1
|
Frederiksen R, Peng YR, Sampath AP, Fain GL. Evolution of rod bipolar cells and rod vision. J Physiol 2025. [PMID: 39775947 DOI: 10.1113/jp287652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Bipolar cells are vertebrate retinal interneurons conveying signals from rod and cone photoreceptors to amacrine and ganglion cells. Bipolar cells are found in all vertebrates and have many structural and molecular affinities with photoreceptors; they probably appeared very early during vertebrate evolution in conjunction with rod and cone progenitors. There are two types of bipolar cells, responding to central illumination with depolarization (ON) or hyperpolarization (OFF). In most vertebrate species, rod signals are conveyed to specialized rod bipolar cells, which sum signals from many rods and facilitate detection at the visual threshold. Lamprey, which diverged from all other vertebrates in the late Cambrian, have both rod ON and rod OFF bipolar cells, but mammals have only rod ON cells. Rod signals in mammals are conveyed to output neurons indirectly via AII (or A2) amacrine cells, which synapse onto cone ON and cone OFF bipolar-cells and then to ganglion cells. These findings raise the question of when during retinal evolution rod OFF bipolar cells were lost. Because physiological recordings have been made from rod OFF bipolar cells in both cartilaginous fishes (dogfish) and urodeles (salamanders), rod OFF bipolar cells and their circuits must have been retained in vertebrate progenitors at least until the Devonian. Recent evidence showing that zebrafish retina processes rod signals similar to those in mammals indicates that rod OFF bipolar cells were lost at least twice. The sole utilization of rod ON bipolar cells may have provided a selective advantage from increased signal-to-noise discrimination near the visual threshold. KEY POINTS: Rods and cones have many structural and molecular similarities to bipolar cells, which are retinal interneurons conveying signals from photoreceptors to the retinal output. Bipolar cells can be either ON (centre depolarizing) or OFF (centre hyperpolarizing) and either rod or cone dominant. Lamprey, which diverged from all other vertebrates 500 million years ago, have both ON and OFF bipolar cells, which can each be either rod or cone dominant. We argue that this configuration of separate rod/cone bipolar-cell pathways is representative of early vertebrates. Rod ON and rod OFF bipolars persisted at least until the progenitors of amphibians in the Devonian, but mammals and teleost fishes have only rod ON bipolar cells and convey rod OFF signals via a specialized amacrine cell. We argue that rod OFF bipolar cells were lost in at least two different lineages during vertebrate evolution, probably to increase the signal-to-noise of rod vision.
Collapse
Affiliation(s)
- Rikard Frederiksen
- Department of Ophthalmology, Stein Eye Institute, UCLA School of Medicine, Los Angeles, CA, USA
| | - Yi-Rong Peng
- Department of Ophthalmology, Stein Eye Institute, UCLA School of Medicine, Los Angeles, CA, USA
| | - Alapakkam P Sampath
- Department of Ophthalmology, Stein Eye Institute, UCLA School of Medicine, Los Angeles, CA, USA
| | - Gordon L Fain
- Department of Ophthalmology, Stein Eye Institute, UCLA School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
2
|
Günther A, Haverkamp S, Irsen S, Watkins PV, Dedek K, Mouritsen H, Briggman KL. Species-specific circuitry of double cone photoreceptors in two avian retinas. Commun Biol 2024; 7:992. [PMID: 39143253 PMCID: PMC11325025 DOI: 10.1038/s42003-024-06697-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024] Open
Abstract
In most avian retinas, double cones (consisting of a principal and accessory member) outnumber other photoreceptor types and have been associated with various functions, such as encoding luminance, sensing polarized light, and magnetoreception. However, their down-stream circuitry is poorly understood, particularly across bird species. Analysing species differences is important to understand changes in circuitry driven by ecological adaptations. We compare the ultrastructure of double cones and their postsynaptic bipolar cells between a night-migratory European robin and non-migratory chicken. We discover four previously unidentified bipolar cell types in the European robin retina, including midget-like bipolar cells mainly connected to one principal member. A downstream ganglion cell reveals a complete midget-like circuit similar to a circuit in the peripheral primate retina. Additionally, we identify a selective circuit transmitting information from a specific subset of accessory members. Our data highlight species-specific differences in double cone to bipolar cell connectivity, potentially reflecting ecological adaptations.
Collapse
Affiliation(s)
- Anja Günther
- Department of Computational Neuroethology, Max Planck Institute for Neurobiology of Behavior-caesar, Bonn, Germany.
| | - Silke Haverkamp
- Department of Computational Neuroethology, Max Planck Institute for Neurobiology of Behavior-caesar, Bonn, Germany
| | - Stephan Irsen
- Electron Microscopy and Analytics, Max Planck Institute for Neurobiology of Behavior-caesar, Bonn, Germany
| | - Paul V Watkins
- Department of Computational Neuroethology, Max Planck Institute for Neurobiology of Behavior-caesar, Bonn, Germany
| | - Karin Dedek
- Animal Navigation/Neurosensorics Group, Institute for Biology and Environmental Sciences, Carl von Ossietzky Universität Oldenburg, Carl-von-Ossietzky-Straße 9-11, Oldenburg, Germany
- Research Centre for Neurosensory Sciences, Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, Oldenburg, Germany
| | - Henrik Mouritsen
- Animal Navigation/Neurosensorics Group, Institute for Biology and Environmental Sciences, Carl von Ossietzky Universität Oldenburg, Carl-von-Ossietzky-Straße 9-11, Oldenburg, Germany
- Research Centre for Neurosensory Sciences, Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, Oldenburg, Germany
| | - Kevin L Briggman
- Department of Computational Neuroethology, Max Planck Institute for Neurobiology of Behavior-caesar, Bonn, Germany.
| |
Collapse
|
3
|
Waalkes MR, Leathery M, Peck M, Barr A, Cunill A, Hageter J, Horstick EJ. Light wavelength modulates search behavior performance in zebrafish. Sci Rep 2024; 14:16533. [PMID: 39019915 PMCID: PMC11255219 DOI: 10.1038/s41598-024-67262-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024] Open
Abstract
Visual systems have evolved to discriminate between different wavelengths of light. The ability to perceive color, or specific light wavelengths, is important as color conveys crucial information about both biotic and abiotic features in the environment. Indeed, different wavelengths of light can drive distinct patterns of activity in the vertebrate brain, yet what remains incompletely understood is whether distinct wavelengths can invoke etiologically relevant behavioral changes. To address how specific wavelengths in the visible spectrum modulate behavioral performance, we use larval zebrafish and a stereotypic light-search behavior. Prior work has shown that the cessation of light triggers a transitional light-search behavior, which we use to interrogate wavelength-dependent behavioral modulation. Using 8 narrow spectrum light sources in the visible range, we demonstrate that all wavelengths induce motor parameters consistent with search behavior, yet the magnitude of search behavior is spectrum sensitive and the underlying motor parameters are modulated in distinct patterns across short, medium, and long wavelengths. However, our data also establishes that not all motor features of search are impacted by wavelength. To define how wavelength modulates search performance, we performed additional assays with alternative wavelengths, dual wavelengths, and variable intensity. Last, we also tested blind larvae to resolve which components of wavelength dependent behavioral changes potentially include signaling from non-retinal photoreception. These findings have important implications as organisms can be exposed to varying wavelengths in laboratory and natural settings and therefore impose unique behavioral outputs.
Collapse
Affiliation(s)
- Matthew R Waalkes
- Department of Biology Morgantown, West Virginia University, Morgantown, WV, USA
| | - Maegan Leathery
- Department of Biology Morgantown, West Virginia University, Morgantown, WV, USA
| | - Madeline Peck
- Department of Biology Morgantown, West Virginia University, Morgantown, WV, USA
| | - Allison Barr
- Department of Biology Morgantown, West Virginia University, Morgantown, WV, USA
| | - Alexander Cunill
- Department of Biology Morgantown, West Virginia University, Morgantown, WV, USA
| | - John Hageter
- Department of Biology Morgantown, West Virginia University, Morgantown, WV, USA
| | - Eric J Horstick
- Department of Biology Morgantown, West Virginia University, Morgantown, WV, USA.
- Department of Neuroscience Morgantown, West Virginia University, Morgantown, WV, USA.
| |
Collapse
|
4
|
Baden T. The vertebrate retina: a window into the evolution of computation in the brain. Curr Opin Behav Sci 2024; 57:None. [PMID: 38899158 PMCID: PMC11183302 DOI: 10.1016/j.cobeha.2024.101391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 03/14/2024] [Accepted: 03/24/2024] [Indexed: 06/21/2024]
Abstract
Animal brains are probably the most complex computational machines on our planet, and like everything in biology, they are the product of evolution. Advances in developmental and palaeobiology have been expanding our general understanding of how nervous systems can change at a molecular and structural level. However, how these changes translate into altered function - that is, into 'computation' - remains comparatively sparsely explored. What, concretely, does it mean for neuronal computation when neurons change their morphology and connectivity, when new neurons appear or old ones disappear, or when transmitter systems are slowly modified over many generations? And how does evolution use these many possible knobs and dials to constantly tune computation to give rise to the amazing diversity in animal behaviours we see today? Addressing these major gaps of understanding benefits from choosing a suitable model system. Here, I present the vertebrate retina as one perhaps unusually promising candidate. The retina is ancient and displays highly conserved core organisational principles across the entire vertebrate lineage, alongside a myriad of adjustments across extant species that were shaped by the history of their visual ecology. Moreover, the computational logic of the retina is readily interrogated experimentally, and our existing understanding of retinal circuits in a handful of species can serve as an anchor when exploring the visual circuit adaptations across the entire vertebrate tree of life, from fish deep in the aphotic zone of the oceans to eagles soaring high up in the sky.
Collapse
|
5
|
Mizoguchi K, Sato M, Saito R, Koshikuni M, Sakakibara M, Manabe R, Harada Y, Uchikawa T, Ansai S, Kamei Y, Naruse K, Fukamachi S. Behavioral photosensitivity of multi-color-blind medaka: enhanced response under ultraviolet light in the absence of short-wavelength-sensitive opsins. BMC Neurosci 2023; 24:67. [PMID: 38097940 PMCID: PMC10722765 DOI: 10.1186/s12868-023-00835-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/20/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND The behavioral photosensitivity of animals could be quantified via the optomotor response (OMR), for example, and the luminous efficiency function (the range of visible light) should largely rely on the repertoire and expression of light-absorbing proteins in the retina, i.e., the opsins. In fact, the OMR under red light was suppressed in medaka lacking the red (long-wavelength sensitive [LWS]) opsin. RESULTS We investigated the ultraviolet (UV)- or blue-light sensitivity of medaka lacking the violet (short-wavelength sensitive 1 [SWS1]) and blue (SWS2) opsins. The sws1/sws2 double or sws1/sws2/lws triple mutants were as viable as the wild type. The remaining green (rhodopsin 2 [RH2]) or red opsins were not upregulated. Interestingly, the OMR of the double or triple mutants was equivalent or even increased under UV or blue light (λ = 350, 365, or 450 nm), which demonstrated that the rotating stripes (i.e., changes in luminance) could fully be recognized under UV light using RH2 alone. The OMR test using dichromatic stripes projected onto an RGB display consistently showed that the presence or absence of SWS1 and SWS2 did not affect the equiluminant conditions. CONCLUSIONS RH2 and LWS, but not SWS1 and SWS2, should predominantly contribute to the postreceptoral processes leading to the OMR or, possibly, to luminance detection in general, as the medium-wavelength-sensitive and LWS cones, but not the SWS cones, are responsible for luminance detection in humans.
Collapse
Affiliation(s)
- Kiyono Mizoguchi
- Laboratory of Evolutionary Genetics, Department of Chemical and Biological Sciences, Japan Women's University, Mejirodai 2-8-1, Bunkyo-Ku, Tokyo, 112-8681, Japan
| | - Mayu Sato
- Laboratory of Evolutionary Genetics, Department of Chemical and Biological Sciences, Japan Women's University, Mejirodai 2-8-1, Bunkyo-Ku, Tokyo, 112-8681, Japan
| | - Rina Saito
- Laboratory of Evolutionary Genetics, Department of Chemical and Biological Sciences, Japan Women's University, Mejirodai 2-8-1, Bunkyo-Ku, Tokyo, 112-8681, Japan
| | - Mayu Koshikuni
- Laboratory of Evolutionary Genetics, Department of Chemical and Biological Sciences, Japan Women's University, Mejirodai 2-8-1, Bunkyo-Ku, Tokyo, 112-8681, Japan
| | - Mana Sakakibara
- Laboratory of Evolutionary Genetics, Department of Chemical and Biological Sciences, Japan Women's University, Mejirodai 2-8-1, Bunkyo-Ku, Tokyo, 112-8681, Japan
| | - Ran Manabe
- Laboratory of Evolutionary Genetics, Department of Chemical and Biological Sciences, Japan Women's University, Mejirodai 2-8-1, Bunkyo-Ku, Tokyo, 112-8681, Japan
| | - Yumi Harada
- Laboratory of Evolutionary Genetics, Department of Chemical and Biological Sciences, Japan Women's University, Mejirodai 2-8-1, Bunkyo-Ku, Tokyo, 112-8681, Japan
| | - Tamaki Uchikawa
- Laboratory of Evolutionary Genetics, Department of Chemical and Biological Sciences, Japan Women's University, Mejirodai 2-8-1, Bunkyo-Ku, Tokyo, 112-8681, Japan
| | - Satoshi Ansai
- Laboratory of Bioresources, National Institute for Basic Biology, Aichi, 444-8585, Japan
- Graduate School of Life Sciences, Tohoku University, Miyagi, 980-8577, Japan
- Laboratory of Genome Editing Breeding, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8507, Japan
| | - Yasuhiro Kamei
- Spectrography and Bioimaging Facility, National Institute for Basic Biology, Aichi, 444-8585, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Aichi, 444-8585, Japan
| | - Kiyoshi Naruse
- Laboratory of Bioresources, National Institute for Basic Biology, Aichi, 444-8585, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Aichi, 444-8585, Japan
| | - Shoji Fukamachi
- Laboratory of Evolutionary Genetics, Department of Chemical and Biological Sciences, Japan Women's University, Mejirodai 2-8-1, Bunkyo-Ku, Tokyo, 112-8681, Japan.
| |
Collapse
|
6
|
Farre AA, Thomas P, Huang J, Poulsen RA, Owusu Poku E, Stenkamp DL. Plasticity of cone photoreceptors in adult zebrafish revealed by thyroid hormone exposure. Sci Rep 2023; 13:15697. [PMID: 37735192 PMCID: PMC10514274 DOI: 10.1038/s41598-023-42686-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023] Open
Abstract
Vertebrate color vision is predominantly mediated by the presence of multiple cone photoreceptor subtypes that are each maximally sensitive to different wavelengths of light. Thyroid hormone (TH) has been shown to be essential in the spatiotemporal patterning of cone subtypes in many species, including cone subtypes that express opsins that are encoded by tandemly replicated genes. TH has been shown to differentially regulate the tandemly replicated lws opsin genes in zebrafish, and exogenous treatments alter the expression levels of these genes in larvae and juveniles. In this study, we sought to determine whether gene expression in cone photoreceptors remains plastic to TH treatment in adults. We used a transgenic lws reporter line, multiplexed fluorescence hybridization chain reaction in situ hybridization, and qPCR to examine the extent to which cone gene expression can be altered by TH in adults. Our studies revealed that opsin gene expression, and the expression of other photoreceptor genes, remains plastic to TH treatment in adult zebrafish. In addition to retinal plasticity, exogenous TH treatment alters skin pigmentation patterns in adult zebrafish after 5 days. Taken together, our results show a remarkable level of TH-sensitive plasticity in the adult zebrafish.
Collapse
Affiliation(s)
- Ashley A Farre
- Department of Biological Sciences, University of Idaho, Moscow, ID, 83844-3015, USA
| | - Preston Thomas
- WWAMI Medical Education Program, University of Washington School of Medicine, University of Idaho, Moscow, ID, USA
| | - Johnson Huang
- University of Washington School of Medicine, Spokane, WA, USA
| | | | - Emmanuel Owusu Poku
- Department of Biological Sciences, University of Idaho, Moscow, ID, 83844-3015, USA
| | - Deborah L Stenkamp
- Department of Biological Sciences, University of Idaho, Moscow, ID, 83844-3015, USA.
| |
Collapse
|
7
|
Seifert M, Roberts PA, Kafetzis G, Osorio D, Baden T. Birds multiplex spectral and temporal visual information via retinal On- and Off-channels. Nat Commun 2023; 14:5308. [PMID: 37652912 PMCID: PMC10471707 DOI: 10.1038/s41467-023-41032-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 08/18/2023] [Indexed: 09/02/2023] Open
Abstract
In vertebrate vision, early retinal circuits divide incoming visual information into functionally opposite elementary signals: On and Off, transient and sustained, chromatic and achromatic. Together these signals can yield an efficient representation of the scene for transmission to the brain via the optic nerve. However, this long-standing interpretation of retinal function is based on mammals, and it is unclear whether this functional arrangement is common to all vertebrates. Here we show that male poultry chicks use a fundamentally different strategy to communicate information from the eye to the brain. Rather than using functionally opposite pairs of retinal output channels, chicks encode the polarity, timing, and spectral composition of visual stimuli in a highly correlated manner: fast achromatic information is encoded by Off-circuits, and slow chromatic information overwhelmingly by On-circuits. Moreover, most retinal output channels combine On- and Off-circuits to simultaneously encode, or multiplex, both achromatic and chromatic information. Our results from birds conform to evidence from fish, amphibians, and reptiles which retain the full ancestral complement of four spectral types of cone photoreceptors.
Collapse
Affiliation(s)
- Marvin Seifert
- School of Life Sciences, University of Sussex, Brighton, UK.
| | - Paul A Roberts
- School of Life Sciences, University of Sussex, Brighton, UK
| | | | - Daniel Osorio
- School of Life Sciences, University of Sussex, Brighton, UK.
| | - Tom Baden
- School of Life Sciences, University of Sussex, Brighton, UK.
- Institute of Ophthalmic Research, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
8
|
Wang X, Roberts PA, Yoshimatsu T, Lagnado L, Baden T. Amacrine cells differentially balance zebrafish color circuits in the central and peripheral retina. Cell Rep 2023; 42:112055. [PMID: 36757846 DOI: 10.1016/j.celrep.2023.112055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 11/01/2022] [Accepted: 01/18/2023] [Indexed: 02/10/2023] Open
Abstract
The vertebrate inner retina is driven by photoreceptors whose outputs are already pre-processed; in zebrafish, outer retinal circuits split "color" from "grayscale" information across four cone-photoreceptor types. It remains unclear how the inner retina processes incoming spectral information while also combining cone signals to shape grayscale functions. We address this question by imaging the light-driven responses of amacrine cells (ACs) and bipolar cells (BCs) in larval zebrafish in the presence and pharmacological absence of inner retinal inhibition. We find that ACs enhance opponency in some bipolar cells while at the same time suppressing pre-existing opponency in others, so that, depending on the retinal region, the net change in the number of color-opponent units is essentially zero. To achieve this "dynamic balance," ACs counteract intrinsic color opponency of BCs via the On channel. Consistent with these observations, Off-stratifying ACs are exclusively achromatic, while all color-opponent ACs stratify in the On sublamina.
Collapse
Affiliation(s)
- Xinwei Wang
- School of Life Sciences, University of Sussex, Biology Road, Brighton BN1 9QG, UK.
| | - Paul A Roberts
- School of Life Sciences, University of Sussex, Biology Road, Brighton BN1 9QG, UK
| | - Takeshi Yoshimatsu
- School of Life Sciences, University of Sussex, Biology Road, Brighton BN1 9QG, UK
| | - Leon Lagnado
- School of Life Sciences, University of Sussex, Biology Road, Brighton BN1 9QG, UK.
| | - Tom Baden
- School of Life Sciences, University of Sussex, Biology Road, Brighton BN1 9QG, UK; Institute of Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Strasse 7, 72076 Tübingen, Germany.
| |
Collapse
|
9
|
Color vision: Parsing spectral information for opponent color vision in the fish retina. Curr Biol 2021; 31:R1525-R1527. [PMID: 34875242 DOI: 10.1016/j.cub.2021.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Environmental light carries spectral information, perceived as color. A new study in zebrafish shows how spectral information decoded by the cones' photoreceptors is transformed by retinal bipolar cells, adding a temporal component to the signal and establishing a third opponent axis for color vision.
Collapse
|