1
|
Basu A, Singh A, Prasad NG. Timing of starvation determines its effects on susceptibility to bacterial infection in female fruit flies independent of host evolutionary history. JOURNAL OF INSECT PHYSIOLOGY 2025; 162:104794. [PMID: 40096990 DOI: 10.1016/j.jinsphys.2025.104794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 02/28/2025] [Accepted: 03/12/2025] [Indexed: 03/19/2025]
Abstract
An organism's susceptibility to pathogens is contingent on various environmental factors, including the availability of nutrition. Starvation can alter host susceptibility to infections, either directly via depletion of resources essential for proper functioning of the immune system, or indirectly via the various physiological changes it induces within the host body. We tested if the susceptibility of Drosophila melanogaster populations to Enterococcus faecalis infection is interactively affected by (a) whether the hosts are starved before or after the infection, and (b) the evolutionary history of the host. Hosts from laboratory fly populations that have been experimentally evolved to be more resistant to E. faecalis, and their corresponding control populations, were subjected to infection with or without being starved prior to and after being infected. We found that the effect of starvation on susceptibility to E. faecalis changed with the timing of starvation: starvation after infection improved survival of infected hosts, irrespective of how they were treated before infection, while starving only prior to infection (and not after) compromised post-infection survival. The changes in infection susceptibility were uniform in both the evolved and the control populations, suggesting that the effects of starvation are not dependent on pre-existing resistance to the infecting pathogen.
Collapse
Affiliation(s)
- Aabeer Basu
- Evolutionary Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India.
| | - Aparajita Singh
- Evolutionary Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | - Nagaraj Guru Prasad
- Evolutionary Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India.
| |
Collapse
|
2
|
Holdbrook R, Reavey CE, Randall JL, Andongma AA, Tummala Y, Rice A, Simpson SJ, Smith JA, Cotter SC, Wilson K. Combining in vivo and in vitro approaches to better understand host-pathogen nutritional interactions. J Anim Ecol 2025; 94:657-669. [PMID: 39921249 PMCID: PMC11962230 DOI: 10.1111/1365-2656.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 11/23/2024] [Indexed: 02/10/2025]
Abstract
Nutrition often shapes the outcome of host-parasite interactions, however understanding the mechanisms by which this occurs is often confounded by the intimate nature of the association and by the fact that the host and parasite may compete for the same limiting nutrients. One way of disentangling this interaction is to combine in vivo and in vitro approaches. Here, we explore the role of host nutrition in determining the outcome of infections using a model insect-bacterium system: the cotton leafworm Spodoptera littoralis and the blood-borne bacterium Xenorhabdus nematophila. Spodoptera littoralis larvae were reared on one of a series of 20 chemically-defined diets ranging in their protein: carbohydrate (P:C) ratio and caloric density. They were then challenged with either a fixed dose of X. nematophila cells (live or dead) or were sham-injected. Survivorship of larvae challenged with live bacterial cells was strongly dependent on the protein levels of the diet, with mortality being highest on low-protein diets. This trend was reflected in the bacterial growth rate in vivo, which peaked in larvae fed low-protein diets. To determine whether in vivo bacterial growth rates were driven by the direct effects of blood nutrients or by the indirect effects of the host immune response, we used 20 synthetic haemolymphs ('nutribloods') that mimicked the nutritional content of host blood. In vitro bacterial growth rate was negatively impacted by the protein content of the nutribloods, replicating the patterns seen in vivo and suggesting that nutrient availability and not host immunity was driving the interaction. By comparing standardized bacterial growth rates in vivo and in vitro, we conclude that the outcome of this host-parasite interaction is largely driven by the 'bottom-up' effects of nutrients on bacterial growth, rather than by the 'top-down' effects of nutrients on host-mediated immune responses. The outcome of host-parasite interactions is typically assumed to be strongly determined by the host immune response. The direct effects of nutrition have been underexplored and may have broad consequences for host-parasite interactions across taxa.
Collapse
Affiliation(s)
| | | | | | | | - Yamini Tummala
- Lancaster Environment CentreLancaster UniversityLancasterUK
| | - Annabel Rice
- Lancaster Environment CentreLancaster UniversityLancasterUK
| | - Stephen J. Simpson
- Charles Perkins CentreThe University of SydneySydneyNew South WalesAustralia
| | - Judith A. Smith
- School of Forensic and Applied SciencesUniversity of Central LancashirePrestonUK
| | | | - Kenneth Wilson
- Lancaster Environment CentreLancaster UniversityLancasterUK
| |
Collapse
|
3
|
Erler S, Cotter SC, Freitak D, Koch H, Palmer-Young EC, de Roode JC, Smilanich AM, Lattorff HMG. Insects' essential role in understanding and broadening animal medication. Trends Parasitol 2024; 40:338-349. [PMID: 38443305 DOI: 10.1016/j.pt.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 03/07/2024]
Abstract
Like humans, animals use plants and other materials as medication against parasites. Recent decades have shown that the study of insects can greatly advance our understanding of medication behaviors. The ease of rearing insects under laboratory conditions has enabled controlled experiments to test critical hypotheses, while their spectrum of reproductive strategies and living arrangements - ranging from solitary to eusocial communities - has revealed that medication behaviors can evolve to maximize inclusive fitness through both direct and indirect fitness benefits. Studying insects has also demonstrated in some cases that medication can act through modulation of the host's innate immune system and microbiome. We highlight outstanding questions, focusing on costs and benefits in the context of inclusive host fitness.
Collapse
Affiliation(s)
- Silvio Erler
- Institute for Bee Protection, Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Braunschweig, Germany; Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany.
| | | | - Dalial Freitak
- Institute for Biology, University of Graz, Graz, Austria
| | | | | | | | | | | |
Collapse
|
4
|
Ponton F, Tan YX, Forster CC, Austin AJ, English S, Cotter SC, Wilson K. The complex interactions between nutrition, immunity and infection in insects. J Exp Biol 2023; 226:jeb245714. [PMID: 38095228 DOI: 10.1242/jeb.245714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Insects are the most diverse animal group on the planet. Their success is reflected by the diversity of habitats in which they live. However, these habitats have undergone great changes in recent decades; understanding how these changes affect insect health and fitness is an important challenge for insect conservation. In this Review, we focus on the research that links the nutritional environment with infection and immune status in insects. We first discuss the research from the field of nutritional immunology, and we then investigate how factors such as intracellular and extracellular symbionts, sociality and transgenerational effects may interact with the connection between nutrition and immunity. We show that the interactions between nutrition and resistance can be highly specific to insect species and/or infection type - this is almost certainly due to the diversity of insect social interactions and life cycles, and the varied environments in which insects live. Hence, these connections cannot be easily generalised across insects. We finally suggest that other environmental aspects - such as the use of agrochemicals and climatic factors - might also influence the interaction between nutrition and resistance, and highlight how research on these is essential.
Collapse
Affiliation(s)
- Fleur Ponton
- School of Natural Sciences , Macquarie University, North Ryde, NSW 2109, Australia
| | - Yin Xun Tan
- School of Natural Sciences , Macquarie University, North Ryde, NSW 2109, Australia
| | - Casey C Forster
- School of Natural Sciences , Macquarie University, North Ryde, NSW 2109, Australia
| | | | - Sinead English
- School of Biological Sciences , University of Bristol, Bristol, BS8 1QU, UK
| | | | - Kenneth Wilson
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| |
Collapse
|
5
|
Armitage SAO, Milutinović B. Editorial overview: Evolutionary ecology of insect immunity. CURRENT OPINION IN INSECT SCIENCE 2022; 53:100948. [PMID: 35777617 DOI: 10.1016/j.cois.2022.100948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Affiliation(s)
- Sophie A O Armitage
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Straße 1-3, 14195 Berlin, Germany.
| | - Barbara Milutinović
- Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| |
Collapse
|
6
|
Duneau D, Ferdy JB. Pathogen within-host dynamics and disease outcome: what can we learn from insect studies? CURRENT OPINION IN INSECT SCIENCE 2022; 52:100925. [PMID: 35489681 DOI: 10.1016/j.cois.2022.100925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Parasite proliferations within/on the host form the basis of the outcome of all infectious diseases. However, within-host dynamics are difficult to study in vertebrates, as it requires regularly following pathogen proliferation from the start of the infection and at the organismal level. Invertebrate models allow for this monitoring under controlled conditions using population approaches. These approaches offer the possibility to describe many parameters of the within-host dynamics, such as rate of proliferation, probability to control the infection, and average time at which the pathogen is controlled. New parameters such as the Pathogen Load Upon Death and the Set-Point Pathogen Load have emerged to characterize within-host dynamics and better understand disease outcome. While contextualizing the potential of studying within-host dynamics in insects to build fundamental knowledge, we review what we know about within-host dynamics using insect models, and what it can offer to our knowledge of infectious diseases.
Collapse
Affiliation(s)
- David Duneau
- Université Toulouse 3 Paul Sabatier, CNRS, IRD, UMR5174 EDB (Laboratoire Évolution & Diversité Biologique), Toulouse, France; Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, P-2780 Oeiras, Portugal.
| | - Jean-Baptiste Ferdy
- Université Toulouse 3 Paul Sabatier, CNRS, IRD, UMR5174 EDB (Laboratoire Évolution & Diversité Biologique), Toulouse, France.
| |
Collapse
|
7
|
Sieksmeyer T, He S, Esparza-Mora MA, Jiang S, Petrašiūnaitė V, Kuropka B, Banasiak R, Julseth MJ, Weise C, Johnston PR, Rodríguez-Rojas A, McMahon DP. Eating in a losing cause: limited benefit of modified macronutrient consumption following infection in the oriental cockroach Blatta orientalis. BMC Ecol Evol 2022; 22:67. [PMID: 35585501 PMCID: PMC9118584 DOI: 10.1186/s12862-022-02007-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/08/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Host-pathogen interactions can lead to dramatic changes in host feeding behaviour. One aspect of this includes self-medication, where infected individuals consume substances such as toxins or alter their macronutrient consumption to enhance immune competence. Another widely adopted animal response to infection is illness-induced anorexia, which is thought to assist host immunity directly or by limiting the nutritional resources available to pathogens. Here, we recorded macronutrient preferences of the global pest cockroach, Blatta orientalis to investigate how shifts in host macronutrient dietary preference and quantity of carbohydrate (C) and protein (P) interact with immunity following bacterial infection. RESULTS We find that B. orientalis avoids diets enriched for P under normal conditions, and that high P diets reduce cockroach survival in the long term. However, following bacterial challenge, cockroaches significantly reduced their overall nutrient intake, particularly of carbohydrates, and increased the relative ratio of protein (P:C) consumed. Surprisingly, these behavioural shifts had a limited effect on cockroach immunity and survival, with minor changes to immune protein abundance and antimicrobial activity between individuals placed on different diets, regardless of infection status. CONCLUSIONS We show that cockroach feeding behaviour can be modulated by a pathogen, resulting in an illness-induced anorexia-like feeding response and a shift from a C-enriched to a more P:C equal diet. However, our results also indicate that such responses do not provide significant immune protection in B. orientalis, suggesting that the host's dietary shift might also result from random rather than directed behaviour. The lack of an apparent benefit of the shift in feeding behaviour highlights a possible reduced importance of diet in immune regulation in these invasive animals, although further investigations employing pathogens with alternative infection strategies are warranted.
Collapse
Affiliation(s)
- Thorben Sieksmeyer
- Institute of Biology, Freie Universität Berlin, Schwendenerstr. 1, 14195, Berlin, Germany.,Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205, Berlin, Germany.,Department of Biotechnology, German Institute of Food Technology (DIL e.V.), Prof.-von-Klitzing-Str. 7, 49610, Quakenbrück, Germany
| | - Shulin He
- Institute of Biology, Freie Universität Berlin, Schwendenerstr. 1, 14195, Berlin, Germany.,Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205, Berlin, Germany
| | - M Alejandra Esparza-Mora
- Institute of Biology, Freie Universität Berlin, Schwendenerstr. 1, 14195, Berlin, Germany.,Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205, Berlin, Germany
| | - Shixiong Jiang
- Institute of Biology, Freie Universität Berlin, Schwendenerstr. 1, 14195, Berlin, Germany.,Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205, Berlin, Germany
| | - Vesta Petrašiūnaitė
- Institute of Biology, Freie Universität Berlin, Schwendenerstr. 1, 14195, Berlin, Germany
| | - Benno Kuropka
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
| | - Ronald Banasiak
- Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205, Berlin, Germany
| | - Mara Jean Julseth
- Institute of Biology, Freie Universität Berlin, Schwendenerstr. 1, 14195, Berlin, Germany
| | - Christoph Weise
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
| | - Paul R Johnston
- Institute of Biology, Freie Universität Berlin, Schwendenerstr. 1, 14195, Berlin, Germany.,Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, 12587, Berlin, Germany.,Berlin Center for Genomics in Biodiversity Research, Königin-Luise-Str. 6-8, 14195, Berlin, Germany
| | - Alexandro Rodríguez-Rojas
- Institute of Biology, Freie Universität Berlin, Schwendenerstr. 1, 14195, Berlin, Germany.,Internal Medicine, Vetmeduni Vienna, Veterinaerplätz 1, 1210, Vienna, Austria
| | - Dino P McMahon
- Institute of Biology, Freie Universität Berlin, Schwendenerstr. 1, 14195, Berlin, Germany. .,Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205, Berlin, Germany.
| |
Collapse
|
8
|
Cotter SC, Al Shareefi E. Nutritional ecology, infection and immune defence - exploring the mechanisms. CURRENT OPINION IN INSECT SCIENCE 2022; 50:100862. [PMID: 34952240 DOI: 10.1016/j.cois.2021.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/01/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Diet can impact the outcome of parasitic infection in three, non-mutually exclusive ways: 1) by changing the physiological environment of the host, such as the availability of key nutritional resources, the presence of toxic dietary chemicals, the pH or osmolality of the blood or gut, 2) by enhancing the immune response and 3) by altering the presence of host microbiota, which help to digest nutrients and are a potential source of antibiotics. We show that there are no clear patterns in the effects of diet across taxa and that good evidence for the mechanisms by which diet exerts its effects are often lacking. More studies are required to understand the mechanisms of action if we are to discern patterns that can be generalised across host and parasite taxa.
Collapse
Affiliation(s)
- Sheena C Cotter
- School of Life Sciences, University of Lincoln, Brayford Pool, Lincoln LN6 7TS, UK.
| | - Ekhlas Al Shareefi
- Dept of Biology, College of Science for Women, University of Babylon, Hillah-Babil, Iraq
| |
Collapse
|
9
|
Roberts KE, Longdon B. Viral susceptibility across host species is largely independent of dietary protein to carbohydrate ratios. J Evol Biol 2021; 34:746-756. [PMID: 33586293 PMCID: PMC8436156 DOI: 10.1111/jeb.13773] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/02/2021] [Accepted: 02/07/2021] [Indexed: 12/23/2022]
Abstract
The likelihood of a successful host shift of a parasite to a novel host species can be influenced by environmental factors that can act on both the host and parasite. Changes in nutritional resource availability have been shown to alter pathogen susceptibility and the outcome of infection in a range of systems. Here, we examined how dietary protein to carbohydrate altered susceptibility in a large cross-infection experiment. We infected 27 species of Drosophilidae with an RNA virus on three food types of differing protein to carbohydrate ratios. We then measured how viral load and mortality across species was affected by changes in diet. We found that changes in the protein:carbohydrate in the diet did not alter the outcomes of infection, with strong positive inter-species correlations in both viral load and mortality across diets, suggesting no species-by-diet interaction. Mortality and viral load were strongly positively correlated, and this association was consistent across diets. This suggests changes in diet may give consistent outcomes across host species, and may not be universally important in determining host susceptibility to pathogens.
Collapse
Affiliation(s)
- Katherine E. Roberts
- Centre for Ecology & ConservationCollege of Life and Environmental SciencesUniversity of ExeterPenrynUK
| | - Ben Longdon
- Centre for Ecology & ConservationCollege of Life and Environmental SciencesUniversity of ExeterPenrynUK
| |
Collapse
|
10
|
Savola E, Montgomery C, Waldron FM, Monteith KM, Vale P, Walling C. Testing evolutionary explanations for the lifespan benefit of dietary restriction in fruit flies (Drosophila melanogaster). Evolution 2021; 75:450-463. [PMID: 33320333 PMCID: PMC8609428 DOI: 10.1111/evo.14146] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/30/2020] [Accepted: 12/06/2020] [Indexed: 12/22/2022]
Abstract
Dietary restriction (DR), limiting calories or specific nutrients without malnutrition, extends lifespan across diverse taxa. Traditionally, this lifespan extension has been explained as a result of diet-mediated changes in the trade-off between lifespan and reproduction, with survival favored when resources are scarce. However, a recently proposed alternative suggests that the selective benefit of the response to DR is the maintenance of reproduction. This hypothesis predicts that lifespan extension is a side effect of benign laboratory conditions, and DR individuals would be frailer and unable to deal with additional stressors, and thus lifespan extension should disappear under more stressful conditions. We tested this by rearing outbred female fruit flies (Drosophila melanogaster) on 10 different protein:carbohydrate diets. Flies were either infected with a bacterial pathogen (Pseudomonas entomophila), injured with a sterile pinprick, or unstressed. We monitored lifespan, fecundity, and measures of aging. DR extended lifespan and reduced reproduction irrespective of injury and infection. Infected flies on lower protein diets had particularly poor survival. Exposure to infection and injury did not substantially alter the relationship between diet and aging patterns. These results do not provide support for lifespan extension under DR being a side effect of benign laboratory conditions.
Collapse
Affiliation(s)
- Eevi Savola
- Institute of Evolutionary Biology, School of Biological Sciences, The University of Edinburgh, Ashworth Laboratories, Edinburgh, EH9 3FL, UK
| | - Clara Montgomery
- Institute of Evolutionary Biology, School of Biological Sciences, The University of Edinburgh, Ashworth Laboratories, Edinburgh, EH9 3FL, UK
| | - Fergal M Waldron
- Institute of Evolutionary Biology, School of Biological Sciences, The University of Edinburgh, Ashworth Laboratories, Edinburgh, EH9 3FL, UK
| | - Katy M Monteith
- Institute of Evolutionary Biology, School of Biological Sciences, The University of Edinburgh, Ashworth Laboratories, Edinburgh, EH9 3FL, UK
| | - Pedro Vale
- Institute of Evolutionary Biology, School of Biological Sciences, The University of Edinburgh, Ashworth Laboratories, Edinburgh, EH9 3FL, UK
| | - Craig Walling
- Institute of Evolutionary Biology, School of Biological Sciences, The University of Edinburgh, Ashworth Laboratories, Edinburgh, EH9 3FL, UK
| |
Collapse
|