1
|
Wischnewski M, Tran H, Zhao Z, Shirinpour S, Haigh ZJ, Rotteveel J, Perera ND, Alekseichuk I, Zimmermann J, Opitz A. Induced neural phase precession through exogenous electric fields. Nat Commun 2024; 15:1687. [PMID: 38402188 PMCID: PMC10894208 DOI: 10.1038/s41467-024-45898-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 02/06/2024] [Indexed: 02/26/2024] Open
Abstract
The gradual shifting of preferred neural spiking relative to local field potentials (LFPs), known as phase precession, plays a prominent role in neural coding. Correlations between the phase precession and behavior have been observed throughout various brain regions. As such, phase precession is suggested to be a global neural mechanism that promotes local neuroplasticity. However, causal evidence and neuroplastic mechanisms of phase precession are lacking so far. Here we show a causal link between LFP dynamics and phase precession. In three experiments, we modulated LFPs in humans, a non-human primate, and computational models using alternating current stimulation. We show that continuous stimulation of motor cortex oscillations in humans lead to a gradual phase shift of maximal corticospinal excitability by ~90°. Further, exogenous alternating current stimulation induced phase precession in a subset of entrained neurons (~30%) in the non-human primate. Multiscale modeling of realistic neural circuits suggests that alternating current stimulation-induced phase precession is driven by NMDA-mediated synaptic plasticity. Altogether, the three experiments provide mechanistic and causal evidence for phase precession as a global neocortical process. Alternating current-induced phase precession and consequently synaptic plasticity is crucial for the development of novel therapeutic neuromodulation methods.
Collapse
Affiliation(s)
- Miles Wischnewski
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA.
| | - Harry Tran
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Zhihe Zhao
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Sina Shirinpour
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Zachary J Haigh
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Jonna Rotteveel
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Nipun D Perera
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Ivan Alekseichuk
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Jan Zimmermann
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Alexander Opitz
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
2
|
Sloin HE, Spivak L, Levi A, Gattegno R, Someck S, Stark E. Local activation of CA1 pyramidal cells induces theta-phase precession. Science 2024; 383:551-558. [PMID: 38301006 DOI: 10.1126/science.adk2456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/21/2023] [Indexed: 02/03/2024]
Abstract
Hippocampal theta-phase precession is involved in spatiotemporal coding and in generating multineural spike sequences, but how precession originates remains unresolved. To determine whether precession can be generated directly in hippocampal area CA1 and disambiguate multiple competing mechanisms, we used closed-loop optogenetics to impose artificial place fields in pyramidal cells of mice running on a linear track. More than one-third of the CA1 artificial fields exhibited synthetic precession that persisted for a full theta cycle. By contrast, artificial fields in the parietal cortex did not exhibit synthetic precession. These findings are incompatible with precession models based on inheritance, dual-input, spreading activation, inhibition-excitation summation, or somato-dendritic competition. Thus, a precession generator resides locally within CA1.
Collapse
Affiliation(s)
- Hadas E Sloin
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Lidor Spivak
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Amir Levi
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Roni Gattegno
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Shirly Someck
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Eran Stark
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol Department of Neurobiology, Haifa University, Haifa 3103301, Israel
| |
Collapse
|
3
|
Wischnewski M, Tran H, Zhao Z, Shirinpour S, Haigh Z, Rotteveel J, Perera N, Alekseichuk I, Zimmermann J, Opitz A. Induced neural phase precession through exogeneous electric fields. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.31.535073. [PMID: 37034780 PMCID: PMC10081336 DOI: 10.1101/2023.03.31.535073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
The gradual shifting of preferred neural spiking relative to local field potentials (LFPs), known as phase precession, plays a prominent role in neural coding. Correlations between the phase precession and behavior have been observed throughout various brain regions. As such, phase precession is suggested to be a global neural mechanism that promotes local neuroplasticity. However, causal evidence and neuroplastic mechanisms of phase precession are lacking so far. Here we show a causal link between LFP dynamics and phase precession. In three experiments, we modulated LFPs in humans, a non-human primate, and computational models using alternating current stimulation. We show that continuous stimulation of motor cortex oscillations in humans lead to a gradual phase shift of maximal corticospinal excitability by ~90°. Further, exogenous alternating current stimulation induced phase precession in a subset of entrained neurons (~30%) in the non-human primate. Multiscale modeling of realistic neural circuits suggests that alternating current stimulation-induced phase precession is driven by NMDA-mediated synaptic plasticity. Altogether, the three experiments provide mechanistic and causal evidence for phase precession as a global neocortical process. Alternating current-induced phase precession and consequently synaptic plasticity is crucial for the development of novel therapeutic neuromodulation methods.
Collapse
Affiliation(s)
- M. Wischnewski
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - H. Tran
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Z. Zhao
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - S. Shirinpour
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Z.J. Haigh
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - J. Rotteveel
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - N.D. Perera
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - I. Alekseichuk
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - J. Zimmermann
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - A. Opitz
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
4
|
Brodt S, Inostroza M, Niethard N, Born J. Sleep-A brain-state serving systems memory consolidation. Neuron 2023; 111:1050-1075. [PMID: 37023710 DOI: 10.1016/j.neuron.2023.03.005] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/23/2023] [Accepted: 03/06/2023] [Indexed: 04/08/2023]
Abstract
Although long-term memory consolidation is supported by sleep, it is unclear how it differs from that during wakefulness. Our review, focusing on recent advances in the field, identifies the repeated replay of neuronal firing patterns as a basic mechanism triggering consolidation during sleep and wakefulness. During sleep, memory replay occurs during slow-wave sleep (SWS) in hippocampal assemblies together with ripples, thalamic spindles, neocortical slow oscillations, and noradrenergic activity. Here, hippocampal replay likely favors the transformation of hippocampus-dependent episodic memory into schema-like neocortical memory. REM sleep following SWS might balance local synaptic rescaling accompanying memory transformation with a sleep-dependent homeostatic process of global synaptic renormalization. Sleep-dependent memory transformation is intensified during early development despite the immaturity of the hippocampus. Overall, beyond its greater efficacy, sleep consolidation differs from wake consolidation mainly in that it is supported, rather than impaired, by spontaneous hippocampal replay activity possibly gating memory formation in neocortex.
Collapse
Affiliation(s)
- Svenja Brodt
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany
| | - Marion Inostroza
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Niels Niethard
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; Werner Reichert Center for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
5
|
George TM, de Cothi W, Stachenfeld KL, Barry C. Rapid learning of predictive maps with STDP and theta phase precession. eLife 2023; 12:e80663. [PMID: 36927826 PMCID: PMC10019887 DOI: 10.7554/elife.80663] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 02/26/2023] [Indexed: 03/18/2023] Open
Abstract
The predictive map hypothesis is a promising candidate principle for hippocampal function. A favoured formalisation of this hypothesis, called the successor representation, proposes that each place cell encodes the expected state occupancy of its target location in the near future. This predictive framework is supported by behavioural as well as electrophysiological evidence and has desirable consequences for both the generalisability and efficiency of reinforcement learning algorithms. However, it is unclear how the successor representation might be learnt in the brain. Error-driven temporal difference learning, commonly used to learn successor representations in artificial agents, is not known to be implemented in hippocampal networks. Instead, we demonstrate that spike-timing dependent plasticity (STDP), a form of Hebbian learning, acting on temporally compressed trajectories known as 'theta sweeps', is sufficient to rapidly learn a close approximation to the successor representation. The model is biologically plausible - it uses spiking neurons modulated by theta-band oscillations, diffuse and overlapping place cell-like state representations, and experimentally matched parameters. We show how this model maps onto known aspects of hippocampal circuitry and explains substantial variance in the temporal difference successor matrix, consequently giving rise to place cells that demonstrate experimentally observed successor representation-related phenomena including backwards expansion on a 1D track and elongation near walls in 2D. Finally, our model provides insight into the observed topographical ordering of place field sizes along the dorsal-ventral axis by showing this is necessary to prevent the detrimental mixing of larger place fields, which encode longer timescale successor representations, with more fine-grained predictions of spatial location.
Collapse
Affiliation(s)
- Tom M George
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College LondonLondonUnited Kingdom
| | - William de Cothi
- Research Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | | | - Caswell Barry
- Research Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| |
Collapse
|