1
|
Backhouse F, Welbergen JA, Robinson BW, Dalziell AH. Performative Manipulation of the Environment by Displaying Albert's Lyrebirds. Am Nat 2024; 204:181-190. [PMID: 39008842 DOI: 10.1086/730523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
AbstractWhere dramatic sexual displays are involved in attracting a mate, individuals can enhance their performances by manipulating their physical environment. Typically, individuals alter their environment either in preparation for a performance by creating a "stage" or during the display itself by using discrete objects as "props." We examined an unusual case of performative manipulation of an entire stage by male Albert's lyrebirds (Menura alberti) during their complex song and dance displays. We found that males from throughout the species' range shake the entangled forest vegetation of their display platforms, creating a highly conspicuous and stereotypical movement external to their bodies. This "stage shaking" is performed in two different rhythms, with the second rhythm an isochronous beat that matches the beat of the coinciding vocalizations. Our results provide evidence that stage shaking is an integral, and thus likely functional, component of male Albert's lyrebird sexual displays and so highlight an intriguing but poorly understood facet of complex communication.
Collapse
|
2
|
De Gregorio C, Maiolini M, Raimondi T, Carugati F, Miaretsoa L, Valente D, Torti V, Giacoma C, Ravignani A, Gamba M. Isochrony as ancestral condition to call and song in a primate. Ann N Y Acad Sci 2024; 1537:41-50. [PMID: 38925552 DOI: 10.1111/nyas.15151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Animal songs differ from calls in function and structure, and have comparative and translational value, showing similarities to human music. Rhythm in music is often distributed in quantized classes of intervals known as rhythmic categories. These classes have been found in the songs of a few nonhuman species but never in their calls. Are rhythmic categories song-specific, as in human music, or can they transcend the song-call boundary? We analyze the vocal displays of one of the few mammals producing both songs and call sequences: Indri indri. We test whether rhythmic categories (a) are conserved across songs produced in different contexts, (b) exist in call sequences, and (c) differ between songs and call sequences. We show that rhythmic categories occur across vocal displays. Vocalization type and function modulate deployment of categories. We find isochrony (1:1 ratio, like the rhythm of a ticking clock) in all song types, but only advertisement songs show three rhythmic categories (1:1, 1:2, 2:1 ratios). Like songs, some call types are also isochronous. Isochrony is the backbone of most indri vocalizations, unlike human speech, where it is rare. In indri, isochrony underlies both songs and hierarchy-less call sequences and might be ancestral to both.
Collapse
Affiliation(s)
- Chiara De Gregorio
- Department of Life Sciences and Systems Biology, University of Torino, Turin, Italy
- Department of Psychology, University of Warwick, Coventry, UK
| | - Marco Maiolini
- Department of Life Sciences and Systems Biology, University of Torino, Turin, Italy
| | - Teresa Raimondi
- Department of Life Sciences and Systems Biology, University of Torino, Turin, Italy
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Filippo Carugati
- Department of Life Sciences and Systems Biology, University of Torino, Turin, Italy
| | - Longondraza Miaretsoa
- Groupe d'étude et de recherche sur les primates de Madagascar (GERP), Antananarivo, Madagascar
| | - Daria Valente
- Department of Life Sciences and Systems Biology, University of Torino, Turin, Italy
- Parco Natura Viva Garda Zoological Park (PNV), Verona, Italy
| | - Valeria Torti
- Department of Life Sciences and Systems Biology, University of Torino, Turin, Italy
| | - Cristina Giacoma
- Department of Life Sciences and Systems Biology, University of Torino, Turin, Italy
| | - Andrea Ravignani
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
- Comparative Bioacoustics Group, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus, Aalborg, Denmark
| | - Marco Gamba
- Department of Life Sciences and Systems Biology, University of Torino, Turin, Italy
| |
Collapse
|
3
|
Goodale E, Magrath RD. Species diversity and interspecific information flow. Biol Rev Camb Philos Soc 2024; 99:999-1014. [PMID: 38279871 DOI: 10.1111/brv.13055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 01/29/2024]
Abstract
Interspecific information flow is known to affect individual fitness, population dynamics and community assembly, but there has been less study of how species diversity affects information flow and thereby ecosystem functioning and services. We address this question by first examining differences among species in the sensitivity, accuracy, transmissibility, detectability and value of the cues and signals they produce, and in how they receive, store and use information derived from heterospecifics. We then review how interspecific information flow occurs in communities, involving a diversity of species and sensory modes, and how this flow can affect ecosystem-level functions, such as decomposition, seed dispersal or algae removal on coral reefs. We highlight evidence that some keystone species are particularly critical as a source of information used by eavesdroppers, and so have a disproportionate effect on information flow. Such keystone species include community informants producing signals, particularly about predation risk, that influence other species' landscapes of fear, and aggregation initiators creating cues or signals about resources. We suggest that the presence of keystone species means that there will likely be a positive relationship in many communities between species diversity and information through a 'sampling effect', in which larger pools of species are more likely to include the keystone species by chance. We then consider whether the number and relative abundance of species, irrespective of the presence of keystone species, matter to interspecific information flow; on this issue, the theory is less developed, and the evidence scant and indirect. Higher diversity could increase the quantity or quality of information that is used by eavesdroppers because redundancy increases the reliability of information or because the species provide complementary information. Alternatively, there could be a lack of a relationship between species diversity and information if there is widespread information parasitism where users are not sources, or if information sourced from heterospecifics is of lower value than that gained personally or sourced from conspecifics. Recent research suggests that species diversity does have information-modulated community and ecosystem consequences, especially in birds, such as the diversity of species at feeders increasing resource exploitation, or the number of imitated species increasing responses to vocal mimics. A first step for future research includes comprehensive observations of information flow among different taxa and habitats. Then studies should investigate whether species diversity influences the cumulative quality or quantity of information at the community level, and consequently ecosystem-level processes. An applied objective is to conserve species in part for their value as sources of information for other species, including for humans.
Collapse
Affiliation(s)
- Eben Goodale
- Department of Health and Environmental Science, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Robert D Magrath
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, ACT, 2600, Australia
| |
Collapse
|
4
|
Fissette SD, Buchinger TJ, Tamrakar S, Scott AM, Li W. Sensory trap leads to reliable communication without a shift in nonsexual responses to the model cue. Behav Ecol 2024; 35:arae006. [PMID: 38379814 PMCID: PMC10878365 DOI: 10.1093/beheco/arae006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/08/2023] [Accepted: 01/31/2024] [Indexed: 02/22/2024] Open
Abstract
The sensory trap model of signal evolution suggests that males manipulate females into mating using traits that mimic cues used in a nonsexual context. Despite much empirical support for sensory traps, little is known about how females evolve in response to these deceptive signals. Female sea lamprey (Petromyzon marinus) evolved to discriminate a male sex pheromone from the larval odor it mimics and orient only toward males during mate search. Larvae and males release the attractant 3-keto petromyzonol sulfate (3kPZS), but spawning females avoid larval odor using the pheromone antagonist, petromyzonol sulfate (PZS), which larvae but not males, release at higher rates than 3kPZS. We tested the hypothesis that migratory females also discriminate between larval odor and the male pheromone and orient only to larval odor during anadromous migration, when they navigate within spawning streams using larval odor before they begin mate search. In-stream behavioral assays revealed that, unlike spawning females, migratory females do not discriminate between mixtures of 3kPZS and PZS applied at ratios typical of larval versus male odorants. Our results indicate females discriminate between the sexual and nonsexual sources of 3kPZS during but not outside of mating and show sensory traps can lead to reliable sexual communication without females shifting their responses in the original context.
Collapse
Affiliation(s)
- Skye D Fissette
- Department of Fisheries and Wildlife, Michigan State University, 13 Natural Resources Building, 480 Wilson Rd., East Lansing MI 48824, USA
| | - Tyler J Buchinger
- Department of Fisheries and Wildlife, Michigan State University, 13 Natural Resources Building, 480 Wilson Rd., East Lansing MI 48824, USA
| | - Sonam Tamrakar
- Department of Fisheries and Wildlife, Michigan State University, 13 Natural Resources Building, 480 Wilson Rd., East Lansing MI 48824, USA
| | - Anne M Scott
- Department of Fisheries and Wildlife, Michigan State University, 13 Natural Resources Building, 480 Wilson Rd., East Lansing MI 48824, USA
| | - Weiming Li
- Department of Fisheries and Wildlife, Michigan State University, 13 Natural Resources Building, 480 Wilson Rd., East Lansing MI 48824, USA
| |
Collapse
|
5
|
Selective alarm call mimicry in the sexual display of the male superb lyrebird (Menura novaehollandiae). Evol Ecol 2022. [DOI: 10.1007/s10682-022-10200-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractDespite much research on mimicry, little is known about the ecology of dynamic mimetic signals involving mimicry of multiple species. Some of the most conspicuous examples of phenotypically plastic mimicry are produced by oscine passerines, where vocal production learning enables some species to mimic multiple models and flexibly adjust what they mimic and when. While singing from a perch, male superb lyrebirds (Menura novaehollandiae) accurately imitate multiple songs and calls of over 20 species of bird. However, at key moments within their multimodal displays performed on display arenas on the forest floor, males mimic a small number of mobbing-alarm calls creating the acoustic illusion of a mixed-species mobbing flock (‘D-song’). Using observations from camera footage and a field-based playback experiment, we tested six hypotheses for alarm call model selection within D-song. Mimicked species were remarkably invariant, with 79% of D-song made up of imitations of just three different bird species. Males did not mimic the most common species in their general environment, but neither did they mimic rare species. Instead, males imitated the mobbing-alarm calls of heterospecific birds that foraged on or near the forest floor. Indeed, males primarily mimicked the alarm calls of heterospecific species that foraged alongside lyrebirds and were likely to appear together in experimentally-induced, terrestrial mobbing flocks. These findings support the hypothesis that males mimic a cue of a terrestrial predatory threat to lyrebirds, most likely to exploit the antipredator behaviour of female lyrebirds. Our study illustrates the importance of investigating the drivers of model selection in dynamic multi-model mimicry.
Collapse
|
6
|
Male superb lyrebirds mimic functionally distinct heterospecific vocalizations during different modes of sexual display. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
7
|
Peters RA, De Jong J, Ramos JA. Movement-based signalling by four species of dragon lizard (family Agamidae) from the Kimberley region of Western Australia. AUST J ZOOL 2022. [DOI: 10.1071/zo21047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Communication signals underpin the social lives of animals, from species recognition to mate selection and territory defense. Animal signals are diverse in structure between and within species, with the diversity reflecting interacting factors of shared evolutionary history, constraints imposed on senders and receivers and the ecological context in which signalling takes place. The dragon lizards of Australia (family Agamidae) are known for their movement-based visual displays and are useful models for how ecology influences behaviour. However, we know little about the communication strategies of many species. Our aim here was to provide new knowledge on some of these species, focusing on the north-west of Western Australia. We filmed within-species pairwise interactions of Diporiphora superba, D. bennetti, D. sobria and Ctenophorus isolepis isolepis. We describe and quantify for the first time push-up displays by D. superba and C. isolepis isolepis and tail waving displays of D. bennetti. Only D. sobria did not generate movement-based visual signals. We have confirmed that more species engage in such behaviour than previously reported, but further work is required to document the full repertoire of these species. The implications of our work are discussed in the context of signal structure, function and environmental context.
Collapse
|
8
|
Singh UA, Iyengar S. The Role of the Endogenous Opioid System in the Vocal Behavior of Songbirds and Its Possible Role in Vocal Learning. Front Physiol 2022; 13:823152. [PMID: 35273519 PMCID: PMC8902293 DOI: 10.3389/fphys.2022.823152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/31/2022] [Indexed: 12/04/2022] Open
Abstract
The opioid system in the brain is responsible for processing affective states such as pain, pleasure, and reward. It consists of three main receptors, mu- (μ-ORs), delta- (δ-ORs), and kappa- (κ-ORs), and their ligands – the endogenous opioid peptides. Despite their involvement in the reward pathway, and a signaling mechanism operating in synergy with the dopaminergic system, fewer reports focus on the role of these receptors in higher cognitive processes. Whereas research on opioids is predominated by studies on their addictive properties and role in pain pathways, recent studies suggest that these receptors may be involved in learning. Rodents deficient in δ-ORs were poor at recognizing the location of novel objects in their surroundings. Furthermore, in chicken, learning to avoid beads coated with a bitter chemical from those without the coating was modulated by δ-ORs. Similarly, μ-ORs facilitate long term potentiation in hippocampal CA3 neurons in mammals, thereby having a positive impact on spatial learning. Whereas these studies have explored the role of opioid receptors on learning using reward/punishment-based paradigms, the role of these receptors in natural learning processes, such as vocal learning, are yet unexplored. In this review, we explore studies that have established the expression pattern of these receptors in different brain regions of birds, with an emphasis on songbirds which are model systems for vocal learning. We also review the role of opioid receptors in modulating the cognitive processes associated with vocalizations in birds. Finally, we discuss the role of these receptors in regulating the motivation to vocalize, and a possible role in modulating vocal learning.
Collapse
|
9
|
Backhouse F, Dalziell AH, Magrath RD, Welbergen JA. Higher-order sequences of vocal mimicry performed by male Albert's lyrebirds are socially transmitted and enhance acoustic contrast. Proc Biol Sci 2022; 289:20212498. [PMID: 35259987 PMCID: PMC8905160 DOI: 10.1098/rspb.2021.2498] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Most studies of acoustic communication focus on short units of vocalization such as songs, yet these units are often hierarchically organized into higher-order sequences and, outside human language, little is known about the drivers of sequence structure. Here, we investigate the organization, transmission and function of vocal sequences sung by male Albert's lyrebirds (Menura alberti), a species renowned for vocal imitations of other species. We quantified the organization of mimetic units into sequences, and examined the extent to which these sequences are repeated within and between individuals and shared among populations. We found that individual males organized their mimetic units into stereotyped sequences. Sequence structures were shared within and to a lesser extent among populations, implying that sequences were socially transmitted. Across the entire species range, mimetic units were sung with immediate variety and a high acoustic contrast between consecutive units, suggesting that sequence structure is a means to enhance receiver perceptions of repertoire complexity. Our results provide evidence that higher-order sequences of vocalizations can be socially transmitted, and that the order of vocal units can be functionally significant. We conclude that, to fully understand vocal behaviours, we must study both the individual vocal units and their higher-order temporal organization.
Collapse
Affiliation(s)
- Fiona Backhouse
- The Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| | - Anastasia H Dalziell
- The Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia.,Centre for Sustainable Ecosystem Solutions, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, Australia.,Fuller Evolutionary Biology Program, Cornell Lab of Ornithology, Cornell University, Ithaca, NY, USA
| | - Robert D Magrath
- Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Justin A Welbergen
- The Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| |
Collapse
|
10
|
Riebel K. Animal communication: Lyrebirds 'cry wolf' during mating. Curr Biol 2021; 31:R798-R800. [PMID: 34157266 DOI: 10.1016/j.cub.2021.04.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
During courtship, male lyrebirds create acoustic illusions of a flock of birds fending off a predator. These realistic illusions fool the imitated species to engage in mobbing, but intriguingly lyrebirds produce them only preceding or during copulation.
Collapse
Affiliation(s)
- Katharina Riebel
- Institute of Biology, Leiden University, Leiden, The Netherlands.
| |
Collapse
|