliation(s)
- Stuart A West
- Department of Zoology, University of Oxford, Oxford, UK.
| | - Guy A Cooper
- Department of Zoology, University of Oxford, Oxford, UK
| | | | | |
Collapse
|
28
|
Szemán K, Liker A, Székely T. Social organization in ungulates: Revisiting Jarman's hypotheses. J Evol Biol 2021; 34:604-613. [PMID: 33706412 DOI: 10.1111/jeb.13782] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/16/2022]
Abstract
Ungulates (antelopes, deer and relatives) have some of the most diverse social systems among mammals. To understand the evolution of ungulate social organization, Jarman (1974) proposed an ecological scenario of how distribution of resources, habitat and feeding style may have influenced social organization. Although Jarman's scenario makes intuitive sense and remains a textbook example of social evolution, it has not been scrutinized using modern phylogenetic comparative methods. Here we use 230 ungulate species from ten families to test Jarman's hypotheses using phylogenetic analyses. Consistent with Jarman's proposition, both habitat and feeding style predict group size, since grazing ungulates typically live in open habitats and form large herds. Group size, in turn, has a knock-on effect on mating systems and sexual size dimorphism, since ungulates that live in large herds exhibit polygamy and extensive sexual size dimorphism. Phylogenetic confirmatory path analyses suggest that evolutionary changes in habitat type, feeding style and body size directly (or indirectly) induce shifts in social organization. Taken together, these phylogenetic comparative analyses confirm Jarman's conjectures, although they also uncover novel relationships between ecology and social organization. Further studies are needed to explore the relevance of Jarman (1974) scenario for mammals beyond ungulates.
Collapse
Affiliation(s)
- Karola Szemán
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hungary
| | - András Liker
- MTA-PE Evolutionary Ecology Research Group, University of Pannonia, Veszprém, Hungary.,Behavioural Ecology Research Group, Center for Natural Sciences, University of Pannonia, Veszprém, Hungary
| | - Tamás Székely
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hungary.,Milner Centre for Evolution, University of Bath, Bath, UK
| |
Collapse
|
29
|
Liu M, Chen BF, Rubenstein DR, Shen SF. Social rank modulates how environmental quality influences cooperation and conflict within animal societies. Proc Biol Sci 2020; 287:20201720. [PMID: 32993473 DOI: 10.1098/rspb.2020.1720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Although dominance hierarchies occur in most societies, our understanding of how these power structures influence individual investment in cooperative and competitive behaviours remains elusive. Both conflict and cooperation in animal societies are often environmentally regulated, yet how individuals alter their cooperative and competitive investments as environmental quality changes remain unclear. Using game theoretic modelling, we predict that individuals of all ranks will invest more in cooperation and less in social conflict in harsh environments than individuals of the same ranks in benign environments. Counterintuitively, low-ranking subordinates should increase their investment in cooperation proportionally more than high-ranking dominants, suggesting that subordinates contribute relatively more when facing environmental challenges. We then test and confirm these predictions experimentally using the Asian burying beetle Nicrophorus nepalensis. Ultimately, we demonstrate how social rank modulates the relationships between environmental quality and cooperative and competitive behaviours, a topic crucial for understanding the evolution of complex societies.
Collapse
Affiliation(s)
- Mark Liu
- Biodiversity Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Bo-Fei Chen
- Biodiversity Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Dustin R Rubenstein
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY 10027, USA.,Center for Integrative Animal Behavior, Columbia University, New York, NY 10027, USA
| | - Sheng-Feng Shen
- Biodiversity Research Center, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
30
|
Martin JS, Ringen EJ, Duda P, Jaeggi AV. Harsh environments promote alloparental care across human societies. Proc Biol Sci 2020; 287:20200758. [PMID: 32811302 DOI: 10.1098/rspb.2020.0758] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Alloparental care is central to human life history, which integrates exceptionally short interbirth intervals and large birth size with an extended period of juvenile dependency and increased longevity. Formal models, previous comparative research, and palaeoanthropological evidence suggest that humans evolved higher levels of cooperative childcare in response to increasingly harsh environments. Although this hypothesis remains difficult to test directly, the relative importance of alloparental care varies across human societies, providing an opportunity to assess how local social and ecological factors influence the expression of this behaviour. We therefore, investigated associations between alloparental infant care and socioecology across 141 non-industrialized societies. We predicted increased alloparental care in harsher environments, due to the fitness benefits of cooperation in response to shared ecological challenges. We also predicted that starvation would decrease alloparental care, due to prohibitive energetic costs. Using Bayesian phylogenetic multilevel models, we tested these predictions while accounting for potential confounds as well as for population history. Consistent with our hypotheses, we found increased alloparental infant care in regions characterized by both reduced climate predictability and relatively lower average temperatures and precipitation. We also observed reduced alloparental care under conditions of high starvation. These results provide evidence of plasticity in human alloparenting in response to ecological contexts, comparable to previously observed patterns across avian and mammalian cooperative breeders. This suggests convergent social evolutionary processes may underlie both inter- and intraspecific variation in alloparental care.
Collapse
Affiliation(s)
- J S Martin
- Human Ecology Group, Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland.,Department of Anthropology, Emory University, Atlanta, GA, USA
| | - E J Ringen
- Department of Anthropology, Emory University, Atlanta, GA, USA
| | - P Duda
- Department of Zoology, University of South Bohemia, Ceske Budejovice, Jihočeský, Czechia
| | - A V Jaeggi
- Human Ecology Group, Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland.,Department of Anthropology, Emory University, Atlanta, GA, USA
| |
Collapse
|