1
|
Heuel KC, Haßlberger TA, Ayasse M, Burger H. Floral Trait Preferences of Three Common wild Bee Species. INSECTS 2024; 15:427. [PMID: 38921142 PMCID: PMC11203783 DOI: 10.3390/insects15060427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/01/2024] [Indexed: 06/27/2024]
Abstract
The interaction between bees and flowering plants is mediated by floral cues that enable bees to find foraging plants. We tested floral cue preferences among three common wild bee species: Lasioglossum villosulum, Osmia bicornis, and Bombus terrestris. Preferences are well studied in eusocial bees but almost unknown in solitary or non-eusocial generalist bee species. Using standardized artificial flowers altered in single cues, we tested preferences for color hue, achromatic contrast, scent complexity, corolla size, and flower depth. We found common attractive cues among all tested bees. Intensively colored flowers and large floral displays were highly attractive. No preferences were observed in scent complexity experiments, and the number of volatiles did not influence the behavior of bees. Differing preferences were found for color hue. The specific behaviors were probably influenced by foraging experience and depended on the flower choice preferences of the tested bee species. In experiments testing different flower depths of reward presentation, the bees chose flat flowers that afforded low energy costs. The results reveal that generalist wild bee species other than well-studied honeybees and bumblebees show strong preferences for distinct floral cues to find potential host plants. The diverse preferences of wild bees ensure the pollination of various flowering plants.
Collapse
Affiliation(s)
- Kim C. Heuel
- Institute for Evolutionary Ecology and Conservation Genomics, University of Ulm, 89077 Ulm, Germany (M.A.); (H.B.)
| | | | | | | |
Collapse
|
2
|
Kikuchi T, Hayashi Y, Fujito Y, Fujiwara-Tsujii N, Kawabata S, Sugawara K, Yamaoka R, Tsuji K. Test of the negative feedback hypothesis of colony size sensing in social insects. Biol Lett 2024; 20:20240102. [PMID: 38889776 DOI: 10.1098/rsbl.2024.0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/18/2024] [Indexed: 06/20/2024] Open
Abstract
Social insects can sense colony size-even without visual information in a dark environment. How they achieve this is yet largely unknown. We empirically tested a hypothesis on the proximate mechanism using ant colonies. In Diacamma colonies, the monogynous queen is known to increase the effort devoted to queen pheromone transmission behaviour (patrolling) as the colony grows, as if she perceives colony size. The negative feedback hypothesis assumes that, through repeated physical contact with workers, the queen monitors the physiological state (fertility) of workers and increases her patrolling effort when she encounters more fertile workers. Supporting this hypothesis, we found that the queen increased her patrolling effort in response to a higher ratio of fertile workers under the experimental condition of constant colony size. Furthermore, chemical analyses and bioassays suggested that cuticular hydrocarbons have queen pheromone activity and can mediate the observed queen-worker communication of fertility state. Such a self-organizing mechanism of sensing colony size may also operate in other social insects living in small colonies.
Collapse
Grants
- 17657029, 18047017, 20033015, 23870003, 26249024, 15H02652, 16F16794, 17H01249, 22H02702, 23K18155 Japan Society for the Promotion of Science (KAKENHI)
- 4-1904, 4G-2301 The Environment Research and Technology Development Fund
- KAKENHI
Collapse
Affiliation(s)
- T Kikuchi
- Marine Biosystems Research Center, Chiba University, Tokawa 1 , Choshi City, Chiba 288-0014, Japan
| | - Y Hayashi
- Biomedical Sciences and Biomedical Engineering, School of Biological Sciences, University of Reading, Reading , Berkshire RG6 6AH, UK
| | - Y Fujito
- Division of Analytical and Measuring Instruments, Shimadzu Corporation, 1 Kuwabaracho Nishinokyo Nakagyo-ku , Kyoto 604-8511, Japan
| | - N Fujiwara-Tsujii
- Division of Core Technology for Pest Control Reserach, Institute for Plant Protection, National Agriculture and Food Research Organization , Tsukuba, Ibaraki 305-8666, Japan
| | - S Kawabata
- Department of Biology, Toyama University , Toyama 930-8555, Japan
| | - K Sugawara
- Department of Information Science, Faculty of Liberal Arts, Tohoku-gakuin University, 2-1-1, Tenjinzawa, Izumi , Sendai, Miyagi 981-3193, Japan
| | - R Yamaoka
- Division of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology (Emeritus) , Kyoto 606-8287, Japan
| | - Kazuki Tsuji
- Department of Subtropical Agro-Environmental Sciences, University of the Ryukyus , Nishihara, Okinawa 903-0213, Japan
- Environmental Sciences and Concervation Biology, The United Graduate School of Agricultural Sciences, Kagoshima University , Kagoshima 890-0065, Japan
| |
Collapse
|
3
|
Omufwoko KS, Cronin AL, Nguyen TTH, Webb AE, Traniello IM, Kocher SD. Developmental transcriptomes predict adult social behaviours in the socially flexible sweat bee, Lasioglossum baleicum. Mol Ecol 2023:e17244. [PMID: 38108560 DOI: 10.1111/mec.17244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023]
Abstract
Natural variation can provide important insights into the genetic and environmental factors that shape social behaviour and its evolution. The sweat bee, Lasioglossum baleicum, is a socially flexible bee capable of producing both solitary and eusocial nests. We demonstrate that within a single nesting aggregation, soil temperatures are a strong predictor of the social structure of nests. Sites with warmer temperatures in the spring have a higher frequency of social nests than cooler sites, perhaps because warmer temperatures provide a longer reproductive window for those nests. To identify the molecular correlates of this behavioural variation, we generated a de novo genome assembly for L. baleicum, and we used transcriptomic profiling to compare adults and developing offspring from eusocial and solitary nests. We find that adult, reproductive females have similar expression profiles regardless of social structure in the nest, but that there are strong differences between reproductive females and workers from social nests. We also find substantial differences in the transcriptomic profiles of stage-matched pupae from warmer, social-biased sites compared to cooler, solitary-biased sites. These transcriptional differences are strongly predictive of adult reproductive state, suggesting that the developmental environment may set the stage for adult behaviours in L. baleicum. Together, our results help to characterize the molecular mechanisms shaping variation in social behaviour and highlight a potential role of environmental tuning during development as a factor shaping adult behaviour and physiology in this socially flexible bee.
Collapse
Affiliation(s)
- Kennedy S Omufwoko
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA
| | - Adam L Cronin
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Thi Thu Ha Nguyen
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Andrew E Webb
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA
- Howard Hughes Medical Institute, Princeton University, Princeton, New Jersey, USA
| | - Ian M Traniello
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA
| | - Sarah D Kocher
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA
- Howard Hughes Medical Institute, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
4
|
Fischer A, Fernando Y, Preston A, Moniz-de-Sa S, Gries G. Widow spiders alter web architecture and attractiveness in response to same-sex competition for prey and mates, and predation risk. Commun Biol 2023; 6:1028. [PMID: 37821674 PMCID: PMC10567780 DOI: 10.1038/s42003-023-05392-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023] Open
Abstract
Female-female competition in animals has rarely been studied. Responses of females that compete context-dependently for mates and prey, and seek safety from predators, are ideally studied with web-building spiders. Cobwebs possess unique sections for prey capture and safety, which can be quantified. We worked with Steaoda grossa females because their pheromone is known, and adjustments in response to mate competition could be measured. Females exposed to synthetic sex pheromone adjusted their webs, indicating a perception of intra-sexual competition via their sex pheromone. When females sequentially built their webs in settings of low and high intra-sexual competition, they adjusted their webs to increase prey capture and lower predation risk. In settings with strong mate competition, females deposited more contact pheromone components on their webs and accelerated their breakdown to mate-attractant pheromone components, essentially increasing their webs' attractiveness. We show that females respond to sexual, social and natural selection pressures originating from intra-sexual competition.
Collapse
Affiliation(s)
- Andreas Fischer
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada.
| | - Yasasi Fernando
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - April Preston
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Sarah Moniz-de-Sa
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Gerhard Gries
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
5
|
Omufwoko KS, Cronin AL, Nguyen TTH, Webb AE, Traniello IM, Kocher SD. Developmental transcriptomes predict adult social behaviors in the socially flexible sweat bee, Lasioglossum baleicum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.14.553238. [PMID: 37645955 PMCID: PMC10462039 DOI: 10.1101/2023.08.14.553238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Natural variation can provide important insights into the genetic and environmental factors that shape social behavior and its evolution. The sweat bee, Lasioglossum baleicum , is a socially flexible bee capable of producing both solitary and eusocial nests. We demonstrate that within a single nesting aggregation, soil temperatures are a strong predictor of the social structure of nests. Sites with warmer temperatures in the spring have a higher frequency of social nests than cooler sites, perhaps because warmer temperatures provide a longer reproductive window for those nests. To identify the molecular correlates of this behavioral variation, we generated a de novo genome assembly for L. baleicum , and we used transcriptomic profiling to compare adults and developing offspring from eusocial and solitary nests. We find that adult, reproductive females have similar expression profiles regardless of social structure in the nest, but that there are strong differences between reproductive females and workers from social nests. We also find substantial differences in the transcriptomic profiles of stage-matched pupae from warmer, social-biased sites compared to cooler, solitary-biased sites. These transcriptional differences are strongly predictive of adult reproductive state, suggesting that the developmental environment may set the stage for adult behaviors in L. baleicum . Together, our results help to characterize the molecular mechanisms shaping variation in social behavior and highlight a potential role of environmental tuning during development as a factor shaping adult behavior and physiology in this socially flexible bee.
Collapse
|
6
|
Gomez Ramirez WC, Thomas NK, Muktar IJ, Riabinina O. The neuroecology of olfaction in bees. CURRENT OPINION IN INSECT SCIENCE 2023; 56:101018. [PMID: 36842606 DOI: 10.1016/j.cois.2023.101018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/30/2022] [Accepted: 02/20/2023] [Indexed: 05/03/2023]
Abstract
The focus of bee neuroscience has for a long time been on only a handful of social honeybee and bumblebee species, out of thousands of bees species that have been described. On the other hand, information about the chemical ecology of bees is much more abundant. Here we attempted to compile the scarce information about olfactory systems of bees across species. We also review the major categories of intra- and inter-specific olfactory behaviors of bees, with specific focus on recent literature. We finish by discussing the most promising avenues for bee olfactory research in the near future.
Collapse
|
7
|
Derstine N, Galbraith D, Villar G, Amsalem E. Differential gene expression underlying the biosynthesis of Dufour's gland signals in Bombus impatiens. CURRENT RESEARCH IN INSECT SCIENCE 2023; 3:100056. [PMID: 37124651 PMCID: PMC10130613 DOI: 10.1016/j.cris.2023.100056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 03/29/2023] [Accepted: 04/04/2023] [Indexed: 05/03/2023]
Abstract
Pheromones regulating social behavior are one of the most explored phenomena in social insects. However, compound identity, biosynthesis and their genetic basis are known in only a handful of species. Here we examined the gene expression associated with pheromone biosynthesis of two main chemical classes: esters and terpenes, using the social bee Bombus impatiens. We conducted chemical and RNA-seq analyses of the Dufour's gland, an exocrine gland producing a plethora of pheromones regulating social behavior in hymenopteran species. The Dufour's gland contains mostly long-chained hydrocarbons, terpenes and esters that signal reproductive and social status in several bee species. In bumble bees, the Dufour's gland contains queen- and worker-specific esters, in addition to terpenes and terpene-esters only found in gynes and queens. These compounds are assumed to be synthesized de novo in the gland, however, their genetic basis is unknown. A whole transcriptome gene expression analysis of the gland in queens, gynes, queenless and queenright workers showed distinct transcriptomic profiles, with thousands of differentially expressed genes between the groups. Workers and queens express genes associated with key enzymes in the biosynthesis of wax esters, while queens and gynes preferentially express key genes in terpene biosynthesis. Overall, our data demonstrate gland-specific regulation of chemical signals associated with social behavior and identifies candidate genes and pathways regulating caste-specific chemical signals in social insects.
Collapse
|
8
|
Crone MK, Biddinger DJ, Grozinger CM. Wild Bee Nutritional Ecology: Integrative Strategies to Assess Foraging Preferences and Nutritional Requirements. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.847003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Bees depend on flowering plants for their nutrition, and reduced availability of floral resources is a major driver of declines in both managed and wild bee populations. Understanding the nutritional needs of different bee species, and how these needs are met by the varying nutritional resources provided by different flowering plant taxa, can greatly inform land management recommendations to support bee populations and their associated ecosystem services. However, most bee nutrition research has focused on the three most commonly managed and commercially reared bee taxa—honey bees, bumble bees, and mason bees—with fewer studies focused on wild bees and other managed species, such as leafcutting bees, stingless bees, and alkali bees. Thus, we have limited information about the nutritional requirements and foraging preferences of the vast majority of bee species. Here, we discuss the approaches traditionally used to understand bee nutritional ecology: identification of floral visitors of selected focal plant species, evaluation of the foraging preferences of adults in selected focal bee species, evaluation of the nutritional requirements of focal bee species (larvae or adults) in controlled settings, and examine how these methods may be adapted to study a wider range of bee species. We also highlight emerging technologies that have the potential to greatly facilitate studies of the nutritional ecology of wild bee species, as well as evaluate bee nutritional ecology at significantly larger spatio-temporal scales than were previously feasible. While the focus of this review is on bee species, many of these techniques can be applied to other pollinator taxa as well.
Collapse
|
9
|
Ferreira HM, da Silva RC, do Nascimento FS, Wenseleers T, Oi CA. Reproduction and fertility signalling under joint juvenile hormone control in primitively eusocial Mischocyttarus wasps. CHEMOECOLOGY 2022. [DOI: 10.1007/s00049-022-00370-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
10
|
Pheromone communication among sexes of the garden cross spider Araneus diadematus. Naturwissenschaften 2021; 108:38. [PMID: 34448943 PMCID: PMC8397638 DOI: 10.1007/s00114-021-01747-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/19/2021] [Accepted: 08/09/2021] [Indexed: 11/10/2022]
Abstract
Chemical communication plays a fundamental role in many aspects of an animal’s life from assessing habitat quality to finding mating partners. Behavioural observations show that chemical communication likewise plays an important role in spiders, but the contexts and the substances involved are little explored. Here, we investigate the chemical communication in the garden cross spider Araneus diadematus (Clerck, 1757) between and within the sexes. Using choice trials, we demonstrate that males are attracted to odours of adult females, but not to those of subadult females. Our data further suggest that adult females avoid odours of conspecific adult females, possibly in order to reduce reproductive competition with other females. Cuticle and silk extracts as well as headspace samples of subadult and adult virgin females were analysed via GC–MS. Available candidate compounds for the female sex pheromone were tested via electroantennography on palps (electropalpography) of adult virgin females and on females in behavioural trials. We propose sulcatone (6-methyl-5-hepten-2-one) as a candidate substance for the female volatile pheromone and several long-chained alkanes and alcohols as candidates for contact pheromones. Apart from demonstrating that attraction of males to females depends on the latter’s developmental stage, our study suggests that pheromones can also play an important role between females, an aspect that requires further attention.
Collapse
|
11
|
Steitz I, Paxton RJ, Schulz S, Ayasse M. Chemical Variation among Castes, Female Life Stages and Populations of the Facultative Eusocial Sweat Bee Halictus rubicundus (Hymenoptera: Halictidae). J Chem Ecol 2021; 47:406-419. [PMID: 33788128 PMCID: PMC8116247 DOI: 10.1007/s10886-021-01267-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 03/05/2021] [Accepted: 03/17/2021] [Indexed: 11/28/2022]
Abstract
In eusocial insects, chemical communication is crucial for mediating many aspects of social activities, especially the regulation of reproduction. Though queen signals are known to decrease ovarian activation of workers in highly eusocial species, little is known about their evolution. In contrast, some primitively eusocial species are thought to control worker reproduction through physical aggression by the queen rather than via pheromones, suggesting the evolutionary establishment of chemical signals with more derived sociality. However, studies supporting this hypothesis are largely missing. Socially polymorphic halictid bees, such as Halictus rubicundus, with social and solitary populations in both Europe and North America, offer excellent opportunities to illuminate the evolution of caste-specific signals. Here we compared the chemical profiles of social and solitary populations from both continents and tested whether (i) population or social level affect chemical dissimilarity and whether (ii) caste-specific patterns reflect a conserved queen signal. Our results demonstrate unique odor profiles of European and North American populations, mainly due to different isomers of n-alkenes and macrocyclic lactones; chemical differences may be indicative of phylogeographic drift in odor profiles. We also found common compounds overproduced in queens compared to workers in both populations, indicating a potential conserved queen signal. However, North American populations have a lower caste-specific chemical dissimilarity than European populations which raises the question if both use different mechanisms of regulating reproductive division of labor. Therefore, our study gives new insights into the evolution of eusocial behavior and the role of chemical communication in the inhibition of reproduction.
Collapse
Affiliation(s)
- Iris Steitz
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany.
| | - Robert J Paxton
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Stefan Schulz
- Departement of Life Sciences, Institute of Organic Chemistry, TU Braunschweig, Braunschweig, Germany
| | - Manfred Ayasse
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| |
Collapse
|
12
|
Abstract
Social behavior is one of the most fascinating and complex behaviors in humans and animals. A fundamental process of social behavior is communication among individuals. It relies on the capability of the nervous system to sense, process, and interpret various signals (e.g., pheromones) and respond with appropriate decisions and actions. Eusocial insects, including ants, some bees, some wasps, and termites, display intriguing cooperative social behavior. Recent advances in genetic and genomic studies have revealed key genes that are involved in pheromone synthesis, chemosensory perception, and physiological and behavioral responses to varied pheromones. In this review, we highlight the genes and pathways that regulate queen pheromone-mediated social communication, discuss the evolutionary changes in genetic systems, and outline prospects of functional studies in sociobiology.
Collapse
Affiliation(s)
- Hua Yan
- Department of Biology, University of Florida, Gainesville, Florida 32611, USA
- Center for Smell and Taste, University of Florida, Gainesville, Florida 32610, USA
| | - Jürgen Liebig
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287, USA
| |
Collapse
|
13
|
Kingwell C, Böröczky K, Steitz I, Ayasse M, Wcislo W. Cuticular and Dufour's Gland Chemistry Reflect Reproductive and Social State in the Facultatively Eusocial Sweat Bee Megalopta genalis (Hymenoptera: Halictidae). J Chem Ecol 2021; 47:420-432. [PMID: 33682070 DOI: 10.1007/s10886-021-01262-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/23/2021] [Accepted: 03/02/2021] [Indexed: 01/18/2023]
Abstract
Queen pheromones evolved independently in multiple eusocial insect lineages, in which they mediate reproductive conflict by inhibiting worker ovarian development. Although fundamentally important for reproductive division of labor - the hallmark of eusociality - their evolutionary origins are enigmatic. Here, we analyze cuticular and Dufour's gland chemistries across alternative social and reproductive phenotypes in Megalopta genalis bees (tribe Augochlorini, family Halictidae) that facultatively express simple eusociality. Reproductive bees have distinct overall glandular and cuticular chemical phenotypes compared with non-reproductive workers. On the cuticle, a likely site of signal transmission, reproductives are enriched for certain alkenes, most linear alkanes, and are heavily enriched for all methyl-branched alkanes. Chemicals belonging to these compound classes are known to function as fertility signals in other eusocial insect taxa. Some macrocyclic lactones, compounds that serve as queen pheromones in the other eusocial halictid tribe (Halictini), are also enriched among reproductives relative to workers. The intra-population facultative eusociality of M. genalis permits direct comparisons between individuals expressing alternative reproductive phenotypes - females that reproduce alone (solitary reproductives) and social queens - to highlight traits in the latter that may be important mediators of eusociality. Compared with solitary reproductives, the cuticular chemistries of queens are more strongly differentiated from those of workers, and furthermore are especially enriched for methyl-branched alkanes. Determining the pheromonal function(s) and information content of the candidate signaling compounds we identify will help illuminate the early evolutionary history of queen pheromones, chemical signals central to the organization of insect eusocial behavior.
Collapse
Affiliation(s)
- Callum Kingwell
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA.
- Smithsonian Tropical Research Institute, Panama City, Panama.
| | - Katalin Böröczky
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | - Iris Steitz
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| | - Manfred Ayasse
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| | - William Wcislo
- Smithsonian Tropical Research Institute, Panama City, Panama
| |
Collapse
|
14
|
Liebig J. Chemical Ecology: A New Royal Scent in a Small Insect Society. Curr Biol 2020; 30:R280-R282. [PMID: 32208156 DOI: 10.1016/j.cub.2020.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Understanding the diversity of insect societies is tied to explaining the mechanisms of reproductive division of labor. Small societies were not expected to use chemical signals or queen pheromones for this purpose. A new study shows that one of them does while using unexpected compounds.
Collapse
Affiliation(s)
- Juergen Liebig
- School of Life Sciences, Arizona State University, 427 East Tyler Mall, Tempe, AZ 85287, USA.
| |
Collapse
|
15
|
Ge J, Ge Z, Zhu D, Wang X. Pheromonal Regulation of the Reproductive Division of Labor in Social Insects. Front Cell Dev Biol 2020; 8:837. [PMID: 32974354 PMCID: PMC7468439 DOI: 10.3389/fcell.2020.00837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/05/2020] [Indexed: 11/13/2022] Open
Abstract
The reproductive altruism in social insects is an evolutionary enigma that has been puzzling scientists starting from Darwin. Unraveling how reproductive skew emerges and maintains is crucial to understand the reproductive altruism involved in the consequent division of labor. The regulation of adult worker reproduction involves conspecific inhibitory signals, which are thought to be chemical signals by numerous studies. Despite the primary identification of few chemical ligands, the action modes of primer pheromones that regulate reproduction and their molecular causes and effects remain challenging. Here, these questions were elucidated by comprehensively reviewing recent advances. The coordination with other modalities of queen pheromones (QPs) and its context-dependent manner to suppress worker reproduction were discussed under the vast variation and plasticity of reproduction during colony development and across taxa. In addition to the effect of QPs, special attention was paid to recent studies revealing the regulatory effect of brood pheromones. Considering the correlation between pheromone and hormone, this study focused on the production and perception of pheromones under the endocrine control and highlighted the pivotal roles of nutrition-related pathways. The novel chemicals and gene pathways discovered by recent works provide new insights into the understanding of social regulation of reproductive division of labor in insects.
Collapse
Affiliation(s)
- Jin Ge
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Zhuxi Ge
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Dan Zhu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Xianhui Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
16
|
da Silva RC, Togni OC, Giannotti E, do Nascimento FS. Cues of dominance hierarchy, fertility and nestmate recognition in the primitively eusocial wasp Mischocyttarus parallelogrammus (Vespidae: Polistinae: Mischocyttarini). CHEMOECOLOGY 2020. [DOI: 10.1007/s00049-020-00316-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|