1
|
Eaton KM, Krabbenhoft TJ, Backenstose NJC, Bernal MA. The chromosome-scale reference genome for the pinfish (Lagodon rhomboides) provides insights into their evolutionary and demographic history. G3 (BETHESDA, MD.) 2024; 14:jkae096. [PMID: 38739549 PMCID: PMC11228864 DOI: 10.1093/g3journal/jkae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 03/18/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024]
Abstract
The pinfish (Lagodon rhomboides) is an ecologically, economically, and culturally relevant member of the family Sparidae, playing crucial roles in the marine food webs of the western Atlantic Ocean and Gulf of Mexico. Despite their high abundance and ecological importance, there is a scarcity of genomic resources for this species. We assembled and annotated a chromosome-scale genome for the pinfish, resulting in a highly contiguous 785 Mb assembly of 24 scaffolded chromosomes. The high-quality assembly contains 98.9% complete BUSCOs and shows strong synteny to other chromosome-scale genomes of fish in the family Sparidae, with a limited number of large-scale genomic rearrangements. Leveraging this new genomic resource, we found evidence of significant expansions of dietary gene families over the evolutionary history of the pinfish, which may be associated with an ontogenetic shift from carnivory to herbivory seen in this species. Estimates of historical patterns of population demography using this new reference genome identified several periods of population growth and contraction which were associated with ancient climatic shifts and sea level changes. This genome serves as a valuable reference for future studies of population genomics and differentiation and provides a much-needed genomic resource for this western Atlantic sparid.
Collapse
Affiliation(s)
- Katherine M Eaton
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Trevor J Krabbenhoft
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA
- Research and Education in Energy, Environment, and Water (RENEW) Institute, University at Buffalo, Buffalo, NY 14260, USA
| | | | - Moisés A Bernal
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
- Smithsonian Tropical Research Institute (STRI), Panama City, 0843-03092, Panama
| |
Collapse
|
2
|
Venu V, Harjunmaa E, Dreau A, Brady S, Absher D, Kingsley DM, Jones FC. Fine-scale contemporary recombination variation and its fitness consequences in adaptively diverging stickleback fish. Nat Ecol Evol 2024; 8:1337-1352. [PMID: 38839849 PMCID: PMC11239493 DOI: 10.1038/s41559-024-02434-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 05/02/2024] [Indexed: 06/07/2024]
Abstract
Despite deep evolutionary conservation, recombination rates vary greatly across the genome and among individuals, sexes and populations. Yet the impact of this variation on adaptively diverging populations is not well understood. Here we characterized fine-scale recombination landscapes in an adaptively divergent pair of marine and freshwater populations of threespine stickleback from River Tyne, Scotland. Through whole-genome sequencing of large nuclear families, we identified the genomic locations of almost 50,000 crossovers and built recombination maps for marine, freshwater and hybrid individuals at a resolution of 3.8 kb. We used these maps to quantify the factors driving variation in recombination rates. We found strong heterochiasmy between sexes but also differences in recombination rates among ecotypes. Hybrids showed evidence of significant recombination suppression in overall map length and in individual loci. Recombination rates were lower not only within individual marine-freshwater-adaptive loci, but also between loci on the same chromosome, suggesting selection on linked gene 'cassettes'. Through temporal sampling along a natural hybrid zone, we found that recombinants showed traits associated with reduced fitness. Our results support predictions that divergence in cis-acting recombination modifiers, whose functions are disrupted in hybrids, may play an important role in maintaining differences among adaptively diverging populations.
Collapse
Affiliation(s)
- Vrinda Venu
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany.
- Los Alamos National Laboratory, New Mexico, NM, USA.
| | - Enni Harjunmaa
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
- CeGAT GmbH, Tübingen, Germany
| | - Andreea Dreau
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
- Evotec SE 'Campus Curie', Toulouse, France
| | - Shannon Brady
- Deptartment of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Devin Absher
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - David M Kingsley
- Deptartment of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Felicity C Jones
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany.
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
3
|
Siddiqui R, Swank S, Ozark A, Joaquin F, Travis MP, McMahan CD, Bell MA, Stuart YE. Inferring the evolution of reproductive isolation in a lineage of fossil threespine stickleback, Gasterosteus doryssus. Proc Biol Sci 2024; 291:20240337. [PMID: 38628124 PMCID: PMC11021931 DOI: 10.1098/rspb.2024.0337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Darwin attributed the absence of species transitions in the fossil record to his hypothesis that speciation occurs within isolated habitat patches too geographically restricted to be captured by fossil sequences. Mayr's peripatric speciation model added that such speciation would be rapid, further explaining missing evidence of diversification. Indeed, Eldredge and Gould's original punctuated equilibrium model combined Darwin's conjecture, Mayr's model and 124 years of unsuccessfully sampling the fossil record for transitions. Observing such divergence, however, could illustrate the tempo and mode of evolution during early speciation. Here, we investigate peripatric divergence in a Miocene stickleback fish, Gasterosteus doryssus. This lineage appeared and, over approximately 8000 generations, evolved significant reduction of 12 of 16 traits related to armour, swimming and diet, relative to its ancestral population. This was greater morphological divergence than we observed between reproductively isolated, benthic-limnetic ecotypes of extant Gasterosteus aculeatus. Therefore, we infer that reproductive isolation was evolving. However, local extinction of G. doryssus lineages shows how young, isolated, speciating populations often disappear, supporting Darwin's explanation for missing evidence and revealing a mechanism behind morphological stasis. Extinction may also account for limited sustained divergence within the stickleback species complex and help reconcile speciation rate variation observed across time scales.
Collapse
Affiliation(s)
- Raheyma Siddiqui
- Department of Biology, Loyola University Chicago, Chicago, IL, USA
| | - Samantha Swank
- Department of Biology, Loyola University Chicago, Chicago, IL, USA
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL, USA
| | - Allison Ozark
- Department of Biology, Loyola University Chicago, Chicago, IL, USA
| | - Franklin Joaquin
- Department of Biology, Loyola University Chicago, Chicago, IL, USA
| | - Matthew P. Travis
- Department of Biological and Biomedical Sciences, Rowan University, Glassboro, NJ, USA
| | | | - Michael A. Bell
- University of California Museum of Paleontology, Berkeley, CA, USA
| | - Yoel E. Stuart
- Department of Biology, Loyola University Chicago, Chicago, IL, USA
| |
Collapse
|
4
|
Laine J, Mak SST, Martins NFG, Chen X, Gilbert MTP, Jones FC, Pedersen MW, Romundset A, Foote AD. Late Pleistocene stickleback environmental genomes reveal the chronology of freshwater adaptation. Curr Biol 2024; 34:1142-1147.e6. [PMID: 38350445 DOI: 10.1016/j.cub.2024.01.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/04/2023] [Accepted: 01/22/2024] [Indexed: 02/15/2024]
Abstract
Directly observing the chronology and tempo of adaptation in response to ecological change is rarely possible in natural ecosystems. Sedimentary ancient DNA (sedaDNA) has been shown to be a tractable source of genome-scale data of long-dead organisms1,2,3 and to thereby potentially provide an understanding of the evolutionary histories of past populations.4,5 To date, time series of ecosystem biodiversity have been reconstructed from sedaDNA, typically using DNA metabarcoding or shotgun sequence data generated from less than 1 g of sediment.6,7 Here, we maximize sequence coverage by extracting DNA from ∼50× more sediment per sample than the majority of previous studies1,2,3 to achieve genotype resolution. From a time series of Late Pleistocene sediments spanning from a marine to freshwater ecosystem, we compare adaptive genotypes reconstructed from the environmental genomes of three-spined stickleback at key time points of this transition. We find a staggered temporal dynamic in which freshwater alleles at known loci of large effect in marine-freshwater divergence of three-spined stickleback (e.g., EDA)8 were already established during the brackish phase of the formation of the isolation basin. However, marine alleles were still detected across the majority of marine-freshwater divergence-associated loci, even after the complete isolation of the lake from marine ingression. Our retrospective approach to studying adaptation from environmental genomes of three-spined sticklebacks at the end of the last glacial period complements contemporary experimental approaches9,10,11 and highlights the untapped potential for retrospective "evolve and resequence" natural experiments using sedaDNA.
Collapse
Affiliation(s)
- Jan Laine
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Erling Skakkes gate 47A, 7012 Trondheim, Norway
| | - Sarah S T Mak
- Center for Evolutionary Hologenomics, GLOBE Institute, Faculty of Health and Medical Sciences, 1353 Copenhagen, Denmark
| | - Nuno F G Martins
- Center for Evolutionary Hologenomics, GLOBE Institute, Faculty of Health and Medical Sciences, 1353 Copenhagen, Denmark
| | - Xihan Chen
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, 1350 Copenhagen, Denmark
| | - M Thomas P Gilbert
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Erling Skakkes gate 47A, 7012 Trondheim, Norway; Center for Evolutionary Hologenomics, GLOBE Institute, Faculty of Health and Medical Sciences, 1353 Copenhagen, Denmark
| | - Felicity C Jones
- Friedrich Miescher Laboratory of the Max Planck Society, Max-Planck-Ring 9, 72076 Tübingen, Germany
| | - Mikkel Winther Pedersen
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, 1350 Copenhagen, Denmark
| | | | - Andrew D Foote
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Erling Skakkes gate 47A, 7012 Trondheim, Norway; Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, 0316 Oslo, Norway.
| |
Collapse
|
5
|
Dean LL, Whiting JR, Jones FC, MacColl ADC. Reproductive isolation in a three-way contact zone. Mol Ecol 2024; 33:e17275. [PMID: 38235507 DOI: 10.1111/mec.17275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 01/19/2024]
Abstract
Contact zones between divergent forms within a species provide insight into the role of gene flow in adaptation and speciation. Previous work has focused on contact zones involving only two divergent forms, but in nature, many more than two populations may overlap simultaneously and experience gene flow. Patterns of introgression in wild populations are, therefore, likely much more complicated than is often assumed. We begin to address this gap in current knowledge by investigating patterns of divergence and introgression across a complex natural contact zone. We use phenotypic and genomic data to confirm the existence of a three-way contact zone among divergent freshwater resident, saltwater resident and saltwater migratory three-spined stickleback (Gasterosteus aculeatus) on the island of North Uist, Scottish Western Isles. We find evidence for hybridization, mostly between saltwater resident and saltwater migratory forms. Despite hybridization, genomic analyses reveal pairwise islands of divergence between all forms that are maintained across the contact zone. Genomic cline analyses also provide evidence for selection and/or hybrid incompatibilities in divergent regions. Divergent genomic regions occur across multiple chromosomes and involve many known adaptive loci and several chromosomal inversions. We also identify distinct immune gene expression profiles between forms, but no evidence for transgressive expression in hybrids. Our results suggest that reproductive isolation is maintained in this three-way contact zone, despite some hybridization, and that reduced recombination in chromosomal inversions may play an important role in maintaining this isolation.
Collapse
Affiliation(s)
- Laura L Dean
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - James R Whiting
- School of Life Sciences, University of Nottingham, Nottingham, UK
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Felicity C Jones
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | | |
Collapse
|
6
|
Simon A, Coop G. The contribution of gene flow, selection, and genetic drift to five thousand years of human allele frequency change. Proc Natl Acad Sci U S A 2024; 121:e2312377121. [PMID: 38363870 PMCID: PMC10907250 DOI: 10.1073/pnas.2312377121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 01/09/2024] [Indexed: 02/18/2024] Open
Abstract
Genomic time series from experimental evolution studies and ancient DNA datasets offer us a chance to directly observe the interplay of various evolutionary forces. We show how the genome-wide variance in allele frequency change between two time points can be decomposed into the contributions of gene flow, genetic drift, and linked selection. In closed populations, the contribution of linked selection is identifiable because it creates covariances between time intervals, and genetic drift does not. However, repeated gene flow between populations can also produce directionality in allele frequency change, creating covariances. We show how to accurately separate the fraction of variance in allele frequency change due to admixture and linked selection in a population receiving gene flow. We use two human ancient DNA datasets, spanning around 5,000 y, as time transects to quantify the contributions to the genome-wide variance in allele frequency change. We find that a large fraction of genome-wide change is due to gene flow. In both cases, after correcting for known major gene flow events, we do not observe a signal of genome-wide linked selection. Thus despite the known role of selection in shaping long-term polymorphism levels, and an increasing number of examples of strong selection on single loci and polygenic scores from ancient DNA, it appears to be gene flow and drift, and not selection, that are the main determinants of recent genome-wide allele frequency change. Our approach should be applicable to the growing number of contemporary and ancient temporal population genomics datasets.
Collapse
Affiliation(s)
- Alexis Simon
- Center for Population Biology, University of California, Davis, CA95616
- Department of Evolution and Ecology, University of California, Davis, CA95616
| | - Graham Coop
- Center for Population Biology, University of California, Davis, CA95616
- Department of Evolution and Ecology, University of California, Davis, CA95616
| |
Collapse
|
7
|
Simon A, Coop G. The contribution of gene flow, selection, and genetic drift to five thousand years of human allele frequency change. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.11.548607. [PMID: 37503227 PMCID: PMC10370008 DOI: 10.1101/2023.07.11.548607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Genomic time series from experimental evolution studies and ancient DNA datasets offer us a chance to directly observe the interplay of various evolutionary forces. We show how the genome-wide variance in allele frequency change between two time points can be decomposed into the contributions of gene flow, genetic drift, and linked selection. In closed populations, the contribution of linked selection is identifiable because it creates covariances between time intervals, and genetic drift does not. However, repeated gene flow between populations can also produce directionality in allele frequency change, creating covariances. We show how to accurately separate the fraction of variance in allele frequency change due to admixture and linked selection in a population receiving gene flow. We use two human ancient DNA datasets, spanning around 5,000 years, as time transects to quantify the contributions to the genome-wide variance in allele frequency change. We find that a large fraction of genome-wide change is due to gene flow. In both cases, after correcting for known major gene flow events, we do not observe a signal of genome-wide linked selection. Thus despite the known role of selection in shaping long-term polymorphism levels, and an increasing number of examples of strong selection on single loci and polygenic scores from ancient DNA, it appears to be gene flow and drift, and not selection, that are the main determinants of recent genome-wide allele frequency change. Our approach should be applicable to the growing number of contemporary and ancient temporal population genomics datasets.
Collapse
Affiliation(s)
- Alexis Simon
- Center for Population Biology, University of California, Davis, CA 95616
- Department of Evolution and Ecology, University of California, Davis, CA 95616
| | - Graham Coop
- Center for Population Biology, University of California, Davis, CA 95616
- Department of Evolution and Ecology, University of California, Davis, CA 95616
| |
Collapse
|
8
|
Mirchandani CD, Shultz AJ, Thomas GWC, Smith SJ, Baylis M, Arnold B, Corbett-Detig R, Enbody E, Sackton TB. A Fast, Reproducible, High-throughput Variant Calling Workflow for Population Genomics. Mol Biol Evol 2024; 41:msad270. [PMID: 38069903 PMCID: PMC10764099 DOI: 10.1093/molbev/msad270] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/27/2023] [Accepted: 11/22/2023] [Indexed: 01/05/2024] Open
Abstract
The increasing availability of genomic resequencing data sets and high-quality reference genomes across the tree of life present exciting opportunities for comparative population genomic studies. However, substantial challenges prevent the simple reuse of data across different studies and species, arising from variability in variant calling pipelines, data quality, and the need for computationally intensive reanalysis. Here, we present snpArcher, a flexible and highly efficient workflow designed for the analysis of genomic resequencing data in nonmodel organisms. snpArcher provides a standardized variant calling pipeline and includes modules for variant quality control, data visualization, variant filtering, and other downstream analyses. Implemented in Snakemake, snpArcher is user-friendly, reproducible, and designed to be compatible with high-performance computing clusters and cloud environments. To demonstrate the flexibility of this pipeline, we applied snpArcher to 26 public resequencing data sets from nonmammalian vertebrates. These variant data sets are hosted publicly to enable future comparative population genomic analyses. With its extensibility and the availability of public data sets, snpArcher will contribute to a broader understanding of genetic variation across species by facilitating the rapid use and reuse of large genomic data sets.
Collapse
Affiliation(s)
- Cade D Mirchandani
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Allison J Shultz
- Ornithology Department, Natural History Museum of Los Angeles County, Los Angeles, CA 90007, USA
| | | | - Sara J Smith
- Informatics Group, Harvard University, Cambridge, MA, USA
- Biology, Mount Royal University, Calgary, AB T3E 6K6, Canada
| | - Mara Baylis
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Brian Arnold
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Center for Statistics and Machine Learning, Princeton University, Princeton, NJ, USA
| | - Russ Corbett-Detig
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Erik Enbody
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | | |
Collapse
|
9
|
Reeves IM, Totterdell JA, Betty EL, Donnelly DM, George A, Holmes S, Moller L, Stockin KA, Wellard R, White C, Foote AD. Ancestry testing of "Old Tom," a killer whale central to mutualistic interactions with human whalers. J Hered 2023; 114:598-611. [PMID: 37821799 PMCID: PMC10650950 DOI: 10.1093/jhered/esad058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/21/2023] [Indexed: 10/13/2023] Open
Abstract
Cooperative hunting between humans and killer whales (Orcinus orca) targeting baleen whales was reported in Eden, New South Wales, Australia, for almost a century. By 1928, whaling operations had ceased, and local killer whale sightings became scarce. A killer whale from the group, known as "Old Tom," washed up dead in 1930 and his skeleton was preserved. How these killer whales from Eden relate to other populations globally and whether their genetic descendants persist today remains unknown. We extracted and sequenced DNA from Old Tom using ancient DNA techniques. Genomic sequences were then compared with a global dataset of mitochondrial and nuclear genomes. Old Tom shared a most recent common ancestor with killer whales from Australasia, the North Atlantic, and the North Pacific, having the highest genetic similarity with contemporary New Zealand killer whales. However, much of the variation found in Old Tom's genome was not shared with these widespread populations, suggesting ancestral rather than ongoing gene flow. Our genetic comparisons also failed to find any clear descendants of Tom, raising the possibility of local extinction of this group. We integrated Traditional Custodian knowledge to recapture the events in Eden and recognize that Indigenous Australians initiated the relationship with the killer whales before European colonization and the advent of commercial whaling locally. This study rectifies discrepancies in local records and provides new insight into the origins of the killer whales in Eden and the history of Australasian killer whales.
Collapse
Affiliation(s)
- Isabella M Reeves
- Flinders University, College of Science and Engineering, Bedford Park, Adelaide,South Australia, Australia
- Cetacean Research Centre (CETREC WA), Esperance, Perth, Western Australia, Australia
| | - John A Totterdell
- Cetacean Research Centre (CETREC WA), Esperance, Perth, Western Australia, Australia
| | - Emma L Betty
- Cetacean Ecology Research Group, School of Natural Sciences, Massey University, Auckland, New Zealand
| | - David M Donnelly
- Killer Whales Australia, Mornington, Melbourne, Victoria, Australia
| | - Angela George
- Eden Killer Whale Museum, New South Wales, Sydney, Australia
| | - Steven Holmes
- Eden Killer Whale Museum, New South Wales, Sydney, Australia
| | - Luciana Moller
- Flinders University, College of Science and Engineering, Bedford Park, Adelaide,South Australia, Australia
- Cetacean Ecology, Behaviour and Evolution Laboratory, College of Science and Engineering, Flinders University, Bedford Park, Adelaide, South Australia, Australia
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Bedford Park, Adelaide, South Australia, Australia
| | - Karen A Stockin
- Cetacean Ecology Research Group, School of Natural Sciences, Massey University, Auckland, New Zealand
| | | | - Charlie White
- Flinders University, College of Science and Engineering, Bedford Park, Adelaide,South Australia, Australia
- Cetacean Ecology, Behaviour and Evolution Laboratory, College of Science and Engineering, Flinders University, Bedford Park, Adelaide, South Australia, Australia
| | - Andrew D Foote
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway
| |
Collapse
|
10
|
Muschick M, Jemmi E, Lengacher N, Hänsch S, Wales N, Kishe MA, Mwaiko S, Dieleman J, Lever MA, Salzburger W, Verschuren D, Seehausen O. Ancient DNA is preserved in fish fossils from tropical lake sediments. Mol Ecol 2023; 32:5913-5931. [PMID: 37830773 DOI: 10.1111/mec.17159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/30/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023]
Abstract
Tropical freshwater lakes are well known for their high biodiversity, and particularly the East African Great Lakes are renowned for their adaptive radiation of cichlid fishes. While comparative phylogenetic analyses of extant species flocks have revealed patterns and processes of their diversification, little is known about evolutionary trajectories within lineages, the impacts of environmental drivers, or the scope and nature of now-extinct diversity. Time-structured palaeodata from geologically young fossil records, such as fossil counts and particularly ancient DNA (aDNA) data, would help fill this large knowledge gap. High ambient temperatures can be detrimental to the preservation of DNA, but refined methodology now allows data generation even from very poorly preserved samples. Here, we show for the first time that fish fossils from tropical lake sediments yield endogenous aDNA. Despite generally low endogenous content and high sample dropout, the application of high-throughput sequencing and, in some cases, sequence capture allowed taxonomic assignment and phylogenetic placement of 17% of analysed fish fossils to family or tribe level, including remains which are up to 2700 years old or weigh less than 1 mg. The relationship between aDNA degradation and the thermal age of samples is similar to that described for terrestrial samples from cold environments when adjusted for elevated temperature. Success rates and aDNA preservation differed between the investigated lakes Chala, Kivu and Victoria, possibly caused by differences in bottom water oxygenation. Our study demonstrates that the sediment records of tropical lakes can preserve genetic information on rapidly diversifying fish taxa over time scales of millennia.
Collapse
Affiliation(s)
- Moritz Muschick
- Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Department of Fish Ecology and Evolution, EAWAG, Swiss Federal Institute for Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Eliane Jemmi
- Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Department of Fish Ecology and Evolution, EAWAG, Swiss Federal Institute for Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Nicholas Lengacher
- Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Department of Fish Ecology and Evolution, EAWAG, Swiss Federal Institute for Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Stephanie Hänsch
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Nathan Wales
- Department of Archaeology, University of York, York, UK
| | - Mary A Kishe
- Tanzania Fisheries Research Institute, Dar es Salaam, Tanzania
| | - Salome Mwaiko
- Department of Fish Ecology and Evolution, EAWAG, Swiss Federal Institute for Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Jorunn Dieleman
- Limnology Unit, Department of Biology, Ghent University, Ghent, Belgium
| | - Mark Alexander Lever
- Institute of Biogeochemistry and Pollutant Dynamics, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
- Marine Science Institute, University of Texas at Austin, Port Aransas, Texas, USA
| | | | - Dirk Verschuren
- Limnology Unit, Department of Biology, Ghent University, Ghent, Belgium
| | - Ole Seehausen
- Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Department of Fish Ecology and Evolution, EAWAG, Swiss Federal Institute for Aquatic Science and Technology, Kastanienbaum, Switzerland
| |
Collapse
|
11
|
Rolland J, Henao-Diaz LF, Doebeli M, Germain R, Harmon LJ, Knowles LL, Liow LH, Mank JE, Machac A, Otto SP, Pennell M, Salamin N, Silvestro D, Sugawara M, Uyeda J, Wagner CE, Schluter D. Conceptual and empirical bridges between micro- and macroevolution. Nat Ecol Evol 2023; 7:1181-1193. [PMID: 37429904 DOI: 10.1038/s41559-023-02116-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 06/13/2023] [Indexed: 07/12/2023]
Abstract
Explaining broad molecular, phenotypic and species biodiversity patterns necessitates a unifying framework spanning multiple evolutionary scales. Here we argue that although substantial effort has been made to reconcile microevolution and macroevolution, much work remains to identify the links between biological processes at play. We highlight four major questions of evolutionary biology whose solutions require conceptual bridges between micro and macroevolution. We review potential avenues for future research to establish how mechanisms at one scale (drift, mutation, migration, selection) translate to processes at the other scale (speciation, extinction, biogeographic dispersal) and vice versa. We propose ways in which current comparative methods to infer molecular evolution, phenotypic evolution and species diversification could be improved to specifically address these questions. We conclude that researchers are in a better position than ever before to build a synthesis to understand how microevolutionary dynamics unfold over millions of years.
Collapse
Affiliation(s)
- Jonathan Rolland
- CNRS, UMR5174, Laboratoire Evolution et Diversité Biologique, Université Toulouse 3 Paul Sabatier, Toulouse, France.
| | - L Francisco Henao-Diaz
- Department of Zoology, and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Michael Doebeli
- Department of Zoology, and Department of Mathematics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Rachel Germain
- Department of Zoology, and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Luke J Harmon
- Dept. of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - L Lacey Knowles
- Department of Ecology and Evolutionary Biology, Museum of Zoology, University of Michigan, Ann Arbor, MI, USA
| | | | - Judith E Mank
- Department of Zoology, and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Antonin Machac
- Department of Zoology, and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Laboratory of Environmental Microbiology, Institute of Microbiology of the CAS, Prague, Czech Republic
| | - Sarah P Otto
- Department of Zoology, and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Matt Pennell
- Departments of Quantitative and Computational Biology and Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Nicolas Salamin
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Daniele Silvestro
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, University of Gothenburg, Gothenburg, Sweden
| | - Mauro Sugawara
- Department of Zoology, and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Mário Schenberg Institute, São Paulo, Brazil
| | - Josef Uyeda
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Catherine E Wagner
- Department of Botany, and Program in Ecology and Evolution, University of Wyoming, Laramie, WY, USA
| | - Dolph Schluter
- Department of Zoology, and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
12
|
Louis M, Korlević P, Nykänen M, Archer F, Berrow S, Brownlow A, Lorenzen ED, O'Brien J, Post K, Racimo F, Rogan E, Rosel PE, Sinding MHS, van der Es H, Wales N, Fontaine MC, Gaggiotti OE, Foote AD. Ancient dolphin genomes reveal rapid repeated adaptation to coastal waters. Nat Commun 2023; 14:4020. [PMID: 37463880 DOI: 10.1038/s41467-023-39532-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 06/16/2023] [Indexed: 07/20/2023] Open
Abstract
Parallel evolution provides strong evidence of adaptation by natural selection due to local environmental variation. Yet, the chronology, and mode of the process of parallel evolution remains debated. Here, we harness the temporal resolution of paleogenomics to address these long-standing questions, by comparing genomes originating from the mid-Holocene (8610-5626 years before present, BP) to contemporary pairs of coastal-pelagic ecotypes of bottlenose dolphin. We find that the affinity of ancient samples to coastal populations increases as the age of the samples decreases. We assess the youngest genome (5626 years BP) at sites previously inferred to be under parallel selection to coastal habitats and find it contained coastal-associated genotypes. Thus, coastal-associated variants rose to detectable frequencies close to the emergence of coastal habitat. Admixture graph analyses reveal a reticulate evolutionary history between pelagic and coastal populations, sharing standing genetic variation that facilitated rapid adaptation to newly emerged coastal habitats.
Collapse
Affiliation(s)
- Marie Louis
- Centre for Biological Diversity, Sir Harold Mitchell Building and Dyers Brae, University of St Andrews, St Andrews, KY16 9TH, Scotland, UK.
- Globe Institute, University of Copenhagen, Øster Voldgade 5-7, 1350, Copenhagen K, Denmark.
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, PO Box 11103 CC, Groningen, The Netherlands.
- Greenland Institute of Natural Resources, Kivioq 2, Nuuk, 3900, Greenland.
| | - Petra Korlević
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Milaja Nykänen
- Department of Environmental and Biological Sciences, PO Box 111, FI-80101, Joensuu, Finland
- School of Biological, Earth and Environmental Sciences, University College Cork, North Mall, Cork, Ireland
| | - Frederick Archer
- Marine Mammal and Turtle Division, Southwest Fisheries Science Center, NOAA, 8901 La Jolla Shores Drive, La Jolla, CA, 92037, USA
| | - Simon Berrow
- Irish Whale and Dolphin Group, Kilrush, Co Clare, Ireland
- Marine and Freshwater Research Centre, Department of Natural Sciences, School of Science and Computing, Atlantic Technological University, Dublin Road, H91 T8NW, Galway, Ireland
| | - Andrew Brownlow
- Scottish Marine Animal Stranding Scheme, Institute of Biodiversity, Animal Health & Comparative Medicine College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Eline D Lorenzen
- Globe Institute, University of Copenhagen, Øster Voldgade 5-7, 1350, Copenhagen K, Denmark
| | - Joanne O'Brien
- Irish Whale and Dolphin Group, Kilrush, Co Clare, Ireland
- Marine and Freshwater Research Centre, Department of Natural Sciences, School of Science and Computing, Atlantic Technological University, Dublin Road, H91 T8NW, Galway, Ireland
| | - Klaas Post
- Natural History Museum Rotterdam, Westzeedijk 345, 3015 AA, Rotterdam, Netherlands
| | - Fernando Racimo
- Globe Institute, University of Copenhagen, Øster Voldgade 5-7, 1350, Copenhagen K, Denmark
| | - Emer Rogan
- School of Biological, Earth and Environmental Sciences, University College Cork, North Mall, Cork, Ireland
| | - Patricia E Rosel
- Marine Mammal and Turtle Division, Southeast Fisheries Science Center, NOAA, 646 Cajundome Boulevard, Lafayette, LA, 70506, USA
| | - Mikkel-Holger S Sinding
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen, Denmark
| | - Henry van der Es
- Natural History Museum Rotterdam, Westzeedijk 345, 3015 AA, Rotterdam, Netherlands
| | - Nathan Wales
- University of York, BioArCh, Environment Building, Wentworth Way, Heslington, York, YO10 5DD, UK
| | - Michael C Fontaine
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, PO Box 11103 CC, Groningen, The Netherlands
- MIVEGEC (Université de Montpellier, CNRS 5290, IRD 229) Institut de Recherche pour le Développement (IRD), F-34394, Montpellier, France
| | - Oscar E Gaggiotti
- Centre for Biological Diversity, Sir Harold Mitchell Building and Dyers Brae, University of St Andrews, St Andrews, KY16 9TH, Scotland, UK
| | - Andrew D Foote
- Department of Natural History, Norwegian University of Science and Technology (NTNU), NO-7491, Trondheim, Norway.
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, 0316, Oslo, Norway.
| |
Collapse
|
13
|
Kessler C, Wootton E, Shafer ABA. Speciation without gene-flow in hybridizing deer. Mol Ecol 2023; 32:1117-1132. [PMID: 36516402 DOI: 10.1111/mec.16824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
Under the ecological speciation model, divergent selection acts on ecological differences between populations, gradually creating barriers to gene flow and ultimately leading to reproductive isolation. Hybridisation is part of this continuum and can both promote and inhibit the speciation process. Here, we used white-tailed (Odocoileus virginianus) and mule deer (O. hemionus) to investigate patterns of speciation in hybridizing sister species. We quantified genome-wide historical introgression and performed genome scans to look for signatures of four different selection scenarios. Despite ample modern evidence of hybridisation, we found negligible patterns of ancestral introgression and no signatures of divergence with gene flow, rather localized patterns of allopatric and balancing selection were detected across the genome. Genes under balancing selection were related to immunity, MHC and sensory perception of smell, the latter of which is consistent with deer biology. The deficiency of historical gene-flow suggests that white-tailed and mule deer were spatially separated during the glaciation cycles of the Pleistocene and genome wide differentiation accrued via genetic drift. Dobzhansky-Muller incompatibilities and selection against hybrids are hypothesised to be acting, and diversity correlations to recombination rates suggests these sister species are far along the speciation continuum.
Collapse
Affiliation(s)
- Camille Kessler
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada
| | - Eric Wootton
- Biochemistry & Molecular Biology, Trent University, Peterborough, Ontario, Canada
| | - Aaron B A Shafer
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada
| |
Collapse
|
14
|
Luqman H, Wegmann D, Fior S, Widmer A. Climate-induced range shifts drive adaptive response via spatio-temporal sieving of alleles. Nat Commun 2023; 14:1080. [PMID: 36841810 PMCID: PMC9968346 DOI: 10.1038/s41467-023-36631-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 02/09/2023] [Indexed: 02/27/2023] Open
Abstract
Quaternary climate fluctuations drove many species to shift their geographic ranges, in turn shaping their genetic structures. Recently, it has been argued that adaptation may have accompanied species range shifts via the "sieving" of genotypes during colonisation and establishment. However, this has not been directly demonstrated, and knowledge remains limited on how different evolutionary forces, which are typically investigated separately, interacted to jointly mediate species responses to past climatic change. Here, through whole-genome re-sequencing of over 1200 individuals of the carnation Dianthus sylvestris coupled with integrated population genomic and gene-environment models, we reconstruct the past neutral and adaptive landscape of this species as it was shaped by the Quaternary glacial cycles. We show that adaptive responses emerged concomitantly with the post-glacial range shifts and expansions of this species in the last 20 thousand years. This was due to the heterogenous sieving of adaptive alleles across space and time, as populations expanded out of restrictive glacial refugia into the broader and more heterogeneous range of habitats available in the present-day inter-glacial. Our findings reveal a tightly-linked interplay of migration and adaptation under past climate-induced range shifts, which we show is key to understanding the spatial patterns of adaptive variation we see in species today.
Collapse
Affiliation(s)
- Hirzi Luqman
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland. .,McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, UK.
| | - Daniel Wegmann
- Department of Biology, University of Fribourg, Fribourg, Switzerland.,Swiss Institute of Bioinformatics, Fribourg, Switzerland
| | - Simone Fior
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland.
| | - Alex Widmer
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
15
|
Martin CA, Sheppard EC, Illera JC, Suh A, Nadachowska-Brzyska K, Spurgin LG, Richardson DS. Runs of homozygosity reveal past bottlenecks and contemporary inbreeding across diverging populations of an island-colonizing bird. Mol Ecol 2023; 32:1972-1989. [PMID: 36704917 DOI: 10.1111/mec.16865] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/11/2023] [Accepted: 01/20/2023] [Indexed: 01/28/2023]
Abstract
Genomes retain evidence of the demographic history and evolutionary forces that have shaped populations and drive speciation. Across island systems, contemporary patterns of genetic diversity reflect population demography, including colonization events, bottlenecks, gene flow and genetic drift. Here, we investigate genome-wide diversity and the distribution of runs of homozygosity (ROH) using whole-genome resequencing of individuals (>22× coverage) from six populations across three archipelagos of Berthelot's pipit (Anthus berthelotii)-a passerine that has recently undergone island speciation. We show the most dramatic reduction in diversity occurs between the mainland sister species (the tawny pipit) and Berthelot's pipit and is lowest in the populations that have experienced sequential bottlenecks (i.e., the Madeiran and Selvagens populations). Pairwise sequential Markovian coalescent (PSMC) analyses estimated that Berthelot's pipit diverged from its sister species ~2 million years ago, with the Madeiran archipelago founded 50,000 years ago, and the Selvagens colonized 8000 years ago. We identify many long ROH (>1 Mb) in these most recently colonized populations. Population expansion within the last 100 years may have eroded long ROH in the Madeiran archipelago, resulting in a prevalence of short ROH (<1 Mb). However, the extensive long and short ROH detected in the Selvagens suggest strong recent inbreeding and bottleneck effects, with as much as 38% of the autosomes consisting of ROH >250 kb. These findings highlight the importance of demographic history, as well as selection and genetic drift, in shaping contemporary patterns of genomic diversity across diverging populations.
Collapse
Affiliation(s)
- Claudia A Martin
- School of Biological Sciences, University of East Anglia, Norfolk, UK.,Terrestrial Ecology Unit, Biology Department, Ghent University, Ghent, Belgium
| | | | - Juan Carlos Illera
- Biodiversity Research Institute (CSIC-Oviedo University-Principality of Asturias), University of Oviedo, Mieres, Asturias, Spain
| | - Alexander Suh
- School of Biological Sciences, University of East Anglia, Norfolk, UK.,Department of Organismal Biology - Systematic Biology, Evolutionary Biology Centre (EBC), Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | - Lewis G Spurgin
- School of Biological Sciences, University of East Anglia, Norfolk, UK
| | | |
Collapse
|
16
|
Lawal RA, Mathis VL, Barter ME, Charette JR, Garretson A, Dumont BL. Taxonomic assessment of two wild house mouse subspecies using whole-genome sequencing. Sci Rep 2022; 12:20866. [PMID: 36460842 PMCID: PMC9718808 DOI: 10.1038/s41598-022-25420-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022] Open
Abstract
The house mouse species complex (Mus musculus) is comprised of three primary subspecies. A large number of secondary subspecies have also been suggested on the basis of divergent morphology and molecular variation at limited numbers of markers. While the phylogenetic relationships among the primary M. musculus subspecies are well-defined, relationships among secondary subspecies and between secondary and primary subspecies remain less clear. Here, we integrate de novo genome sequencing of museum-stored specimens of house mice from one secondary subspecies (M. m. bactrianus) and publicly available genome sequences of house mice previously characterized as M. m. helgolandicus, with whole genome sequences from diverse representatives of the three primary house mouse subspecies. We show that mice assigned to the secondary M. m. bactrianus and M. m. helgolandicus subspecies are not genetically differentiated from M. m. castaneus and M. m. domesticus, respectively. Overall, our work suggests that the M. m. bactrianus and M. m. helgolandicus subspecies are not well-justified taxonomic entities, emphasizing the importance of leveraging whole-genome sequence data to inform subspecies designations. Additionally, our investigation provides tailored experimental procedures for generating whole genome sequences from air-dried mouse skins, along with key genomic resources to inform future genomic studies of wild mouse diversity.
Collapse
Affiliation(s)
| | - Verity L Mathis
- Florida Museum of Natural History, University of Florida, 1659 Museum Road, Gainesville, FL, 32611, USA
| | - Mary E Barter
- The Jackson Laboratory, 600 Main Street, Bar Harbor, 04609, USA
| | | | - Alexis Garretson
- The Jackson Laboratory, 600 Main Street, Bar Harbor, 04609, USA
- Graduate School of Biomedical Sciences, Tufts University, 136 Harrison Ave, Boston, MA, 02111, USA
| | - Beth L Dumont
- The Jackson Laboratory, 600 Main Street, Bar Harbor, 04609, USA.
- Graduate School of Biomedical Sciences, Tufts University, 136 Harrison Ave, Boston, MA, 02111, USA.
| |
Collapse
|
17
|
Scott CB, Cárdenas A, Mah M, Narasimhan VM, Rohland N, Toth LT, Voolstra CR, Reich D, Matz MV. Millennia-old coral holobiont DNA provides insight into future adaptive trajectories. Mol Ecol 2022; 31:4979-4990. [PMID: 35943423 DOI: 10.1111/mec.16642] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/26/2022] [Accepted: 08/03/2022] [Indexed: 11/28/2022]
Abstract
Ancient DNA (aDNA) has been applied to evolutionary questions across a wide variety of taxa. Here, for the first time, we leverage aDNA from millennia-old fossil coral fragments to gain new insights into a rapidly declining western Atlantic reef ecosystem. We sampled four Acropora palmata fragments (dated 4215 BCE - 1099 CE) obtained from two Florida Keys reef cores. From these samples, we established that it is possible both to sequence ancient DNA from reef cores and place the data in the context of modern-day genetic variation. We recovered varying amounts of nuclear DNA exhibiting the characteristic signatures of aDNA from the A. palmata fragments. To describe the holobiont sensu lato, which plays a crucial role in reef health, we utilized metagenome-assembled genomes as a reference to identify a large additional proportion of ancient microbial DNA from the samples. The samples shared many common microbes with modern-day coral holobionts from the same region, suggesting remarkable holobiont stability over time. Despite efforts, we were unable to recover ancient Symbiodiniaceae reads from the samples. Comparing the ancient A. palmata data to whole-genome sequencing data from living acroporids, we found that while slightly distinct, ancient samples were most closely related to individuals of their own species. Together, these results provide a proof-of-principle showing that it is possible to carry out direct analysis of coral holobiont change over time, which lays a foundation for studying the impacts of environmental stress and evolutionary constraints.
Collapse
Affiliation(s)
- Carly B Scott
- Department of Integrative Biology, University of Texas, Austin, TX, USA
| | - Anny Cárdenas
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Matthew Mah
- Department of Genetics, Harvard Medical School, Boston, MA, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA, Austin, TX, USA
| | | | - Nadin Rohland
- Department of Genetics, Harvard Medical School, Boston, MA, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Lauren T Toth
- U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL
| | | | - David Reich
- Department of Genetics, Harvard Medical School, Boston, MA, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA, Austin, TX, USA.,Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Mikhail V Matz
- Department of Integrative Biology, University of Texas, Austin, TX, USA
| |
Collapse
|
18
|
Cabrera AA, Rey‐Iglesia A, Louis M, Skovrind M, Westbury MV, Lorenzen ED. How low can you go? Introducing SeXY: sex identification from low-quantity sequencing data despite lacking assembled sex chromosomes. Ecol Evol 2022; 12:e9185. [PMID: 36035270 PMCID: PMC9405501 DOI: 10.1002/ece3.9185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/19/2022] [Indexed: 12/01/2022] Open
Abstract
Accurate sex identification is crucial for elucidating the biology of a species. In the absence of directly observable sexual characteristics, sex identification of wild fauna can be challenging, if not impossible. Molecular sexing offers a powerful alternative to morphological sexing approaches. Here, we present SeXY, a novel sex-identification pipeline, for very low-coverage shotgun sequencing data from a single individual. SeXY was designed to utilize low-effort screening data for sex identification and does not require a conspecific sex-chromosome assembly as reference. We assess the accuracy of our pipeline to data quantity by downsampling sequencing data from 100,000 to 1000 mapped reads and to reference genome selection by mapping to a variety of reference genomes of various qualities and phylogenetic distance. We show that our method is 100% accurate when mapping to a high-quality (highly contiguous N50 > 30 Mb) conspecific genome, even down to 1000 mapped reads. For lower-quality reference assemblies (N50 < 30 Mb), our method is 100% accurate with 50,000 mapped reads, regardless of reference assembly quality or phylogenetic distance. The SeXY pipeline provides several advantages over previously implemented methods; SeXY (i) requires sequencing data from only a single individual, (ii) does not require assembled conspecific sex chromosomes, or even a conspecific reference assembly, (iii) takes into account variation in coverage across the genome, and (iv) is accurate with only 1000 mapped reads in many cases.
Collapse
Affiliation(s)
| | | | - Marie Louis
- Globe InstituteUniversity of CopenhagenCopenhagen KDenmark
- Greenland Institute of Natural ResourcesNuukGreenland
| | | | | | | |
Collapse
|
19
|
Thompson KA, Schluter D. Heterosis counteracts hybrid breakdown to forestall speciation by parallel natural selection. Proc Biol Sci 2022; 289:20220422. [PMID: 35506223 PMCID: PMC9065978 DOI: 10.1098/rspb.2022.0422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/30/2022] [Indexed: 01/04/2023] Open
Abstract
In contrast to ecological speciation, where reproductive isolation evolves as a consequence of divergent natural selection, speciation by parallel natural selection has been less thoroughly studied. To test whether parallel evolution drives speciation, we leveraged the repeated evolution of benthic and limnetic ecotypes of threespine stickleback fish and estimated fitness for pure crosses and within-ecotype hybrids in semi-natural ponds and in laboratory aquaria. In ponds, we detected hybrid breakdown in both ecotypes but this was counterbalanced by heterosis and the strength of post-zygotic isolation was nil. In aquaria, we detected heterosis in limnetic crosses and breakdown in benthic crosses, which is suggestive of process- and ecotype-specific environment-dependence. In ponds, heterosis and breakdown were three times greater in limnetic crosses than in benthic crosses, contrasting the prediction that the fitness consequences of hybridization should be greater in crosses among more derived ecotypes. Consistent with a primary role for stochastic processes, patterns differed among crosses between populations from different lakes. Yet, the observation of qualitatively similar patterns of heterosis and hybrid breakdown for both ecotypes when averaging the lake pairs indicates that the outcome of hybridization is repeatable in a general sense.
Collapse
Affiliation(s)
- Ken A. Thompson
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dolph Schluter
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
20
|
Hund AK, Fuess LE, Kenney ML, Maciejewski MF, Marini JM, Shim KC, Bolnick DI. Population-level variation in parasite resistance due to differences in immune initiation and rate of response. Evol Lett 2022; 6:162-177. [PMID: 35386836 PMCID: PMC8966477 DOI: 10.1002/evl3.274] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 01/20/2023] Open
Abstract
Closely related populations often differ in resistance to a given parasite, as measured by infection success or failure. Yet, the immunological mechanisms of these evolved differences are rarely specified. Does resistance evolve via changes to the host's ability to recognize that an infection exists, actuate an effective immune response, or attenuate that response? We tested whether each of these phases of the host response contributed to threespine sticklebacks' recently evolved resistance to their tapeworm Schistocephalus solidus. Although marine stickleback and some susceptible lake fish permit fast-growing tapeworms, other lake populations are resistant and suppress tapeworm growth via a fibrosis response. We subjected lab-raised fish from three populations (susceptible marine "ancestors," a susceptible lake population, and a resistant lake population) to a novel immune challenge using an injection of (1) a saline control, (2) alum, a generalized pro-inflammatory adjuvant that causes fibrosis, (3) a tapeworm protein extract, or (4) a combination of alum and tapeworm protein. With enough time, all three populations generated a robust fibrosis response to the alum treatments. Yet, only the resistant population exhibited a fibrosis response to the tapeworm protein alone. Thus, these populations differed in their ability to respond to the tapeworm protein but shared an intact fibrosis pathway. The resistant population also initiated fibrosis faster in response to alum, and was able to attenuate fibrosis, unlike the susceptible populations' slow but longer lasting response to alum. As fibrosis has pathological side effects that reduce fecundity, the faster recovery by the resistant population may reflect an adaptation to mitigate the costs of immunity. Broadly, our results confirm that parasite detection and immune initiation, activation speed, and immune attenuation simultaneously contribute to the evolution of parasite resistance and adaptations to infection in natural populations.
Collapse
Affiliation(s)
- Amanda K. Hund
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSt. PaulMinnesota55123
| | - Lauren E. Fuess
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticut06269
- Current Address: Department of BiologyTexas State UniversitySan MarcosTexas78666
| | - Mariah L. Kenney
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticut06269
| | - Meghan F. Maciejewski
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticut06269
| | - Joseph M. Marini
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticut06269
| | - Kum Chuan Shim
- Department of Ecology, Evolution, and BehaviorUniversity of Texas at AustinAustinTexas78712
| | - Daniel I. Bolnick
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticut06269
| |
Collapse
|
21
|
Wuitchik SJ, Mogensen S, Barry TN, Paccard A, Jamniczky HA, Barrett RD, Rogers SM. Evolution of thermal physiology alters the projected range of threespine stickleback under climate change. Mol Ecol 2022; 31:2312-2326. [PMID: 35152483 DOI: 10.1111/mec.16396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/21/2022] [Accepted: 02/01/2022] [Indexed: 11/28/2022]
Abstract
Species distribution models (SDMs) are widely used to predict range shifts but could be unreliable under climate change scenarios because they do not account for evolution. The thermal physiology of a species is a key determinant of its range and thus incorporating thermal trait evolution into SDMs might be expected to alter projected ranges. We identified a genetic basis for physiological and behavioural traits that evolve in response to temperature change in natural populations of threespine stickleback (Gasterosteus aculeatus). Using these data, we created geographical range projections using a mechanistic niche area approach under two climate change scenarios. Under both scenarios, trait data were either static ("no evolution" models), allowed to evolve at observed evolutionary rates ("evolution" models) or allowed to evolve at a rate of evolution scaled by the trait variance that is explained by quantitative trait loci (QTL; "scaled evolution" models). We show that incorporating these traits and their evolution substantially altered the projected ranges for a widespread panmictic marine population, with over 7-fold increases in area under climate change projections when traits are allowed to evolve. Evolution-informed SDMs should improve the precision of forecasting range dynamics under climate change, and aid in their application to management and the protection of biodiversity.
Collapse
Affiliation(s)
- Sara J.S. Wuitchik
- Department of Biological Sciences University of Calgary 2500 University Dr NW Calgary AB T2N 1N4 Canada
- Informatics Group Harvard University 52 Oxford St Cambridge MA 02138 USA
- Department of Biology Boston University 5 Cummington Mall Boston MA 02215 USA
- Department of Biology University of Victoria 3800 Finnerty Rd Victoria BC V8P 5C2 Canada
- School of Environmental Science Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
| | - Stephanie Mogensen
- Department of Biological Sciences University of Calgary 2500 University Dr NW Calgary AB T2N 1N4 Canada
| | - Tegan N. Barry
- Department of Biological Sciences University of Calgary 2500 University Dr NW Calgary AB T2N 1N4 Canada
| | - Antoine Paccard
- Redpath Museum Department of Biology McGill University 845 Sherbrooke St W Montreal QC H3A 0G4 Canada
- McGill University Genome Center 740 Dr Penfield Avenue Montreal QC H3A 1A5 Canada
| | - Heather A. Jamniczky
- Department of Cell Biology & Anatomy Cumming School of Medicine University of Calgary 3330 Hospital Dr NW Calgary T2N 4N1 Canada
| | - Rowan D.H. Barrett
- Redpath Museum Department of Biology McGill University 845 Sherbrooke St W Montreal QC H3A 0G4 Canada
| | - Sean M. Rogers
- Department of Biological Sciences University of Calgary 2500 University Dr NW Calgary AB T2N 1N4 Canada
- Bamfield Marine Sciences Centre 100 Pachena Rd Bamfield BC V0R 1B0 Canada
| |
Collapse
|
22
|
Cuenca-Cambronero M, Courtney-Mustaphi CJ, Greenway R, Heiri O, Hudson CM, King L, Lemmen KD, Moosmann M, Muschick M, Ngoepe N, Seehausen O, Matthews B. An integrative paleolimnological approach for studying evolutionary processes. Trends Ecol Evol 2022; 37:488-496. [DOI: 10.1016/j.tree.2022.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 10/19/2022]
|
23
|
Haenel Q, Guerard L, MacColl ADC, Berner D. The maintenance of standing genetic variation: Gene flow vs. selective neutrality in Atlantic stickleback fish. Mol Ecol 2021; 31:811-821. [PMID: 34753205 PMCID: PMC9299253 DOI: 10.1111/mec.16269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/20/2021] [Accepted: 11/02/2021] [Indexed: 12/23/2022]
Abstract
Adaptation to derived habitats often occurs from standing genetic variation. The maintenance within ancestral populations of genetic variants favourable in derived habitats is commonly ascribed to long‐term antagonism between purifying selection and gene flow resulting from hybridization across habitats. A largely unexplored alternative idea based on quantitative genetic models of polygenic adaptation is that variants favoured in derived habitats are neutral in ancestral populations when their frequency is relatively low. To explore the latter, we first identify genetic variants important to the adaptation of threespine stickleback fish (Gasterosteus aculeatus) to a rare derived habitat—nutrient‐depleted acidic lakes—based on whole‐genome sequence data. Sequencing marine stickleback from six locations across the Atlantic Ocean then allows us to infer that the frequency of these derived variants in the ancestral habitat is unrelated to the likely opportunity for gene flow of these variants from acidic‐adapted populations. This result is consistent with the selective neutrality of derived variants within the ancestor. Our study thus supports an underappreciated explanation for the maintenance of standing genetic variation, and calls for a better understanding of the fitness consequences of adaptive variation across habitats and genomic backgrounds.
Collapse
Affiliation(s)
- Quiterie Haenel
- Zoology, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Laurent Guerard
- Imaging Core Facility, Biozentrum, University of Basel, Basel, Switzerland
| | | | - Daniel Berner
- Zoology, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
24
|
Roesti M. Evolution: Predictability and the promise of ancient DNA. Curr Biol 2021; 31:R446-R448. [PMID: 33974873 DOI: 10.1016/j.cub.2021.03.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Is evolution predictable? Genomes from thousands-of-years-old stickleback suggest that, despite substantial stochasticity in the course of evolution, our understanding of the recent evolutionary past of this species was generally valid.
Collapse
Affiliation(s)
- Marius Roesti
- Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland.
| |
Collapse
|