1
|
Goda M, Shribak M, Ikeda Z, Okada N, Tani T, Goshima G, Oldenbourg R, Kimura A. Live-cell imaging under centrifugation characterized the cellular force for nuclear centration in the Caenorhabditis elegans embryo. Proc Natl Acad Sci U S A 2024; 121:e2402759121. [PMID: 39413133 PMCID: PMC11513977 DOI: 10.1073/pnas.2402759121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 08/21/2024] [Indexed: 10/18/2024] Open
Abstract
Organelles in cells are appropriately positioned, despite crowding in the cytoplasm. However, our understanding of the force required to move large organelles, such as the nucleus, inside the cytoplasm is limited, in part owing to a lack of accurate methods for measurement. We devised a method to apply forces to the nucleus of living Caenorhabditis elegans embryos to measure the force generated inside the cell. We used a centrifuge polarizing microscope to apply centrifugal force and orientation-independent differential interference contrast microscopy to characterize the mass density of the nucleus and cytoplasm. The cellular forces moving the nucleus toward the cell center increased linearly at ~12 pN/μm depending on the distance from the center. The frictional coefficient was ~980 pN s/μm. The measured values were smaller than the previously reported estimates for sea urchin embryos. The forces were consistent with the centrosome-organelle mutual pulling model for nuclear centration. The frictional coefficient was reduced when microtubules were shorter or detached from nuclei in mutant embryos, demonstrating the contribution of astral microtubules. Finally, the frictional coefficient was higher than a theoretical estimate, indicating the contribution of uncharacterized properties of the cytoplasm.
Collapse
Affiliation(s)
- Makoto Goda
- Marine Biological Laboratory, Woods Hole, MA02543
- Institute of Photonics Medicine, Hamamatsu University School of Medicine, Hamamatsu431-3192, Japan
- Nagoya University, Nagoya464-8602, Japan
| | | | - Zenki Ikeda
- National Institute of Genetics, Mishima411-8540, Japan
- Genetics Program, Sokendai (Graduate University for Advanced Studies), Mishima411-8540, Japan
| | | | - Tomomi Tani
- Marine Biological Laboratory, Woods Hole, MA02543
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Ikeda563-8577, Japan
| | - Gohta Goshima
- Marine Biological Laboratory, Woods Hole, MA02543
- Nagoya University, Nagoya464-8602, Japan
| | | | - Akatsuki Kimura
- Marine Biological Laboratory, Woods Hole, MA02543
- National Institute of Genetics, Mishima411-8540, Japan
- Genetics Program, Sokendai (Graduate University for Advanced Studies), Mishima411-8540, Japan
| |
Collapse
|
2
|
Geay J, Margaron Y, Gentien D, Reyal F, Puisieux A, Blanchoin L, Guyon L, Théry M. Plakins are involved in the regulation of centrosome position in polarized epithelial cells. Biol Cell 2024; 116:e2400048. [PMID: 38850178 DOI: 10.1111/boc.202400048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 05/01/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND INFORMATION The control of epithelial cell polarity is key to their function. Its dysregulation is a major cause of tissue transformation. In polarized epithelial cells,the centrosome is off-centred toward the apical pole. This asymmetry determines the main orientation of the microtubule network and intra-cellular traffic. However, the mechanism regulating centrosome positioning at the apical pole of polarized epithelial cells is still poorly undertood. RESULTS In this study we used transcriptomic data from breast cancer cells to identify molecular changes associated with the different stages of tumour transformation. We correlated these changes with variations in centrosome position or with cell progression along the epithelial-to-mesenchymal transition (EMT), a process that involves centrosome repositioning. We found that low levels of epiplakin, desmoplakin and periplakin correlated with centrosome mispositioning in cells that had progressed through EMT or tissue transformation. We further tested the causal role of these plakins in the regulation of centrosome position by knocking down their expression in a non-tumorigenic breast epithelial cell line (MCF10A). The downregulation of periplakin reduced the length of intercellular junction, which was not affected by the downregulation of epiplakin or desmoplakin. However, down-regulating any of them disrupted centrosome polarisation towards the junction without affecting microtubule stability. CONCLUSIONS Altogether, these results demonstrated that epiplakin, desmoplakin and periplakin are involved in the maintenance of the peripheral position of the centrosome close to inter-cellular junctions. They also revealed that these plakins are downregulated during EMT and breast cancer progression, which are both associated with centrosome mispositioning. SIGNIFICANCE These results revealed that the down-regulation of plakins and the consequential centrosome mispositioning are key signatures of disorganised cytoskeleton networks, inter-cellular junction weakening, shape deregulation and the loss of polarity in breast cancer cells. These metrics could further be used as a new readouts for early phases of tumoral development.
Collapse
Affiliation(s)
- Juliana Geay
- Université de Paris, CEA/INSERM/AP-HP, Institut de Recherche Saint Louis, UMR976, HIPI, CytoMorpho Lab, Hopital Saint Louis, Paris, France
| | - Yoran Margaron
- Université Grenoble-Alpes, CEA/INRA/CNRS, Interdisciplinary Research Institute of Grenoble, UMR5168, LPCV, CytoMorpho Lab, Grenoble, France
| | - David Gentien
- Université PSL, Department of Translational Research, Institut Curie, Genomics Platform, Paris, France
| | - Fabien Reyal
- Université Paris Cité, Université PSL, INSERM U932, Breast Gynecological and Reconstructive Surgery, Institut Curie, Paris, France
| | - Alain Puisieux
- Université Claude Bernard Lyon 1, Cancer Research Center of Lyon, INSERM 1052, CNRS 5286, Centre Léon Bérard, Lyon, France
- Université PSL, Institut Curie, Université Versailles Saint-Quentin, CNRS UMR 3666, INSERM U1143, Paris, France
| | - Laurent Blanchoin
- Université de Paris, CEA/INSERM/AP-HP, Institut de Recherche Saint Louis, UMR976, HIPI, CytoMorpho Lab, Hopital Saint Louis, Paris, France
- Université Grenoble-Alpes, CEA/INRA/CNRS, Interdisciplinary Research Institute of Grenoble, UMR5168, LPCV, CytoMorpho Lab, Grenoble, France
| | - Laurent Guyon
- Université Grenoble Alpes, CEA/INSERM, Interdisciplinary Research Institute of Grenoble, BioSanté UMR_S 1292, Grenoble, France
| | - Manuel Théry
- Université de Paris, CEA/INSERM/AP-HP, Institut de Recherche Saint Louis, UMR976, HIPI, CytoMorpho Lab, Hopital Saint Louis, Paris, France
- Université Grenoble-Alpes, CEA/INRA/CNRS, Interdisciplinary Research Institute of Grenoble, UMR5168, LPCV, CytoMorpho Lab, Grenoble, France
| |
Collapse
|
3
|
Kroll J, Renkawitz J. Principles of organelle positioning in motile and non-motile cells. EMBO Rep 2024; 25:2172-2187. [PMID: 38627564 PMCID: PMC11094012 DOI: 10.1038/s44319-024-00135-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/15/2024] [Accepted: 04/04/2024] [Indexed: 05/16/2024] Open
Abstract
Cells are equipped with asymmetrically localised and functionally specialised components, including cytoskeletal structures and organelles. Positioning these components to specific intracellular locations in an asymmetric manner is critical for their functionality and affects processes like immune responses, tissue maintenance, muscle functionality, and neurobiology. Here, we provide an overview of strategies to actively move, position, and anchor organelles to specific locations. By conceptualizing the cytoskeletal forces and the organelle-to-cytoskeleton connectivity, we present a framework of active positioning of both membrane-enclosed and membrane-less organelles. Using this framework, we discuss how different principles of force generation and organelle anchorage are utilised by different cells, such as mesenchymal and amoeboid cells, and how the microenvironment influences the plasticity of organelle positioning. Given that motile cells face the challenge of coordinating the positioning of their content with cellular motion, we particularly focus on principles of organelle positioning during migration. In this context, we discuss novel findings on organelle positioning by anchorage-independent mechanisms and their advantages and disadvantages in motile as well as stationary cells.
Collapse
Affiliation(s)
- Janina Kroll
- Biomedical Center, Walter Brendel Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians Universität München, Munich, Germany
| | - Jörg Renkawitz
- Biomedical Center, Walter Brendel Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig Maximilians Universität München, Munich, Germany.
| |
Collapse
|
4
|
Link R, Jaggy M, Bastmeyer M, Schwarz US. Modelling cell shape in 3D structured environments: A quantitative comparison with experiments. PLoS Comput Biol 2024; 20:e1011412. [PMID: 38574170 PMCID: PMC11020930 DOI: 10.1371/journal.pcbi.1011412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 04/16/2024] [Accepted: 03/14/2024] [Indexed: 04/06/2024] Open
Abstract
Cell shape plays a fundamental role in many biological processes, including adhesion, migration, division and development, but it is not clear which shape model best predicts three-dimensional cell shape in structured environments. Here, we compare different modelling approaches with experimental data. The shapes of single mesenchymal cells cultured in custom-made 3D scaffolds were compared by a Fourier method with surfaces that minimize area under the given adhesion and volume constraints. For the minimized surface model, we found marked differences to the experimentally observed cell shapes, which necessitated the use of more advanced shape models. We used different variants of the cellular Potts model, which effectively includes both surface and bulk contributions. The simulations revealed that the Hamiltonian with linear area energy outperformed the elastic area constraint in accurately modelling the 3D shapes of cells in structured environments. Explicit modelling the nucleus did not improve the accuracy of the simulated cell shapes. Overall, our work identifies effective methods for accurately modelling cellular shapes in complex environments.
Collapse
Affiliation(s)
- Rabea Link
- Institute for Theoretical Physics, Heidelberg University, Heidelberg, Germany
- BioQuant, Heidelberg University, Heidelberg, Germany
| | - Mona Jaggy
- Zoological Institute, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Martin Bastmeyer
- Zoological Institute, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- Institute for Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Ulrich S. Schwarz
- Institute for Theoretical Physics, Heidelberg University, Heidelberg, Germany
- BioQuant, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
5
|
Hannaford MR, Rusan NM. Positioning centrioles and centrosomes. J Cell Biol 2024; 223:e202311140. [PMID: 38512059 PMCID: PMC10959756 DOI: 10.1083/jcb.202311140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/22/2024] Open
Abstract
Centrosomes are the primary microtubule organizer in eukaryotic cells. In addition to shaping the intracellular microtubule network and the mitotic spindle, centrosomes are responsible for positioning cilia and flagella. To fulfill these diverse functions, centrosomes must be properly located within cells, which requires that they undergo intracellular transport. Importantly, centrosome mispositioning has been linked to ciliopathies, cancer, and infertility. The mechanisms by which centrosomes migrate are diverse and context dependent. In many cells, centrosomes move via indirect motor transport, whereby centrosomal microtubules engage anchored motor proteins that exert forces on those microtubules, resulting in centrosome movement. However, in some cases, centrosomes move via direct motor transport, whereby the centrosome or centriole functions as cargo that directly binds molecular motors which then walk on stationary microtubules. In this review, we summarize the mechanisms of centrosome motility and the consequences of centrosome mispositioning and identify key questions that remain to be addressed.
Collapse
Affiliation(s)
- Matthew R. Hannaford
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nasser M. Rusan
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
6
|
Kumari R, Ven K, Chastney M, Kokate SB, Peränen J, Aaron J, Kogan K, Almeida-Souza L, Kremneva E, Poincloux R, Chew TL, Gunning PW, Ivaska J, Lappalainen P. Focal adhesions contain three specialized actin nanoscale layers. Nat Commun 2024; 15:2547. [PMID: 38514695 PMCID: PMC10957975 DOI: 10.1038/s41467-024-46868-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/13/2024] [Indexed: 03/23/2024] Open
Abstract
Focal adhesions (FAs) connect inner workings of cell to the extracellular matrix to control cell adhesion, migration and mechanosensing. Previous studies demonstrated that FAs contain three vertical layers, which connect extracellular matrix to the cytoskeleton. By using super-resolution iPALM microscopy, we identify two additional nanoscale layers within FAs, specified by actin filaments bound to tropomyosin isoforms Tpm1.6 and Tpm3.2. The Tpm1.6-actin filaments, beneath the previously identified α-actinin cross-linked actin filaments, appear critical for adhesion maturation and controlled cell motility, whereas the adjacent Tpm3.2-actin filament layer beneath seems to facilitate adhesion disassembly. Mechanistically, Tpm3.2 stabilizes ACF-7/MACF1 and KANK-family proteins at adhesions, and hence targets microtubule plus-ends to FAs to catalyse their disassembly. Tpm3.2 depletion leads to disorganized microtubule network, abnormally stable FAs, and defects in tail retraction during migration. Thus, FAs are composed of distinct actin filament layers, and each may have specific roles in coupling adhesions to the cytoskeleton, or in controlling adhesion dynamics.
Collapse
Affiliation(s)
- Reena Kumari
- HiLIFE Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland
| | - Katharina Ven
- HiLIFE Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland
| | - Megan Chastney
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
| | - Shrikant B Kokate
- HiLIFE Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland
| | - Johan Peränen
- HiLIFE Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland
| | - Jesse Aaron
- Advanced Imaging Center, HHMI Janelia Research Campus, Ashburn, VA, 20147, USA
| | - Konstantin Kogan
- HiLIFE Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland
| | - Leonardo Almeida-Souza
- HiLIFE Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Elena Kremneva
- HiLIFE Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland
| | - Renaud Poincloux
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Teng-Leong Chew
- Advanced Imaging Center, HHMI Janelia Research Campus, Ashburn, VA, 20147, USA
| | - Peter W Gunning
- School of Biomedical Sciences, UNSW Sydney, Wallace Wurth Building, Sydney, NSW 2052, Australia
| | - Johanna Ivaska
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
- Department of Life Technologies, University of Turku, FI-20520, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- Foundation for the Finnish Cancer Institute, Tukholmankatu 8, FI-00014, Helsinki, Finland
| | - Pekka Lappalainen
- HiLIFE Institute of Biotechnology, University of Helsinki, FI-00014, Helsinki, Finland.
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
7
|
Tada S, Yamazaki Y, Yamamoto K, Fujii K, Yamada TG, Hiroi NF, Kimura A, Funahashi A. Switching from weak to strong cortical attachment of microtubules accounts for the transition from nuclear centration to spindle elongation in metazoans. Heliyon 2024; 10:e25494. [PMID: 38356608 PMCID: PMC10865266 DOI: 10.1016/j.heliyon.2024.e25494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 01/06/2024] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
The centrosome is a major microtubule organizing center in animal cells. The position of the centrosomes inside the cell is important for cell functions such as cell cycle, and thus should be tightly regulated. Theoretical models based on the forces generated along the microtubules have been proposed to account for the dynamic movements of the centrosomes during the cell cycle. These models, however, often adopted inconsistent assumptions to explain distinct but successive movements, thus preventing a unified model for centrosome positioning. For the centration of the centrosomes, weak attachment of the astral microtubules to the cell cortex was assumed. In contrast, for the separation of the centrosomes during spindle elongation, strong attachment was assumed. Here, we mathematically analyzed these processes at steady state and found that the different assumptions are proper for each process. We experimentally validated our conclusion using nematode and sea urchin embryos by manipulating their shapes. Our results suggest the existence of a molecular mechanism that converts the cortical attachment from weak to strong during the transition from centrosome centration to spindle elongation.
Collapse
Affiliation(s)
- Shohei Tada
- Center for Biosciences and Informatics, Graduate School of Fundamental Science and Technology, Keio University, Yokohama, Kanagawa, 223-8522, Japan
| | - Yoshitaka Yamazaki
- Center for Biosciences and Informatics, Graduate School of Fundamental Science and Technology, Keio University, Yokohama, Kanagawa, 223-8522, Japan
| | - Kazunori Yamamoto
- Cell Architecture Laboratory, Department of Chromosome Science, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Genetics Program, The Graduate University for Advanced Studies, SOKENDAI, Mishima, Shizuoka 411-8540, Japan
- Faculty of Applied Bioscience, Kanagawa Institute of Technology, Atsugi, Kanagawa, 243-0292, Japan
- Division of Developmental Physiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0815, Japan
| | - Ken Fujii
- Cell Architecture Laboratory, Department of Chromosome Science, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Genetics Program, The Graduate University for Advanced Studies, SOKENDAI, Mishima, Shizuoka 411-8540, Japan
| | - Takahiro G. Yamada
- Center for Biosciences and Informatics, Graduate School of Fundamental Science and Technology, Keio University, Yokohama, Kanagawa, 223-8522, Japan
- Department of Biosciences and Informatics, Keio University, Yokohama, Kanagawa, 223-8522, Japan
| | - Noriko F. Hiroi
- School of Medicine, Keio University, Shinjuku-ward, Tokyo, 160-8582, Japan
- Faculty of Creative Engineering, Kanagawa Institute of Technology, Atsugi, Kanagawa, 243-0292, Japan
| | - Akatsuki Kimura
- Cell Architecture Laboratory, Department of Chromosome Science, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Genetics Program, The Graduate University for Advanced Studies, SOKENDAI, Mishima, Shizuoka 411-8540, Japan
- Center for Data Assimilation Research and Applications, Joint Support-Center for Data Science Research, Research Organization of Information and Systems (ROIS), Tachikawa, 190-8562, Japan
| | - Akira Funahashi
- Center for Biosciences and Informatics, Graduate School of Fundamental Science and Technology, Keio University, Yokohama, Kanagawa, 223-8522, Japan
- Department of Biosciences and Informatics, Keio University, Yokohama, Kanagawa, 223-8522, Japan
| |
Collapse
|
8
|
Goda M, Shribak M, Ikeda Z, Okada N, Tani T, Goshima G, Oldenbourg R, Kimura A. Live-cell imaging under centrifugation characterized the cellular force for nuclear centration in the Caenorhabditis elegans embryo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.03.574024. [PMID: 38260704 PMCID: PMC10802357 DOI: 10.1101/2024.01.03.574024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Organelles in cells are appropriately positioned, despite crowding in the cytoplasm. However, our understanding of the force required to move large organelles, such as the nucleus, inside the cytoplasm is limited, in part owing to a lack of accurate methods for measurement. We devised a novel method to apply forces to the nucleus of living, wild-type Caenorhabditis elegans embryos to measure the force generated inside the cell. We utilized a centrifuge polarizing microscope (CPM) to apply centrifugal force and orientation-independent differential interference contrast (OI-DIC) microscopy to characterize the mass density of the nucleus and cytoplasm. The cellular forces moving the nucleus toward the cell center increased linearly at ~14 pN/μm depending on the distance from the center. The frictional coefficient was ~1,100 pN s/μm. The measured values were smaller than previously reported estimates for sea urchin embryos. The forces were consistent with the centrosome-organelle mutual pulling model for nuclear centration. Frictional coefficient was reduced when microtubules were shorter or detached from nuclei in mutant embryos, demonstrating the contribution of astral microtubules. Finally, the frictional coefficient was higher than a theoretical estimate, indicating the contribution of uncharacterized properties of the cytoplasm.
Collapse
Affiliation(s)
- Makoto Goda
- Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA
- Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
- Nagoya University, Nagoya 464-8602, Japan
| | - Michael Shribak
- Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA
| | - Zenki Ikeda
- National Institute of Genetics, Mishima 411-8540, Japan
- Sokendai (Graduate University for Advanced Studies) Mishima, Mishima 411-8540, Japan
| | | | - Tomomi Tani
- Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Ikeda 563-8577, Japan
| | - Gohta Goshima
- Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA
- Nagoya University, Nagoya 464-8602, Japan
| | | | - Akatsuki Kimura
- Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA
- National Institute of Genetics, Mishima 411-8540, Japan
- Sokendai (Graduate University for Advanced Studies) Mishima, Mishima 411-8540, Japan
| |
Collapse
|
9
|
Gélin M, Schaeffer A, Gaillard J, Guérin C, Vianay B, Orhant-Prioux M, Braun M, Leterrier C, Blanchoin L, Théry M. Microtubules under mechanical pressure can breach dense actin networks. J Cell Sci 2023; 136:jcs261667. [PMID: 37870087 DOI: 10.1242/jcs.261667] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023] Open
Abstract
The crosstalk between the actin network and microtubules is essential for cell polarity. It orchestrates microtubule organization within the cell, driven by the asymmetry of actin architecture along the cell periphery. The physical intertwining of these networks regulates spatial organization and force distribution in the microtubule network. Although their biochemical interactions are becoming clearer, the mechanical aspects remain less understood. To explore this mechanical interplay, we developed an in vitro reconstitution assay to investigate how dynamic microtubules interact with various actin filament structures. Our findings revealed that microtubules can align and move along linear actin filament bundles through polymerization force. However, they are unable to pass through when encountering dense branched actin meshworks, similar to those present in the lamellipodium along the periphery of the cell. Interestingly, immobilizing microtubules through crosslinking with actin or other means allow the buildup of pressure, enabling them to breach these dense actin barriers. This mechanism offers insights into microtubule progression towards the cell periphery, with them overcoming obstacles within the denser parts of the actin network and ultimately contributing to cell polarity establishment.
Collapse
Affiliation(s)
- Matthieu Gélin
- Université Paris cité, CEA, INSERM, Institut de Recherche Saint Louis, UMR976 HIPI, CytoMorpho Lab, Avenue Claude Vellefaux, 75010 Paris, France
| | - Alexandre Schaeffer
- Université Paris cité, CEA, INSERM, Institut de Recherche Saint Louis, UMR976 HIPI, CytoMorpho Lab, Avenue Claude Vellefaux, 75010 Paris, France
| | - Jérémie Gaillard
- Université Grenoble-Alpes, CEA, CNRS, INRA, Interdisciplinary Research Institute of Grenoble, UMR5168-LPCV, CytoMorpho Lab, Avenue des Martyrs, 38054 Grenoble, France
| | - Christophe Guérin
- Université Grenoble-Alpes, CEA, CNRS, INRA, Interdisciplinary Research Institute of Grenoble, UMR5168-LPCV, CytoMorpho Lab, Avenue des Martyrs, 38054 Grenoble, France
| | - Benoit Vianay
- Université Paris cité, CEA, INSERM, Institut de Recherche Saint Louis, UMR976 HIPI, CytoMorpho Lab, Avenue Claude Vellefaux, 75010 Paris, France
| | - Magali Orhant-Prioux
- Université Grenoble-Alpes, CEA, CNRS, INRA, Interdisciplinary Research Institute of Grenoble, UMR5168-LPCV, CytoMorpho Lab, Avenue des Martyrs, 38054 Grenoble, France
| | - Marcus Braun
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, 25250 Vestec, Prague West, Czech Republic
| | - Christophe Leterrier
- Aix Marseille Université, CNRS, INP UMR7051, NeuroCyto, 13385, Marseille, France
| | - Laurent Blanchoin
- Université Paris cité, CEA, INSERM, Institut de Recherche Saint Louis, UMR976 HIPI, CytoMorpho Lab, Avenue Claude Vellefaux, 75010 Paris, France
- Université Grenoble-Alpes, CEA, CNRS, INRA, Interdisciplinary Research Institute of Grenoble, UMR5168-LPCV, CytoMorpho Lab, Avenue des Martyrs, 38054 Grenoble, France
| | - Manuel Théry
- Université Paris cité, CEA, INSERM, Institut de Recherche Saint Louis, UMR976 HIPI, CytoMorpho Lab, Avenue Claude Vellefaux, 75010 Paris, France
- Université Grenoble-Alpes, CEA, CNRS, INRA, Interdisciplinary Research Institute of Grenoble, UMR5168-LPCV, CytoMorpho Lab, Avenue des Martyrs, 38054 Grenoble, France
| |
Collapse
|
10
|
Tagay Y, Kheirabadi S, Ataie Z, Singh RK, Prince O, Nguyen A, Zhovmer AS, Ma X, Sheikhi A, Tsygankov D, Tabdanov ED. Dynein-Powered Cell Locomotion Guides Metastasis of Breast Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302229. [PMID: 37726225 PMCID: PMC10625109 DOI: 10.1002/advs.202302229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/20/2023] [Indexed: 09/21/2023]
Abstract
The principal cause of death in cancer patients is metastasis, which remains an unresolved problem. Conventionally, metastatic dissemination is linked to actomyosin-driven cell locomotion. However, the locomotion of cancer cells often does not strictly line up with the measured actomyosin forces. Here, a complementary mechanism of metastatic locomotion powered by dynein-generated forces is identified. These forces arise within a non-stretchable microtubule network and drive persistent contact guidance of migrating cancer cells along the biomimetic collagen fibers. It is also shown that the dynein-powered locomotion becomes indispensable during invasive 3D migration within a tissue-like luminal network formed by spatially confining granular hydrogel scaffolds (GHS) made up of microscale hydrogel particles (microgels). These results indicate that the complementary motricity mediated by dynein is always necessary and, in certain instances, sufficient for disseminating metastatic breast cancer cells. These findings advance the fundamental understanding of cell locomotion mechanisms and expand the spectrum of clinical targets against metastasis.
Collapse
Affiliation(s)
- Yerbol Tagay
- Department of PharmacologyPenn State College of MedicineThe Pennsylvania State UniversityHersheyPA17033USA
| | - Sina Kheirabadi
- Department of Chemical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Zaman Ataie
- Department of Chemical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Rakesh K. Singh
- Department of Obstetrics & GynecologyGynecology OncologyUniversity of Rochester Medical CenterRochesterNY14642USA
| | - Olivia Prince
- Center for Biologics Evaluation and ResearchU.S. Food and Drug AdministrationSilver SpringMD20903USA
| | - Ashley Nguyen
- Center for Biologics Evaluation and ResearchU.S. Food and Drug AdministrationSilver SpringMD20903USA
| | - Alexander S. Zhovmer
- Center for Biologics Evaluation and ResearchU.S. Food and Drug AdministrationSilver SpringMD20903USA
| | - Xuefei Ma
- Center for Biologics Evaluation and ResearchU.S. Food and Drug AdministrationSilver SpringMD20903USA
| | - Amir Sheikhi
- Department of Chemical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
- Department of Biomedical EngineeringThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Denis Tsygankov
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaGA30332USA
| | - Erdem D. Tabdanov
- Department of PharmacologyPenn State College of MedicineThe Pennsylvania State UniversityHersheyPA17033USA
- Penn State Cancer InstitutePenn State College of MedicineThe Pennsylvania State UniversityHersheyPA17033USA
| |
Collapse
|
11
|
Shakhov AS, Churkina AS, Kotlobay AA, Alieva IB. The Endothelial Centrosome: Specific Features and Functional Significance for Endothelial Cell Activity and Barrier Maintenance. Int J Mol Sci 2023; 24:15392. [PMID: 37895072 PMCID: PMC10607758 DOI: 10.3390/ijms242015392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
This review summarizes information about the specific features that are characteristic of the centrosome and its relationship with the cell function of highly specialized cells, such as endotheliocytes. It is based on data from other researchers and our own long-term experience. The participation of the centrosome in the functional activity of these cells, including its involvement in the performance of the main barrier function of the endothelium, is discussed. According to modern concepts, the centrosome is a multifunctional complex and an integral element of a living cell; the functions of which are not limited only to the ability to polymerize microtubules. The location of the centrosome near the center of the interphase cell, the concentration of various regulatory proteins in it, the organization of the centrosome radial system of microtubules through which intracellular transport is carried out by motor proteins and the involvement of the centrosome in the process of the perception of the external signals and their transmission make this cellular structure a universal regulatory and distribution center, controlling the entire dynamic morphology of an animal cell. Drawing from modern data on the tissue-specific features of the centrosome's structure, we discuss the direct involvement of the centrosome in the performance of functions by specialized cells.
Collapse
Affiliation(s)
- Anton Sergeevich Shakhov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1–40, Leninskye Gory, 119992 Moscow, Russia
| | - Aleksandra Sergeevna Churkina
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1–40, Leninskye Gory, 119992 Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 1–73, Leninskye Gory, 119992 Moscow, Russia
| | - Anatoly Alekseevich Kotlobay
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1a Malaya Pirogovskaya St., 119435 Moscow, Russia
| | - Irina Borisovna Alieva
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1–40, Leninskye Gory, 119992 Moscow, Russia
| |
Collapse
|
12
|
Zhovmer AS, Manning A, Smith C, Wang J, Ma X, Tsygankov D, Dokholyan NV, Cartagena-Rivera AX, Singh RK, Tabdanov ED. Septins Enable T Cell Contact Guidance via Amoeboid-Mesenchymal Switch. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.26.559597. [PMID: 37808814 PMCID: PMC10557721 DOI: 10.1101/2023.09.26.559597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Lymphocytes exit circulation and enter in-tissue guided migration toward sites of tissue pathologies, damage, infection, or inflammation. By continuously sensing and adapting to the guiding chemo-mechano-structural properties of the tissues, lymphocytes dynamically alternate and combine their amoeboid (non-adhesive) and mesenchymal (adhesive) migration modes. However, which mechanisms guide and balance different migration modes are largely unclear. Here we report that suppression of septins GTPase activity induces an abrupt amoeboid-to-mesenchymal transition of T cell migration mode, characterized by a distinct, highly deformable integrin-dependent immune cell contact guidance. Surprisingly, the T cell actomyosin cortex contractility becomes diminished, dispensable and antagonistic to mesenchymal-like migration mode. Instead, mesenchymal-like T cells rely on microtubule stabilization and their non-canonical dynein motor activity for high fidelity contact guidance. Our results establish septin's GTPase activity as an important on/off switch for integrin-dependent migration of T lymphocytes, enabling their dynein-driven fluid-like mesenchymal propulsion along the complex adhesion cues.
Collapse
Affiliation(s)
- Alexander S Zhovmer
- Center for Biologics Evaluation & Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Alexis Manning
- Center for Biologics Evaluation & Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Chynna Smith
- Section on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Jian Wang
- Departments of Pharmacology, Penn State College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| | - Xuefei Ma
- Center for Biologics Evaluation & Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Denis Tsygankov
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Nikolay V Dokholyan
- Departments of Pharmacology, Penn State College of Medicine, The Pennsylvania State University, Hershey, PA, USA
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, The Pennsylvania State University Hershey-Hummelstown, PA, USA
| | - Alexander X Cartagena-Rivera
- Section on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Rakesh K Singh
- Department of Obstetrics & Gynecology, University of Rochester Medical Center, Rochester, NY, USA
| | - Erdem D Tabdanov
- Departments of Pharmacology, Penn State College of Medicine, The Pennsylvania State University, Hershey, PA, USA
- Penn State Cancer Institute, Penn State College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| |
Collapse
|
13
|
Saleh J, Fardin MA, Barai A, Soleilhac M, Frenoy O, Gaston C, Cui H, Dang T, Gaudin N, Vincent A, Minc N, Delacour D. Length limitation of astral microtubules orients cell divisions in murine intestinal crypts. Dev Cell 2023; 58:1519-1533.e6. [PMID: 37419117 DOI: 10.1016/j.devcel.2023.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 05/25/2023] [Accepted: 06/14/2023] [Indexed: 07/09/2023]
Abstract
Planar spindle orientation is critical for epithelial tissue organization and is generally instructed by the long cell-shape axis or cortical polarity domains. We introduced mouse intestinal organoids in order to study spindle orientation in a monolayered mammalian epithelium. Although spindles were planar, mitotic cells remained elongated along the apico-basal (A-B) axis, and polarity complexes were segregated to basal poles, so that spindles oriented in an unconventional manner, orthogonal to both polarity and geometric cues. Using high-resolution 3D imaging, simulations, and cell-shape and cytoskeleton manipulations, we show that planar divisions resulted from a length limitation in astral microtubules (MTs) which precludes them from interacting with basal polarity, and orient spindles from the local geometry of apical domains. Accordingly, lengthening MTs affected spindle planarity, cell positioning, and crypt arrangement. We conclude that MT length regulation may serve as a key mechanism for spindles to sense local cell shapes and tissue forces to preserve mammalian epithelial architecture.
Collapse
Affiliation(s)
- Jad Saleh
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France
| | | | - Amlan Barai
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France
| | - Matis Soleilhac
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France
| | - Olivia Frenoy
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France
| | - Cécile Gaston
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France
| | - Hongyue Cui
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France
| | - Tien Dang
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France
| | - Noémie Gaudin
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France
| | - Audrey Vincent
- Université de Lille, CNRS, INSERM, CHU Lille, UMR9020-U1277, 59000 Lille, France; ORGALille Core Facility, CANTHER, Université de Lille, CNRS, INSERM, CHU Lille, UMR9020-U1277, 59000 Lille, France
| | - Nicolas Minc
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France; Equipe Labellisée La Ligue Contre le Cancer, France.
| | - Delphine Delacour
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France.
| |
Collapse
|
14
|
Monteiro P, Yeon B, Wallis SS, Godinho SA. Centrosome amplification fine tunes tubulin acetylation to differentially control intracellular organization. EMBO J 2023; 42:e112812. [PMID: 37403793 PMCID: PMC10425843 DOI: 10.15252/embj.2022112812] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 06/05/2023] [Accepted: 06/14/2023] [Indexed: 07/06/2023] Open
Abstract
Intracellular organelle organization is conserved in eukaryotic cells and is primarily achieved through active transport by motor proteins along the microtubule cytoskeleton. Microtubule post-translational modifications (PTMs) can contribute to microtubule diversity and differentially regulate motor-mediated transport. Here, we show that centrosome amplification, commonly observed in cancer and shown to promote aneuploidy and invasion, induces a global change in organelle positioning towards the cell periphery and facilitates nuclear migration through confined spaces. This reorganization requires kinesin-1 and is analogous to the loss of dynein. Cells with amplified centrosomes display increased levels of acetylated tubulin, a PTM that could enhance kinesin-1-mediated transport. Depletion of α-tubulin acetyltransferase 1 (αTAT1) to block tubulin acetylation rescues the displacement of centrosomes, mitochondria, and vimentin but not Golgi or endosomes. Analyses of the distribution of total and acetylated microtubules indicate that the polarized distribution of modified microtubules, rather than levels alone, plays an important role in the positioning of specific organelles, such as the centrosome. We propose that increased tubulin acetylation differentially impacts kinesin-1-mediated organelle displacement to regulate intracellular organization.
Collapse
Affiliation(s)
- Pedro Monteiro
- Centre for Cancer Cell and Molecular Biology, Barts Cancer InstituteQueen Mary University of LondonLondonUK
- Institut Curie, Paris Sciences and Lettres Research UniversityCentre National de la Recherche Scientifique, UMR144ParisFrance
| | - Bongwhan Yeon
- Centre for Cancer Cell and Molecular Biology, Barts Cancer InstituteQueen Mary University of LondonLondonUK
| | - Samuel S Wallis
- Centre for Cancer Cell and Molecular Biology, Barts Cancer InstituteQueen Mary University of LondonLondonUK
| | - Susana A Godinho
- Centre for Cancer Cell and Molecular Biology, Barts Cancer InstituteQueen Mary University of LondonLondonUK
| |
Collapse
|
15
|
Li Y, Kučera O, Cuvelier D, Rutkowski DM, Deygas M, Rai D, Pavlovič T, Vicente FN, Piel M, Giannone G, Vavylonis D, Akhmanova A, Blanchoin L, Théry M. Compressive forces stabilize microtubules in living cells. NATURE MATERIALS 2023; 22:913-924. [PMID: 37386067 PMCID: PMC10569437 DOI: 10.1038/s41563-023-01578-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/16/2023] [Indexed: 07/01/2023]
Abstract
Microtubules are cytoskeleton components with unique mechanical and dynamic properties. They are rigid polymers that alternate phases of growth and shrinkage. Nonetheless, the cells can display a subset of stable microtubules, but it is unclear whether microtubule dynamics and mechanical properties are related. Recent in vitro studies suggest that microtubules have mechano-responsive properties, being able to stabilize their lattice by self-repair on physical damage. Here we study how microtubules respond to cycles of compressive forces in living cells and find that microtubules become distorted, less dynamic and more stable. This mechano-stabilization depends on CLASP2, which relocates from the end to the deformed shaft of microtubules. This process seems to be instrumental for cell migration in confined spaces. Overall, these results demonstrate that microtubules in living cells have mechano-responsive properties that allow them to resist and even counteract the forces to which they are subjected, being a central mediator of cellular mechano-responses.
Collapse
Affiliation(s)
- Yuhui Li
- Univ. Paris, INSERM, CEA, UMRS1160, Institut de Recherche Saint Louis, CytoMorpho Lab, Hôpital Saint Louis, Paris, France
- Univ. Grenoble-Alpes, CEA, CNRS, INRA, Interdisciplinary Research Institute of Grenoble, Laboratoire de Phyiologie Cellulaire & Végétale, CytoMorpho Lab, Grenoble, France
| | - Ondřej Kučera
- Univ. Paris, INSERM, CEA, UMRS1160, Institut de Recherche Saint Louis, CytoMorpho Lab, Hôpital Saint Louis, Paris, France
- Univ. Grenoble-Alpes, CEA, CNRS, INRA, Interdisciplinary Research Institute of Grenoble, Laboratoire de Phyiologie Cellulaire & Végétale, CytoMorpho Lab, Grenoble, France
- Department of Engineering Technology, South East Technological University, Waterford, Ireland
| | - Damien Cuvelier
- Institut Curie, UMR144, Paris, France
- Institut Pierre-Gilles de Gennes, Paris, France
- Sorbonne Université, F-75005, Paris, France
| | | | - Mathieu Deygas
- Institut Curie, UMR144, Paris, France
- Institut Pierre-Gilles de Gennes, Paris, France
| | - Dipti Rai
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Tonja Pavlovič
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Filipe Nunes Vicente
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| | - Matthieu Piel
- Institut Curie, UMR144, Paris, France
- Institut Pierre-Gilles de Gennes, Paris, France
| | - Grégory Giannone
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| | | | - Anna Akhmanova
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Laurent Blanchoin
- Univ. Paris, INSERM, CEA, UMRS1160, Institut de Recherche Saint Louis, CytoMorpho Lab, Hôpital Saint Louis, Paris, France.
- Univ. Grenoble-Alpes, CEA, CNRS, INRA, Interdisciplinary Research Institute of Grenoble, Laboratoire de Phyiologie Cellulaire & Végétale, CytoMorpho Lab, Grenoble, France.
| | - Manuel Théry
- Univ. Paris, INSERM, CEA, UMRS1160, Institut de Recherche Saint Louis, CytoMorpho Lab, Hôpital Saint Louis, Paris, France.
- Univ. Grenoble-Alpes, CEA, CNRS, INRA, Interdisciplinary Research Institute of Grenoble, Laboratoire de Phyiologie Cellulaire & Végétale, CytoMorpho Lab, Grenoble, France.
| |
Collapse
|
16
|
Prahl LS, Porter CM, Liu J, Viola JM, Hughes AJ. Independent control over cell patterning and adhesion on hydrogel substrates for tissue interface mechanobiology. iScience 2023; 26:106657. [PMID: 37168559 PMCID: PMC10164898 DOI: 10.1016/j.isci.2023.106657] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/27/2023] [Accepted: 04/06/2023] [Indexed: 05/13/2023] Open
Abstract
Tissue boundaries and interfaces are engines of morphogenesis in vivo. However, despite a wealth of micropatterning approaches available to control tissue size, shape, and mechanical environment in vitro, fine-scale spatial control of cell positioning within tissue constructs remains an engineering challenge. To address this, we augment DNA "velcro" technology for selective patterning of ssDNA-labeled cells on mechanically defined photoactive polyacrylamide hydrogels. Hydrogels bearing photopatterned single-stranded DNA (ssDNA) features for cell capture are then co-functionalized with extracellular matrix (ECM) proteins to support subsequent adhesion of patterned tissues. ECM protein co-functionalization does not alter ssDNA pattern fidelity, cell capture, or hydrogel elastic stiffness. This approach enables mechanobiology studies and measurements of signaling activity at dynamic cell interfaces with precise initial patterning. Combining DNA velcro patterning and ECM functionalization provides independent control of initial cell placement, adhesion, and mechanics, constituting a new tool for studying biological interfaces and for programming multicellular interactions in engineered tissues.
Collapse
Affiliation(s)
- Louis S. Prahl
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Catherine M. Porter
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jiageng Liu
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John M. Viola
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alex J. Hughes
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell & Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Corresponding author
| |
Collapse
|
17
|
Jain I, Rao M, Tran PT. Reliable and robust control of nucleus centering is contingent on nonequilibrium force patterns. iScience 2023; 26:106665. [PMID: 37182105 PMCID: PMC10173738 DOI: 10.1016/j.isci.2023.106665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 02/23/2023] [Accepted: 04/09/2023] [Indexed: 05/16/2023] Open
Abstract
Cell centers their division apparatus to ensure symmetric cell division, a challenging task when the governing dynamics is stochastic. Using fission yeast, we show that the patterning of nonequilibrium polymerization forces of microtubule (MT) bundles controls the precise localization of spindle pole body (SPB), and hence the division septum, at the onset of mitosis. We define two cellular objectives, reliability, the mean SPB position relative to the geometric center, and robustness, the variance of the SPB position, which are sensitive to genetic perturbations that change cell length, MT bundle number/orientation, and MT dynamics. We show that simultaneous control of reliability and robustness is required to minimize septum positioning error achieved by the wild type (WT). A stochastic model for the MT-based nucleus centering, with parameters measured directly or estimated using Bayesian inference, recapitulates the maximum fidelity of WT. Using this, we perform a sensitivity analysis of the parameters that control nuclear centering.
Collapse
Affiliation(s)
- Ishutesh Jain
- Institut Curie, PSL Universite, Sorbonne Universite, CNRS UMR 144, 75005 Paris, France
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences - TIFR, Bangalore 560065, India
| | - Madan Rao
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences - TIFR, Bangalore 560065, India
- Corresponding author
| | - Phong T. Tran
- Institut Curie, PSL Universite, Sorbonne Universite, CNRS UMR 144, 75005 Paris, France
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Corresponding author
| |
Collapse
|
18
|
Tagay Y, Kheirabadi S, Ataie Z, Singh RK, Prince O, Nguyen A, Zhovmer AS, Ma X, Sheikhi A, Tsygankov D, Tabdanov ED. Dynein-Powered Cell Locomotion Guides Metastasis of Breast Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.04.535605. [PMID: 37066378 PMCID: PMC10104034 DOI: 10.1101/2023.04.04.535605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Metastasis is a principal cause of death in cancer patients, which remains an unresolved fundamental and clinical problem. Conventionally, metastatic dissemination is linked to the actomyosin-driven cell locomotion. However, locomotion of cancer cells often does not strictly line up with the measured actomyosin forces. Here, we identify a complementary mechanism of metastatic locomotion powered by the dynein-generated forces. These forces that arise within a non-stretchable microtubule network drive persistent contact guidance of migrating cancer cells along the biomimetic collagen fibers. We also show that dynein-powered locomotion becomes indispensable during invasive 3D migration within a tissue-like luminal network between spatially confining hydrogel microspheres. Our results indicate that the complementary contractile system of dynein motors and microtubules is always necessary and in certain instances completely sufficient for dissemination of metastatic breast cancer cells. These findings advance fundamental understanding of cell locomotion mechanisms and expand the spectrum of clinical targets against metastasis.
Collapse
Affiliation(s)
- Yerbol Tagay
- Department of Pharmacology, Penn State College of Medicine, The Pennsylvania State University, Hershey, PA, 17033, USA
| | - Sina Kheirabadi
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Zaman Ataie
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Rakesh K. Singh
- Department of Obstetrics & Gynecology, University of Rochester Medical Center, Rochester, NY, USA
| | - Olivia Prince
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, 20903, USA
| | - Ashley Nguyen
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, 20903, USA
| | - Alexander S. Zhovmer
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, 20903, USA
| | - Xuefei Ma
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, 20903, USA
| | - Amir Sheikhi
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Denis Tsygankov
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Erdem D. Tabdanov
- Department of Pharmacology, Penn State College of Medicine, The Pennsylvania State University, Hershey, PA, 17033, USA
- Penn State Cancer Institute, Penn State College of Medicine, The Pennsylvania State University, Hershey, PA, 17033, USA
| |
Collapse
|
19
|
Cotner M, Meng S, Jost T, Gardner A, De Santiago C, Brock A. Integration of quantitative methods and mathematical approaches for the modeling of cancer cell proliferation dynamics. Am J Physiol Cell Physiol 2023; 324:C247-C262. [PMID: 36503241 PMCID: PMC9886359 DOI: 10.1152/ajpcell.00185.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022]
Abstract
Physiological processes rely on the control of cell proliferation, and the dysregulation of these processes underlies various pathological conditions, including cancer. Mathematical modeling can provide new insights into the complex regulation of cell proliferation dynamics. In this review, we first examine quantitative experimental approaches for measuring cell proliferation dynamics in vitro and compare the various types of data that can be obtained in these settings. We then explore the toolbox of common mathematical modeling frameworks that can describe cell behavior, dynamics, and interactions of proliferation. We discuss how these wet-laboratory studies may be integrated with different mathematical modeling approaches to aid the interpretation of the results and to enable the prediction of cell behaviors, specifically in the context of cancer.
Collapse
Affiliation(s)
- Michael Cotner
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Sarah Meng
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Tyler Jost
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Andrea Gardner
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Carolina De Santiago
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Amy Brock
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
20
|
Putra VDL, Kilian KA, Knothe Tate ML. Biomechanical, biophysical and biochemical modulators of cytoskeletal remodelling and emergent stem cell lineage commitment. Commun Biol 2023; 6:75. [PMID: 36658332 PMCID: PMC9852586 DOI: 10.1038/s42003-022-04320-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 11/30/2022] [Indexed: 01/20/2023] Open
Abstract
Across complex, multi-time and -length scale biological systems, redundancy confers robustness and resilience, enabling adaptation and increasing survival under dynamic environmental conditions; this review addresses ubiquitous effects of cytoskeletal remodelling, triggered by biomechanical, biophysical and biochemical cues, on stem cell mechanoadaptation and emergent lineage commitment. The cytoskeleton provides an adaptive structural scaffold to the cell, regulating the emergence of stem cell structure-function relationships during tissue neogenesis, both in prenatal development as well as postnatal healing. Identification and mapping of the mechanical cues conducive to cytoskeletal remodelling and cell adaptation may help to establish environmental contexts that can be used prospectively as translational design specifications to target tissue neogenesis for regenerative medicine. In this review, we summarize findings on cytoskeletal remodelling in the context of tissue neogenesis during early development and postnatal healing, and its relevance in guiding lineage commitment for targeted tissue regeneration. We highlight how cytoskeleton-targeting chemical agents modulate stem cell differentiation and govern responses to mechanical cues in stem cells' emerging form and function. We further review methods for spatiotemporal visualization and measurement of cytoskeletal remodelling, as well as its effects on the mechanical properties of cells, as a function of adaptation. Research in these areas may facilitate translation of stem cells' own healing potential and improve the design of materials, therapies, and devices for regenerative medicine.
Collapse
Affiliation(s)
- Vina D L Putra
- School of Chemistry and School of Materials Science & Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Kristopher A Kilian
- School of Chemistry and School of Materials Science & Engineering, University of New South Wales, Sydney, NSW, Australia.
| | - Melissa L Knothe Tate
- Blue Mountains World Interdisciplinary Innovation Institute (bmwi³), Blue Mountains, NSW, Australia.
| |
Collapse
|
21
|
Chen P, Levy DL. Regulation of organelle size and organization during development. Semin Cell Dev Biol 2023; 133:53-64. [PMID: 35148938 PMCID: PMC9357868 DOI: 10.1016/j.semcdb.2022.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/20/2022] [Accepted: 02/01/2022] [Indexed: 12/11/2022]
Abstract
During early embryogenesis, as cells divide in the developing embryo, the size of intracellular organelles generally decreases to scale with the decrease in overall cell size. Organelle size scaling is thought to be important to establish and maintain proper cellular function, and defective scaling may lead to impaired development and disease. However, how the cell regulates organelle size and organization are largely unanswered questions. In this review, we summarize the process of size scaling at both the cell and organelle levels and discuss recently discovered mechanisms that regulate this process during early embryogenesis. In addition, we describe how some recently developed techniques and Xenopus as an animal model can be used to investigate the underlying mechanisms of size regulation and to uncover the significance of proper organelle size scaling and organization.
Collapse
Affiliation(s)
- Pan Chen
- Institute of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Daniel L Levy
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA.
| |
Collapse
|
22
|
Litovka NI, Zhitnyak IY, Gloushankova NA. Epithelial–Mesenchymal Transition of Breast Cancer Cells Induced by Activation of the Transcription Factor Snail1. BIOCHEMISTRY (MOSCOW) 2023; 88:22-34. [PMID: 37068870 DOI: 10.1134/s0006297923010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Cancer cells use the program of epithelial-mesenchymal transition (EMT) for initiation of the invasion-metastasis cascade. Using confocal and video-microscopy, reorganization of the cytoskeleton was studied in the MCF-7 breast cancer cells undergoing Snail1-induced EMT. We used the line of MCF-7 cells stably expressing tetOff SNAI1 construct (MCF-7-SNAI1 cells). After tetracycline washout and Snail1 activation MCF-7-SNAI1 cells underwent EMT and acquired a migratory phenotype while retaining expression of E-cadherin. We identified five variants of the mesenchymal phenotype, differing in cell morphology and migration velocity. Migrating cells had high degree of plasticity, which allowed them to quickly change both the phenotype and migration velocity. The changes of the phenotype of MCF-7-SNAI1 cells are based on the Arp2/3-mediated branched actin network polymerization in lamellipodia, myosin-based contractility in the zone behind the nucleus, redistribution of adhesive proteins from cell-cell contacts to the leading edge, and reorganization of intermediate keratin filaments.
Collapse
Affiliation(s)
- Nikita I Litovka
- N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, 115478, Russia
| | - Irina Y Zhitnyak
- N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, 115478, Russia
| | - Natalya A Gloushankova
- N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Moscow, 115478, Russia.
| |
Collapse
|
23
|
Foteinopoulos P, Mulder BM. Microtubule organization and cell geometry. Phys Rev E 2022; 106:054408. [PMID: 36559407 DOI: 10.1103/physreve.106.054408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 10/11/2022] [Indexed: 06/17/2023]
Abstract
A characteristic feature of nondividing animal cells is the radial organization of microtubules (MTs), emanating from a single microtubule organizing center (MTOC). As generically these cells are not spherically symmetric, this raises the question of the influence of cell geometry on the orientational distribution of microtubules. We present a systematic study of this question in a simplified setting where MTs are nucleated from a single fixed MTOC in the center of an elliptical cell geometry. Within this context we introduce four models of increasing complexity, each one introducing additional mechanisms that govern the interaction of the MTs with the cell boundary. In order, we consider the cases: MTs that can bind to the boundary with a fixed mean residence time (M0), force-producing MTs that can slide on the boundary towards the cell poles (MS), MTs that interact with a generic polarity factor that is transported and deposited at the boundary, and which in turn stabilizes the MTs at the boundary (MP), and a final model in which both sliding and stabilization by polarity factors is taken into account (MSP). In the baseline model (M0), the exponential length distribution of MTs causes most of the interactions at the cell boundary to occur along the shorter transverse direction in the cell, leading to transverse biaxial order. MT sliding (MS) is able to reorient the main axis of this biaxial order along the longitudinal axis. The polarization mechanism introduced in MP and MSP overrules the geometric bias towards bipolar order observed in M0 and MS, and allows the establishment of unipolar order either along the short (MP) or the long cell axis (MSP). The behavior of the latter two models can be qualitatively reproduced by a very simple toy model with discrete MT orientations.
Collapse
Affiliation(s)
| | - Bela M Mulder
- Institute AMOLF, Science Park 104, 1098XG Amsterdam, the Netherlands
| |
Collapse
|
24
|
Xu K, Wang C, Keinänen K, Li H, Cai C. Mitotic spindle disassembly in human cells relies on CRIPT having hierarchical redox signals. J Cell Sci 2022; 135:276793. [PMID: 36148798 DOI: 10.1242/jcs.259657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 08/01/2022] [Indexed: 11/20/2022] Open
Abstract
Swift and complete spindle disassembly in late mitosis is essential for cell survival, yet how it happens is largely unknown in mammalian cells. Here we used real-time live cell microscopy and biochemical assays to show that the primordial dwarfism (PD)-related cysteine-rich protein CRIPT dictates the spindle disassembly in a redox-dependent manner in human cells. This previously reported cytoplasmic protein was found to have a confined nuclear localization with a nucleolar concentration during interphase but was distributed to spindles and underwent redox modifications to form disulfide bonds in CXXC pairs during mitosis. Then, it directly interacted with, and might transfer a redox response to, tubulin subunits via a putative redox exchange among cysteine residues to induce microtubule depolymerization. Expression of CRIPT proteins with mutations of these cysteine residues blocked spindle disassembly, generating two cell types with long-lasting metaphase spindles or spindle remnants. Live-cell recordings of a disease-relevant mutant (CRIPTC3Y) revealed that microtubule depolymerization at spindle ends during anaphase and the entire spindle dissolution during telophase might share a common CRIPT-bearing redox-controlled mechanism.
Collapse
Affiliation(s)
- Kehan Xu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Chunxue Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Kari Keinänen
- Research Program in Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki 00014, Finland
| | - Hong Li
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China.,Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Chunlin Cai
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China.,Anhui Duoneng Biotechnology Co., Ltd., Hefei, Anhui 230088, China
| |
Collapse
|
25
|
Infante E, Etienne-Manneville S. Intermediate filaments: Integration of cell mechanical properties during migration. Front Cell Dev Biol 2022; 10:951816. [PMID: 35990612 PMCID: PMC9389290 DOI: 10.3389/fcell.2022.951816] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/07/2022] [Indexed: 11/22/2022] Open
Abstract
Cell migration is a vital and dynamic process required for the development of multicellular organisms and for immune system responses, tissue renewal and wound healing in adults. It also contributes to a variety of human diseases such as cancers, autoimmune diseases, chronic inflammation and fibrosis. The cytoskeleton, which includes actin microfilaments, microtubules, and intermediate filaments (IFs), is responsible for the maintenance of animal cell shape and structural integrity. Each cytoskeletal network contributes its unique properties to dynamic cell behaviour, such as cell polarization, membrane protrusion, cell adhesion and contraction. Hence, cell migration requires the dynamic orchestration of all cytoskeleton components. Among these, IFs have emerged as a molecular scaffold with unique mechanical features and a key player in the cell resilience to mechanical stresses during migration through complex 3D environment. Moreover, accumulating evidence illustrates the participation of IFs in signalling cascades and cytoskeletal crosstalk. Teaming up with actin and microtubules, IFs contribute to the active generation of forces required for cell adhesion and mesenchymal migration and invasion. Here we summarize and discuss how IFs integrate mechanical properties and signalling functions to control cell migration in a wide spectrum of physiological and pathological situations.
Collapse
Affiliation(s)
- Elvira Infante
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691 CNRS, Université Paris-Cité, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Sandrine Etienne-Manneville
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691 CNRS, Université Paris-Cité, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| |
Collapse
|
26
|
Yamamoto S, Gaillard J, Vianay B, Guerin C, Orhant-Prioux M, Blanchoin L, Théry M. Actin network architecture can ensure robust centering or sensitive decentering of the centrosome. EMBO J 2022; 41:e111631. [PMID: 35916262 PMCID: PMC9574749 DOI: 10.15252/embj.2022111631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/24/2022] [Accepted: 07/06/2022] [Indexed: 01/17/2023] Open
Abstract
The orientation of cell polarity depends on the position of the centrosome, the main microtubule-organizing center (MTOC). Microtubules (MTs) transmit pushing forces to the MTOC as they grow against the cell periphery. How the actin network regulates these forces remains unclear. Here, in a cell-free assay, we used purified proteins to reconstitute the interaction of a microtubule aster with actin networks of various architectures in cell-sized microwells. In the absence of actin filaments, MTOC positioning was highly sensitive to variations in microtubule length. The presence of a bulk actin network limited microtubule displacement, and MTOCs were held in place. In contrast, the assembly of a branched actin network along the well edges centered the MTOCs by maintaining an isotropic balance of pushing forces. An anisotropic peripheral actin network caused the MTOC to decenter by focusing the pushing forces. Overall, our results show that actin networks can limit the sensitivity of MTOC positioning to microtubule length and enforce robust MTOC centering or decentering depending on the isotropy of its architecture.
Collapse
Affiliation(s)
- Shohei Yamamoto
- Interdisciplinary Research Institute of Grenoble, UMR5168-LPCV, CytoMorpho Lab, University of Grenoble-Alpes, CEA, CNRS, INRA, Grenoble, France
| | - Jérémie Gaillard
- Interdisciplinary Research Institute of Grenoble, UMR5168-LPCV, CytoMorpho Lab, University of Grenoble-Alpes, CEA, CNRS, INRA, Grenoble, France
| | - Benoit Vianay
- Institut de Recherche Saint Louis, UMRS1160-HIPI, CytoMorpho Lab, University of Paris, CEA, INSERM, Paris, France
| | - Christophe Guerin
- Interdisciplinary Research Institute of Grenoble, UMR5168-LPCV, CytoMorpho Lab, University of Grenoble-Alpes, CEA, CNRS, INRA, Grenoble, France
| | - Magali Orhant-Prioux
- Interdisciplinary Research Institute of Grenoble, UMR5168-LPCV, CytoMorpho Lab, University of Grenoble-Alpes, CEA, CNRS, INRA, Grenoble, France
| | - Laurent Blanchoin
- Interdisciplinary Research Institute of Grenoble, UMR5168-LPCV, CytoMorpho Lab, University of Grenoble-Alpes, CEA, CNRS, INRA, Grenoble, France.,Institut de Recherche Saint Louis, UMRS1160-HIPI, CytoMorpho Lab, University of Paris, CEA, INSERM, Paris, France
| | - Manuel Théry
- Interdisciplinary Research Institute of Grenoble, UMR5168-LPCV, CytoMorpho Lab, University of Grenoble-Alpes, CEA, CNRS, INRA, Grenoble, France.,Institut de Recherche Saint Louis, UMRS1160-HIPI, CytoMorpho Lab, University of Paris, CEA, INSERM, Paris, France
| |
Collapse
|
27
|
Abstract
Primary cilia play a key role in the ability of cells to respond to extracellular stimuli, such as signaling molecules and environmental cues. These sensory organelles are crucial to the development of many organ systems, and defects in primary ciliogenesis lead to multisystemic genetic disorders, known as ciliopathies. Here, we review recent advances in the understanding of several key aspects of the regulation of ciliogenesis. Primary ciliogenesis is thought to take different pathways depending on cell type, and some recent studies shed new light on the cell-type-specific mechanisms regulating ciliogenesis at the apical surface in polarized epithelial cells, which are particularly relevant for many ciliopathies. Furthermore, recent findings have demonstrated the importance of actin cytoskeleton dynamics in positively and negatively regulating multiple stages of ciliogenesis, including the vesicular trafficking of ciliary components and the positioning and docking of the basal body. Finally, studies on the formation of motile cilia in multiciliated epithelial cells have revealed requirements for actin remodeling in this process too, as well as showing evidence of an additional alternative ciliogenesis pathway.
Collapse
Affiliation(s)
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
28
|
Akhmanova A, Kapitein LC. Mechanisms of microtubule organization in differentiated animal cells. Nat Rev Mol Cell Biol 2022; 23:541-558. [PMID: 35383336 DOI: 10.1038/s41580-022-00473-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2022] [Indexed: 02/08/2023]
Abstract
Microtubules are polarized cytoskeletal filaments that serve as tracks for intracellular transport and form a scaffold that positions organelles and other cellular components and modulates cell shape and mechanics. In animal cells, the geometry, density and directionality of microtubule networks are major determinants of cellular architecture, polarity and proliferation. In dividing cells, microtubules form bipolar spindles that pull chromosomes apart, whereas in interphase cells, microtubules are organized in a cell type-specific fashion, which strongly correlates with cell physiology. In motile cells, such as fibroblasts and immune cells, microtubules are organized as radial asters, whereas in immotile epithelial and neuronal cells and in muscles, microtubules form parallel or antiparallel arrays and cortical meshworks. Here, we review recent work addressing how the formation of such microtubule networks is driven by the plethora of microtubule regulatory proteins. These include proteins that nucleate or anchor microtubule ends at different cellular structures and those that sever or move microtubules, as well as regulators of microtubule elongation, stability, bundling or modifications. The emerging picture, although still very incomplete, shows a remarkable diversity of cell-specific mechanisms that employ conserved building blocks to adjust microtubule organization in order to facilitate different cellular functions.
Collapse
Affiliation(s)
- Anna Akhmanova
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands.
| | - Lukas C Kapitein
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
29
|
Luciano M, Versaevel M, Vercruysse E, Procès A, Kalukula Y, Remson A, Deridoux A, Gabriele S. Appreciating the role of cell shape changes in the mechanobiology of epithelial tissues. BIOPHYSICS REVIEWS 2022; 3:011305. [PMID: 38505223 PMCID: PMC10903419 DOI: 10.1063/5.0074317] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/23/2022] [Indexed: 03/21/2024]
Abstract
The wide range of epithelial cell shapes reveals the complexity and diversity of the intracellular mechanisms that serve to construct their morphology and regulate their functions. Using mechanosensitive steps, epithelial cells can sense a variety of different mechanochemical stimuli and adapt their behavior by reshaping their morphology. These changes of cell shape rely on a structural reorganization in space and time that generates modifications of the tensional state and activates biochemical cascades. Recent studies have started to unveil how the cell shape maintenance is involved in mechanical homeostatic tasks to sustain epithelial tissue folding, identity, and self-renewal. Here, we review relevant works that integrated mechanobiology to elucidate some of the core principles of how cell shape may be conveyed into spatial information to guide collective processes such as epithelial morphogenesis. Among many other parameters, we show that the regulation of the cell shape can be understood as the result of the interplay between two counteracting mechanisms: actomyosin contractility and intercellular adhesions, and that both do not act independently but are functionally integrated to operate on molecular, cellular, and tissue scales. We highlight the role of cadherin-based adhesions in force-sensing and mechanotransduction, and we report recent developments that exploit physics of liquid crystals to connect cell shape changes to orientational order in cell aggregates. Finally, we emphasize that the further intermingling of different disciplines to develop new mechanobiology assays will lead the way toward a unified picture of the contribution of cell shape to the pathophysiological behavior of epithelial tissues.
Collapse
Affiliation(s)
- Marine Luciano
- University of Mons, Interfaces and Complex Fluids Laboratory, Mechanobiology and Biomaterials Group, Research Institute for Biosciences, CIRMAP, 20 Place du Parc, B-7000 Mons, Belgium
| | - Marie Versaevel
- University of Mons, Interfaces and Complex Fluids Laboratory, Mechanobiology and Biomaterials Group, Research Institute for Biosciences, CIRMAP, 20 Place du Parc, B-7000 Mons, Belgium
| | - Eléonore Vercruysse
- University of Mons, Interfaces and Complex Fluids Laboratory, Mechanobiology and Biomaterials Group, Research Institute for Biosciences, CIRMAP, 20 Place du Parc, B-7000 Mons, Belgium
| | - Anthony Procès
- University of Mons, Interfaces and Complex Fluids Laboratory, Mechanobiology and Biomaterials Group, Research Institute for Biosciences, CIRMAP, 20 Place du Parc, B-7000 Mons, Belgium
| | - Yohalie Kalukula
- University of Mons, Interfaces and Complex Fluids Laboratory, Mechanobiology and Biomaterials Group, Research Institute for Biosciences, CIRMAP, 20 Place du Parc, B-7000 Mons, Belgium
| | - Alexandre Remson
- University of Mons, Interfaces and Complex Fluids Laboratory, Mechanobiology and Biomaterials Group, Research Institute for Biosciences, CIRMAP, 20 Place du Parc, B-7000 Mons, Belgium
| | - Amandine Deridoux
- University of Mons, Interfaces and Complex Fluids Laboratory, Mechanobiology and Biomaterials Group, Research Institute for Biosciences, CIRMAP, 20 Place du Parc, B-7000 Mons, Belgium
| | - Sylvain Gabriele
- University of Mons, Interfaces and Complex Fluids Laboratory, Mechanobiology and Biomaterials Group, Research Institute for Biosciences, CIRMAP, 20 Place du Parc, B-7000 Mons, Belgium
| |
Collapse
|
30
|
Rapid Prototyping of Organ-on-a-Chip Devices Using Maskless Photolithography. MICROMACHINES 2021; 13:mi13010049. [PMID: 35056214 PMCID: PMC8778126 DOI: 10.3390/mi13010049] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 02/03/2023]
Abstract
Organ-on-a-chip (OoC) and microfluidic devices are conventionally produced using microfabrication procedures that require cleanrooms, silicon wafers, and photomasks. The prototyping stage often requires multiple iterations of design steps. A simplified prototyping process could therefore offer major advantages. Here, we describe a rapid and cleanroom-free microfabrication method using maskless photolithography. The approach utilizes a commercial digital micromirror device (DMD)-based setup using 375 nm UV light for backside exposure of an epoxy-based negative photoresist (SU-8) on glass coverslips. We show that microstructures of various geometries and dimensions, microgrooves, and microchannels of different heights can be fabricated. New SU-8 molds and soft lithography-based polydimethylsiloxane (PDMS) chips can thus be produced within hours. We further show that backside UV exposure and grayscale photolithography allow structures of different heights or structures with height gradients to be developed using a single-step fabrication process. Using this approach: (1) digital photomasks can be designed, projected, and quickly adjusted if needed; and (2) SU-8 molds can be fabricated without cleanroom availability, which in turn (3) reduces microfabrication time and costs and (4) expedites prototyping of new OoC devices.
Collapse
|
31
|
Zhovmer AS, Manning A, Smith C, Hayes JB, Burnette DT, Wang J, Cartagena-Rivera AX, Dokholyan NV, Singh RK, Tabdanov ED. Mechanical Counterbalance of Kinesin and Dynein Motors in a Microtubular Network Regulates Cell Mechanics, 3D Architecture, and Mechanosensing. ACS NANO 2021; 15:17528-17548. [PMID: 34677937 PMCID: PMC9291236 DOI: 10.1021/acsnano.1c04435] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Microtubules (MTs) and MT motor proteins form active 3D networks made of unstretchable cables with rod-like bending mechanics that provide cells with a dynamically changing structural scaffold. In this study, we report an antagonistic mechanical balance within the dynein-kinesin microtubular motor system. Dynein activity drives the microtubular network inward compaction, while isolated activity of kinesins bundles and expands MTs into giant circular bands that deform the cell cortex into discoids. Furthermore, we show that dyneins recruit MTs to sites of cell adhesion, increasing the topographic contact guidance of cells, while kinesins antagonize it via retraction of MTs from sites of cell adhesion. Actin-to-microtubule translocation of septin-9 enhances kinesin-MT interactions, outbalances the activity of kinesins over that of dyneins, and induces the discoid architecture of cells. These orthogonal mechanisms of MT network reorganization highlight the existence of an intricate mechanical balance between motor activities of kinesins and dyneins that controls cell 3D architecture, mechanics, and cell-microenvironment interactions.
Collapse
Affiliation(s)
- Alexander S. Zhovmer
- Center
for Biologics Evaluation and Research, U.S.
Food and Drug Administration, Silver Spring, Maryland 20903, United States
| | - Alexis Manning
- Center
for Biologics Evaluation and Research, U.S.
Food and Drug Administration, Silver Spring, Maryland 20903, United States
| | - Chynna Smith
- Section
on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - James B. Hayes
- Department
of Cell and Developmental Biology, Vanderbilt Medical Center, University of Vanderbilt, Nashville, Tennessee 37232, United States
| | - Dylan T. Burnette
- Department
of Cell and Developmental Biology, Vanderbilt Medical Center, University of Vanderbilt, Nashville, Tennessee 37232, United States
| | - Jian Wang
- Department
of Pharmacology, Penn State College of Medicine, Pennsylvania State University, Hummelstown, Pennsylvania 17036, United States
| | - Alexander X. Cartagena-Rivera
- Section
on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Nikolay V. Dokholyan
- Department
of Pharmacology, Penn State College of Medicine, Pennsylvania State University, Hummelstown, Pennsylvania 17036, United States
- Department
of Biochemistry & Molecular Biology, Penn State College of Medicine, Pennsylvania State University, Hershey, Pennsylvania 17033, United States
| | - Rakesh K. Singh
- Department
of Obstetrics and Gynecology, University
of Rochester Medical Center, Rochester, New York 14620, United States
| | - Erdem D. Tabdanov
- Department
of Pharmacology, Penn State College of Medicine, Pennsylvania State University, Hummelstown, Pennsylvania 17036, United States
| |
Collapse
|
32
|
Vasquez-Limeta A, Loncarek J. Human centrosome organization and function in interphase and mitosis. Semin Cell Dev Biol 2021; 117:30-41. [PMID: 33836946 DOI: 10.1016/j.semcdb.2021.03.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 01/15/2023]
Abstract
Centrosomes were first described by Edouard Van Beneden and named and linked to chromosome segregation by Theodor Boveri around 1870. In the 1960-1980s, electron microscopy studies have revealed the remarkable ultrastructure of a centriole -- a nine-fold symmetrical microtubular assembly that resides within a centrosome and organizes it. Less than two decades ago, proteomics and genomic screens conducted in multiple species identified hundreds of centriole and centrosome core proteins and revealed the evolutionarily conserved nature of the centriole assembly pathway. And now, super resolution microscopy approaches and improvements in cryo-tomography are bringing an unparalleled nanoscale-detailed picture of the centriole and centrosome architecture. In this chapter, we summarize the current knowledge about the architecture of human centrioles. We discuss the structured organization of centrosome components in interphase, focusing on localization/function relationship. We discuss the process of centrosome maturation and mitotic spindle pole assembly in centriolar and acentriolar cells, emphasizing recent literature.
Collapse
Affiliation(s)
| | - Jadranka Loncarek
- Laboratory of Protein Dynamics and Signaling, NIH/NCI, Frederick 21702, MD, USA.
| |
Collapse
|
33
|
Schwarz US. Cell biology: Centrosomes in inner space. Curr Biol 2021; 31:R301-R303. [PMID: 33756145 DOI: 10.1016/j.cub.2021.01.085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Centrosome positioning is essential for many processes in animal cells, in particular during development and migration. A new study using quantitative analysis of enucleated cells plated on adhesive micropatterns reveals that microtubules position the centrosome in the geometric center of the intracellular space defined by the actin cytoskeleton.
Collapse
Affiliation(s)
- Ulrich S Schwarz
- Institute for Theoretical Physics and BioQuant, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|