1
|
Lam NH, Mukherjee A, Wimmer RD, Nassar MR, Chen ZS, Halassa MM. Prefrontal transthalamic uncertainty processing drives flexible switching. Nature 2025; 637:127-136. [PMID: 39537928 DOI: 10.1038/s41586-024-08180-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/08/2024] [Indexed: 11/16/2024]
Abstract
Making adaptive decisions in complex environments requires appropriately identifying sources of error1,2. The frontal cortex is critical for adaptive decisions, but its neurons show mixed selectivity to task features3 and their uncertainty estimates4, raising the question of how errors are attributed to their most likely causes. Here, by recording neural responses from tree shrews (Tupaia belangeri) performing a hierarchical decision task with rule reversals, we find that the mediodorsal thalamus independently represents cueing and rule uncertainty. This enables the relevant thalamic population to drive prefrontal reconfiguration following a reversal by appropriately attributing errors to an environmental change. Mechanistic dissection of behavioural switching revealed a transthalamic pathway for cingulate cortical error monitoring5,6 to reconfigure prefrontal executive control7. Overall, our work highlights a potential role for the thalamus in demixing cortical signals while providing a low-dimensional pathway for cortico-cortical communication.
Collapse
Affiliation(s)
- Norman H Lam
- Department of Neuroscience, Tufts University, Boston, MA, USA
| | | | - Ralf D Wimmer
- Department of Neuroscience, Tufts University, Boston, MA, USA
| | - Matthew R Nassar
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Zhe Sage Chen
- Department of Neuroscience and Physiology, Grossman School of Medicine, New York University, New York, NY, USA
- Department of Psychiatry, Grossman School of Medicine, New York University, New York, NY, USA
| | - Michael M Halassa
- Department of Neuroscience, Tufts University, Boston, MA, USA.
- Department of Psychiatry, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
2
|
Xu X, Morton MP, Denagamage S, Hudson NV, Nandy AS, Jadi MP. Spatial context non-uniformly modulates inter-laminar information flow in the primary visual cortex. Neuron 2024; 112:4081-4095.e5. [PMID: 39442514 DOI: 10.1016/j.neuron.2024.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 08/19/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024]
Abstract
Our visual experience is a result of the concerted activity of neuronal ensembles in the sensory hierarchy. Yet, how the spatial organization of objects influences this activity remains poorly understood. We investigate how inter-laminar information flow within the primary visual cortex (V1) is affected by visual stimuli in isolation or with flankers at spatial configurations that are known to cause non-uniform degradation of perception. By employing dimensionality reduction approaches to simultaneous, layer-specific population recordings, we establish that information propagation between cortical layers occurs along a structurally stable communication subspace. The spatial configuration of contextual stimuli differentially modulates inter-laminar communication efficacy, the balance of feedforward and effective feedback signaling, and contextual signaling in the superficial layers. Remarkably, these modulations mirror the spatially non-uniform aspects of perceptual degradation. Our results suggest a model of retinotopically non-uniform cortical connectivity in the output layers of V1 that influences information flow in the sensory hierarchy.
Collapse
Affiliation(s)
- Xize Xu
- Department of Neuroscience, Yale University, New Haven, CT 06510, USA; Department of Psychiatry, Yale University, New Haven, CT 06510, USA; Kavli Institute for Neuroscience, Yale University, New Haven, CT 06510, USA.
| | - Mitchell P Morton
- Department of Neuroscience, Yale University, New Haven, CT 06510, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06510, USA
| | - Sachira Denagamage
- Department of Neuroscience, Yale University, New Haven, CT 06510, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06510, USA
| | - Nyomi V Hudson
- Department of Neuroscience, Yale University, New Haven, CT 06510, USA
| | - Anirvan S Nandy
- Department of Neuroscience, Yale University, New Haven, CT 06510, USA; Department of Psychology, Yale University, New Haven, CT 06511, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06510, USA; Kavli Institute for Neuroscience, Yale University, New Haven, CT 06510, USA; Wu Tsai Institute, Yale University, New Haven, CT 06510, USA.
| | - Monika P Jadi
- Department of Neuroscience, Yale University, New Haven, CT 06510, USA; Department of Psychiatry, Yale University, New Haven, CT 06510, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06510, USA; Wu Tsai Institute, Yale University, New Haven, CT 06510, USA.
| |
Collapse
|
3
|
Zhang M, Yu Q. The representation of abstract goals in working memory is supported by task-congruent neural geometry. PLoS Biol 2024; 22:e3002461. [PMID: 39700265 DOI: 10.1371/journal.pbio.3002461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/06/2025] [Accepted: 11/29/2024] [Indexed: 12/21/2024] Open
Abstract
Successful goal-directed behavior requires the maintenance and implementation of abstract task goals on concrete stimulus information in working memory. Previous working memory research has revealed distributed neural representations of task information across cortex. However, how the distributed task representations emerge and communicate with stimulus-specific information to implement flexible goal-directed computations is still unclear. Here, leveraging electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) in human participants along with state space analyses, we provided converging evidence in support of a low-dimensional neural geometry of goal information congruent with a designed task space, which first emerged in frontal cortex during goal maintenance and then transferred to posterior cortex through frontomedial-to-posterior theta coherence for implementation on stimulus-specific representations. Importantly, the fidelity of the goal geometry was associated with memory performance. Collectively, our findings suggest that abstract goals in working memory are represented in an organized, task-congruent neural geometry for communications from frontal to posterior cortex to enable computations necessary for goal-directed behaviors.
Collapse
Affiliation(s)
- Mengya Zhang
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Qing Yu
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
4
|
Gozel O, Doiron B. Between-area communication through the lens of within-area neuronal dynamics. SCIENCE ADVANCES 2024; 10:eadl6120. [PMID: 39413191 PMCID: PMC11482330 DOI: 10.1126/sciadv.adl6120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 09/13/2024] [Indexed: 10/18/2024]
Abstract
A core problem in systems and circuits neuroscience is deciphering the origin of shared dynamics in neuronal activity: Do they emerge through local network interactions, or are they inherited from external sources? We explore this question with large-scale networks of spatially ordered spiking neuron models where a downstream network receives input from an upstream sender network. We show that linear measures of the communication between the sender and receiver networks can discriminate between emergent or inherited population dynamics. A match in the dimensionality of the sender and receiver population activities promotes faithful communication. In contrast, a nonlinear mapping between the sender to receiver activity, for example, through downstream emergent population-wide fluctuations, can impair linear communication. Our work exposes the benefits and limitations of linear measures when analyzing between-area communication in circuits with rich population-wide neuronal dynamics.
Collapse
Affiliation(s)
- Olivia Gozel
- Departments of Neurobiology and Statistics, University of Chicago, Chicago, IL 60637, USA
- Grossman Center for Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL 60637, USA
| | - Brent Doiron
- Departments of Neurobiology and Statistics, University of Chicago, Chicago, IL 60637, USA
- Grossman Center for Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
5
|
Heller CR, Hamersky GR, David SV. Task-specific invariant representation in auditory cortex. eLife 2024; 12:RP89936. [PMID: 39172655 PMCID: PMC11341091 DOI: 10.7554/elife.89936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024] Open
Abstract
Categorical sensory representations are critical for many behaviors, including speech perception. In the auditory system, categorical information is thought to arise hierarchically, becoming increasingly prominent in higher-order cortical regions. The neural mechanisms that support this robust and flexible computation remain poorly understood. Here, we studied sound representations in the ferret primary and non-primary auditory cortex while animals engaged in a challenging sound discrimination task. Population-level decoding of simultaneously recorded single neurons revealed that task engagement caused categorical sound representations to emerge in non-primary auditory cortex. In primary auditory cortex, task engagement caused a general enhancement of sound decoding that was not specific to task-relevant categories. These findings are consistent with mixed selectivity models of neural disentanglement, in which early sensory regions build an overcomplete representation of the world and allow neurons in downstream brain regions to flexibly and selectively read out behaviorally relevant, categorical information.
Collapse
Affiliation(s)
- Charles R Heller
- Neuroscience Graduate Program, Oregon Health and Science UniversityPortlandUnited States
| | - Gregory R Hamersky
- Neuroscience Graduate Program, Oregon Health and Science UniversityPortlandUnited States
| | - Stephen V David
- Otolaryngology, Oregon Health & Science UniversityPortlandUnited States
| |
Collapse
|
6
|
Young RA, Shin JD, Guo Z, Jadhav SP. Hippocampal-prefrontal communication subspaces align with behavioral and network patterns in a spatial memory task. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.601617. [PMID: 39026752 PMCID: PMC11257456 DOI: 10.1101/2024.07.08.601617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Rhythmic network states have been theorized to facilitate communication between brain regions, but how these oscillations influence communication subspaces, i.e, the low-dimensional neural activity patterns that mediate inter-regional communication, and in turn how subspaces impact behavior remains unclear. Using a spatial memory task in rats, we simultaneously recorded ensembles from hippocampal CA1 and the prefrontal cortex (PFC) to address this question. We found that task behaviors best aligned with low-dimensional, shared subspaces between these regions, rather than local activity in either region. Critically, both network oscillations and speed modulated the structure and performance of this communication subspace. Contrary to expectations, theta coherence did not better predict CA1-PFC shared activity, while theta power played a more significant role. To understand the communication space, we visualized shared CA1-PFC communication geometry using manifold techniques and found ring-like structures. We hypothesize that these shared activity manifolds are utilized to mediate the task behavior. These findings suggest that memory-guided behaviors are driven by shared CA1-PFC interactions that are dynamically modulated by oscillatory states, offering a novel perspective on the interplay between rhythms and behaviorally relevant neural communication.
Collapse
|
7
|
Horrocks EAB, Rodrigues FR, Saleem AB. Flexible neural population dynamics govern the speed and stability of sensory encoding in mouse visual cortex. Nat Commun 2024; 15:6415. [PMID: 39080254 PMCID: PMC11289260 DOI: 10.1038/s41467-024-50563-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 07/15/2024] [Indexed: 08/02/2024] Open
Abstract
Time courses of neural responses underlie real-time sensory processing and perception. How these temporal dynamics change may be fundamental to how sensory systems adapt to different perceptual demands. By simultaneously recording from hundreds of neurons in mouse primary visual cortex, we examined neural population responses to visual stimuli at sub-second timescales, during different behavioural states. We discovered that during active behavioural states characterised by locomotion, single-neurons shift from transient to sustained response modes, facilitating rapid emergence of visual stimulus tuning. Differences in single-neuron response dynamics were associated with changes in temporal dynamics of neural correlations, including faster stabilisation of stimulus-evoked changes in the structure of correlations during locomotion. Using Factor Analysis, we examined temporal dynamics of latent population responses and discovered that trajectories of population activity make more direct transitions between baseline and stimulus-encoding neural states during locomotion. This could be partly explained by dampening of oscillatory dynamics present during stationary behavioural states. Functionally, changes in temporal response dynamics collectively enabled faster, more stable and more efficient encoding of new visual information during locomotion. These findings reveal a principle of how sensory systems adapt to perceptual demands, where flexible neural population dynamics govern the speed and stability of sensory encoding.
Collapse
Affiliation(s)
- Edward A B Horrocks
- Institute of Behavioural Neuroscience, University College London, London, WC1V 0AP, UK.
| | - Fabio R Rodrigues
- Institute of Behavioural Neuroscience, University College London, London, WC1V 0AP, UK
| | - Aman B Saleem
- Institute of Behavioural Neuroscience, University College London, London, WC1V 0AP, UK.
| |
Collapse
|
8
|
Srinath R, Czarnik MM, Cohen MR. Coordinated Response Modulations Enable Flexible Use of Visual Information. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.602774. [PMID: 39071390 PMCID: PMC11275750 DOI: 10.1101/2024.07.10.602774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
We use sensory information in remarkably flexible ways. We can generalize by ignoring task-irrelevant features, report different features of a stimulus, and use different actions to report a perceptual judgment. These forms of flexible behavior are associated with small modulations of the responses of sensory neurons. While the existence of these response modulations is indisputable, efforts to understand their function have been largely relegated to theory, where they have been posited to change information coding or enable downstream neurons to read out different visual and cognitive information using flexible weights. Here, we tested these ideas using a rich, flexible behavioral paradigm, multi-neuron, multi-area recordings in primary visual cortex (V1) and mid-level visual area V4. We discovered that those response modulations in V4 (but not V1) contain the ingredients necessary to enable flexible behavior, but not via those previously hypothesized mechanisms. Instead, we demonstrated that these response modulations are precisely coordinated across the population such that downstream neurons have ready access to the correct information to flexibly guide behavior without making changes to information coding or synapses. Our results suggest a novel computational role for task-dependent response modulations: they enable flexible behavior by changing the information that gets out of a sensory area, not by changing information coding within it.
Collapse
Affiliation(s)
- Ramanujan Srinath
- Department of Neurobiology and Neuroscience Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Martyna M. Czarnik
- Department of Neurobiology and Neuroscience Institute, The University of Chicago, Chicago, IL 60637, USA
- Current affiliation: Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Marlene R. Cohen
- Department of Neurobiology and Neuroscience Institute, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
9
|
Srinath R, Ni AM, Marucci C, Cohen MR, Brainard DH. Orthogonal neural representations support perceptual judgements of natural stimuli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.14.580134. [PMID: 38464018 PMCID: PMC10925131 DOI: 10.1101/2024.02.14.580134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
In natural behavior, observers must separate relevant information from a barrage of irrelevant information. Many studies have investigated the neural underpinnings of this ability using artificial stimuli presented on simple backgrounds. Natural viewing, however, carries a set of challenges that are inaccessible using artificial stimuli, including neural responses to background objects that are task-irrelevant. An emerging body of evidence suggests that the visual abilities of humans and animals can be modeled through the linear decoding of task-relevant information from visual cortex. This idea suggests the hypothesis that irrelevant features of a natural scene should impair performance on a visual task only if their neural representations intrude on the linear readout of the task relevant feature, as would occur if the representations of task-relevant and irrelevant features are not orthogonal in the underlying neural population. We tested this hypothesis using human psychophysics and monkey neurophysiology, in response to parametrically variable naturalistic stimuli. We demonstrate that 1) the neural representation of one feature (the position of a central object) in visual area V4 is orthogonal to those of several background features, 2) the ability of human observers to precisely judge object position was largely unaffected by task-irrelevant variation in those background features, and 3) many features of the object and the background are orthogonally represented by V4 neural responses. Our observations are consistent with the hypothesis that orthogonal neural representations can support stable perception of objects and features despite the tremendous richness of natural visual scenes.
Collapse
Affiliation(s)
- Ramanujan Srinath
- equal contribution
- Department of Neurobiology and Neuroscience Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Amy M. Ni
- equal contribution
- Department of Neurobiology and Neuroscience Institute, The University of Chicago, Chicago, IL 60637, USA
- Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Claire Marucci
- Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marlene R. Cohen
- Department of Neurobiology and Neuroscience Institute, The University of Chicago, Chicago, IL 60637, USA
- equal contribution
| | - David H. Brainard
- Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA
- equal contribution
| |
Collapse
|
10
|
Ni S, Harris B, Gong P. Distributed and dynamical communication: a mechanism for flexible cortico-cortical interactions and its functional roles in visual attention. Commun Biol 2024; 7:550. [PMID: 38719883 PMCID: PMC11078951 DOI: 10.1038/s42003-024-06228-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
Perceptual and cognitive processing relies on flexible communication among cortical areas; however, the underlying neural mechanism remains unclear. Here we report a mechanism based on the realistic spatiotemporal dynamics of propagating wave patterns in neural population activity. Using a biophysically plausible, multiarea spiking neural circuit model, we demonstrate that these wave patterns, characterized by their rich and complex dynamics, can account for a wide variety of empirically observed neural processes. The coordinated interactions of these wave patterns give rise to distributed and dynamic communication (DDC) that enables flexible and rapid routing of neural activity across cortical areas. We elucidate how DDC unifies the previously proposed oscillation synchronization-based and subspace-based views of interareal communication, offering experimentally testable predictions that we validate through the analysis of Allen Institute Neuropixels data. Furthermore, we demonstrate that DDC can be effectively modulated during attention tasks through the interplay of neuromodulators and cortical feedback loops. This modulation process explains many neural effects of attention, underscoring the fundamental functional role of DDC in cognition.
Collapse
Affiliation(s)
- Shencong Ni
- School of Physics, University of Sydney, Sydney, NSW, Australia
| | - Brendan Harris
- School of Physics, University of Sydney, Sydney, NSW, Australia
| | - Pulin Gong
- School of Physics, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
11
|
Ritz H, Shenhav A. Orthogonal neural encoding of targets and distractors supports multivariate cognitive control. Nat Hum Behav 2024; 8:945-961. [PMID: 38459265 PMCID: PMC11219097 DOI: 10.1038/s41562-024-01826-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/15/2024] [Indexed: 03/10/2024]
Abstract
The complex challenges of our mental life require us to coordinate multiple forms of neural information processing. Recent behavioural studies have found that people can coordinate multiple forms of attention, but the underlying neural control process remains obscure. We hypothesized that the brain implements multivariate control by independently monitoring feature-specific difficulty and independently prioritizing feature-specific processing. During functional MRI, participants performed a parametric conflict task that separately tags target and distractor processing. Consistent with feature-specific monitoring, univariate analyses revealed spatially segregated encoding of target and distractor difficulty in the dorsal anterior cingulate cortex. Consistent with feature-specific attentional priority, our encoding geometry analysis revealed overlapping but orthogonal representations of target and distractor coherence in the intraparietal sulcus. Coherence representations were mediated by control demands and aligned with both performance and frontoparietal activity, consistent with top-down attention. Together, these findings provide evidence for the neural geometry necessary to coordinate multivariate cognitive control.
Collapse
Affiliation(s)
- Harrison Ritz
- Cognitive, Linguistic & Psychological Science, Brown University, Providence, RI, USA.
- Carney Institute for Brain Science, Brown University, Providence, RI, USA.
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
| | - Amitai Shenhav
- Cognitive, Linguistic & Psychological Science, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
| |
Collapse
|
12
|
Johnston R, Smith MA. Brain-wide arousal signals are segregated from movement planning in the superior colliculus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591284. [PMID: 38746466 PMCID: PMC11092505 DOI: 10.1101/2024.04.26.591284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The superior colliculus (SC) is traditionally considered a brain region that functions as an interface between processing visual inputs and generating eye movement outputs. Although its role as a primary reflex center is thought to be conserved across vertebrate species, evidence suggests that the SC has evolved to support higher-order cognitive functions including spatial attention. When it comes to oculomotor areas such as the SC, it is critical that high precision fixation and eye movements are maintained even in the presence of signals related to ongoing changes in cognition and brain state, both of which have the potential to interfere with eye position encoding and movement generation. In this study, we recorded spiking responses of neuronal populations in the SC while monkeys performed a memory-guided saccade task and found that the activity of some of the neurons fluctuated over tens of minutes. By leveraging the statistical power afforded by high-dimensional neuronal recordings, we were able to identify a low-dimensional pattern of activity that was correlated with the subjects' arousal levels. Importantly, we found that the spiking responses of deep-layer SC neurons were less correlated with this brain-wide arousal signal, and that neural activity associated with changes in pupil size and saccade tuning did not overlap in population activity space with movement initiation signals. Taken together, these findings provide a framework for understanding how signals related to cognition and arousal can be embedded in the population activity of oculomotor structures without compromising the fidelity of the motor output.
Collapse
Affiliation(s)
- Richard Johnston
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, USA
- Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, USA
| | - Matthew A. Smith
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, USA
- Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, USA
| |
Collapse
|
13
|
Han S, Helmchen F. Behavior-relevant top-down cross-modal predictions in mouse neocortex. Nat Neurosci 2024; 27:298-308. [PMID: 38177341 DOI: 10.1038/s41593-023-01534-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024]
Abstract
Animals adapt to a constantly changing world by predicting their environment and the consequences of their actions. The predictive coding hypothesis proposes that the brain generates predictions and continuously compares them with sensory inputs to guide behavior. However, how the brain reconciles conflicting top-down predictions and bottom-up sensory information remains unclear. To address this question, we simultaneously imaged neuronal populations in the mouse somatosensory barrel cortex and posterior parietal cortex during an auditory-cued texture discrimination task. In mice that had learned the task with fixed tone-texture matching, the presentation of mismatched pairing induced conflicts between tone-based texture predictions and actual texture inputs. When decisions were based on the predicted rather than the actual texture, top-down information flow was dominant and texture representations in both areas were modified, whereas dominant bottom-up information flow led to correct representations and behavioral choice. Our findings provide evidence for hierarchical predictive coding in the mouse neocortex.
Collapse
Affiliation(s)
- Shuting Han
- Brain Research Institute, University of Zurich, Zurich, Switzerland.
| | - Fritjof Helmchen
- Brain Research Institute, University of Zurich, Zurich, Switzerland.
- Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland.
- University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
14
|
Jiang Y, He S, Zhang J. Different roles of response covariability and its attentional modulation in the sensory cortex and posterior parietal cortex. Proc Natl Acad Sci U S A 2023; 120:e2216942120. [PMID: 37812698 PMCID: PMC10589615 DOI: 10.1073/pnas.2216942120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 08/16/2023] [Indexed: 10/11/2023] Open
Abstract
The covariability of neural responses in the neuron population is highly relevant to the information encoding. Cognitive processes, such as attention, are found to modulate the covariability in the visual cortex to improve information encoding, suggesting the computational advantage of covariability modulation in the neural system. However, is the covariability modulation a general mechanism for enhanced information encoding throughout the information processing pathway, or only adopted in certain processing stages, depending on the property of neural representation? Here, with ultrahigh-field MRI, we examined the covariability, which was estimated by noise correlation, in different attention states in the early visual cortex and posterior parietal cortex (PPC) of the human brain, and its relationship to the quality of information encoding. Our results showed that while attention decreased the covariability to improve the stimulus encoding in the early visual cortex, covariability modulation was not observed in the PPC, where covariability had little impact on information encoding. Further, attention promoted the information flow between the early visual cortex and PPC, with an apparent emphasis on a flow from high- to low-dimensional representations, suggesting the existence of a reduction in the dimensionality of neural representation from the early visual cortex to PPC. Finally, the neural response patterns in the PPC could predict the amplitudes of covariability change in the early visual cortex, indicating a top-down control from the PPC to early visual cortex. Our findings reveal the specific roles of the sensory cortex and PPC during attentional modulation of covariability, determined by the complexity and fidelity of the neural representation in each cortical region.
Collapse
Affiliation(s)
- Yong Jiang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, China
| | - Sheng He
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, China
- Institute of AI, Hefei Comprehensive National Science Center, Hefei230088, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Jiedong Zhang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing100101, China
- University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
15
|
Comeaux P, Clark K, Noudoost B. A recruitment through coherence theory of working memory. Prog Neurobiol 2023; 228:102491. [PMID: 37393039 PMCID: PMC10530428 DOI: 10.1016/j.pneurobio.2023.102491] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 07/03/2023]
Abstract
The interactions between prefrontal cortex and other areas during working memory have been studied for decades. Here we outline a conceptual framework describing interactions between these areas during working memory, and review evidence for key elements of this model. We specifically suggest that a top-down signal sent from prefrontal to sensory areas drives oscillations in these areas. Spike timing within sensory areas becomes locked to these working-memory-driven oscillations, and the phase of spiking conveys information about the representation available within these areas. Downstream areas receiving these phase-locked spikes from sensory areas can recover this information via a combination of coherent oscillations and gating of input efficacy based on the phase of their local oscillations. Although the conceptual framework is based on prefrontal interactions with sensory areas during working memory, we also discuss the broader implications of this framework for flexible communication between brain areas in general.
Collapse
Affiliation(s)
- Phillip Comeaux
- Dept. of Biomedical Engineering, University of Utah, 36 S. Wasatch Drive, Salt Lake City, UT 84112, USA; Dept. of Ophthalmology and Visual Sciences, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA
| | - Kelsey Clark
- Dept. of Ophthalmology and Visual Sciences, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA
| | - Behrad Noudoost
- Dept. of Ophthalmology and Visual Sciences, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA.
| |
Collapse
|
16
|
Zheng Z, Hu Q, Bu X, Jiang H, Sui X, Li L, Chai X, Chen Y. Spatial Attention Modulates Neuronal Interactions between Simple and Complex Cells in V1. Int J Mol Sci 2023; 24:ijms24098229. [PMID: 37175939 PMCID: PMC10179430 DOI: 10.3390/ijms24098229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/25/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
Visual perception is profoundly modulated by spatial attention, which can selectively prioritize goal-related information. Previous studies found spatial attention facilitated the efficacy of neuronal communication between visual cortices with hierarchical organizations. In the primary visual cortex (V1), there is also a hierarchical connection between simple (S) and complex (C) cells. We wonder whether and how spatial attention modulates neuronal communication within V1, especially for neuronal pairs with heterogeneous visual input. We simultaneously recorded the pairs' activity from macaque monkeys when they performed a spatial-attention-involved task, then applied likelihood-based Granger causality analysis to explore attentional modulation of neuronal interactions. First, a significant attention-related decrease in Granger causality was found in S-C pairs, which primarily displayed in the S-to-C feedforward connection. Second, the interaction strength of the feedforward connection was significantly higher than that of the feedback under attend toward (AT) conditions. Although information flow did not alter as the attentional focus shifted, the strength of communications between target- and distractor-stimuli-covered neurons differed only when attending to complex cells' receptive fields (RFs). Furthermore, pairs' communications depended on the attentional modulation of neurons' firing rates. Our findings demonstrate spatial attention does not induce specific information flow but rather amplifies directed communication within V1.
Collapse
Affiliation(s)
- Zhiyan Zheng
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiyi Hu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiangdong Bu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hongru Jiang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaohong Sui
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liming Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinyu Chai
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yao Chen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
17
|
Abstract
An impactful understanding of the brain will require entirely new approaches and unprecedented collaborative efforts. The next steps will require brain researchers to develop theoretical frameworks that allow them to tease apart dependencies and causality in complex dynamical systems, as well as the ability to maintain awe while not getting lost in the effort. The outstanding question is: How do we go about it?
Collapse
|
18
|
Gokcen E, Jasper AI, Semedo JD, Zandvakili A, Kohn A, Machens CK, Yu BM. Disentangling the flow of signals between populations of neurons. NATURE COMPUTATIONAL SCIENCE 2022; 2:512-525. [PMID: 38177794 PMCID: PMC11442031 DOI: 10.1038/s43588-022-00282-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 06/21/2022] [Indexed: 01/06/2024]
Abstract
Technological advances now allow us to record from large populations of neurons across multiple brain areas. These recordings may illuminate how communication between areas contributes to brain function, yet a substantial barrier remains: how do we disentangle the concurrent, bidirectional flow of signals between populations of neurons? We propose here a dimensionality reduction framework, delayed latents across groups (DLAG), that disentangles signals relayed in each direction, identifies how these signals are represented by each population and characterizes how they evolve within and across trials. We demonstrate that DLAG performs well on synthetic datasets similar in scale to current neurophysiological recordings. Then we study simultaneously recorded populations in primate visual areas V1 and V2, where DLAG reveals signatures of bidirectional yet selective communication. Our framework lays a foundation for dissecting the intricate flow of signals across populations of neurons, and how this signalling contributes to cortical computation.
Collapse
Affiliation(s)
- Evren Gokcen
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Anna I Jasper
- Dominick Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, USA
| | - João D Semedo
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Amin Zandvakili
- Dominick Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, USA
| | - Adam Kohn
- Dominick Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, USA
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, New York, NY, USA
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Christian K Machens
- Champalimaud Neuroscience Programme, Champalimaud Foundation, Lisbon, Portugal
| | - Byron M Yu
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
19
|
|