1
|
Yildiz A. Mechanism and regulation of kinesin motors. Nat Rev Mol Cell Biol 2024:10.1038/s41580-024-00780-6. [PMID: 39394463 DOI: 10.1038/s41580-024-00780-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2024] [Indexed: 10/13/2024]
Abstract
Kinesins are a diverse superfamily of microtubule-based motors that perform fundamental roles in intracellular transport, cytoskeletal dynamics and cell division. These motors share a characteristic motor domain that powers unidirectional motility and force generation along microtubules, and they possess unique tail domains that recruit accessory proteins and facilitate oligomerization, regulation and cargo recognition. The location, direction and timing of kinesin-driven processes are tightly regulated by various cofactors, adaptors, microtubule tracks and microtubule-associated proteins. This Review focuses on recent structural and functional studies that reveal how members of the kinesin superfamily use the energy of ATP hydrolysis to transport cargoes, depolymerize microtubules and regulate microtubule dynamics. I also survey how accessory proteins and post-translational modifications regulate the autoinhibition, cargo binding and motility of some of the best-studied kinesins. Despite much progress, the mechanism and regulation of kinesins are still emerging, and unresolved questions can now be tackled using newly developed approaches in biophysics and structural biology.
Collapse
Affiliation(s)
- Ahmet Yildiz
- Physics Department, University of California at Berkeley, Berkeley, CA, USA.
- Department of Molecular and Cellular Biology, University of California at Berkeley, Berkeley, CA, USA.
| |
Collapse
|
2
|
Bensel BM, Previs SB, Bookwalter C, Trybus KM, Walcott S, Warshaw DM. Kinesin-1-transported liposomes prefer to go straight in 3D microtubule intersections by a mechanism shared by other molecular motors. Proc Natl Acad Sci U S A 2024; 121:e2407330121. [PMID: 38980901 PMCID: PMC11260143 DOI: 10.1073/pnas.2407330121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 05/24/2024] [Indexed: 07/11/2024] Open
Abstract
Kinesin-1 ensembles maneuver vesicular cargoes through the three-dimensional (3D) intracellular microtubule (MT) network. To define how such cargoes navigate MT intersections, we first determined how many kinesins from an ensemble on a lipid-based cargo simultaneously engage a MT, and then determined the directional outcomes (straight, turn, terminate) for liposome cargoes at perpendicular MT intersections. Run lengths of 350-nm diameter liposomes decorated with up to 20, constitutively active, truncated kinesin-1 KIF5B (K543) were longer than single motor transported cargo, suggesting multiple motor engagement. However, detachment forces of lipid-coated beads with ~20 kinesins, measured using an optical trap, showed no more than three simultaneously engaged motors, with a single engaged kinesin predominating, indicating anticooperative MT binding. At two-dimensional (2D) and 3D in vitro MT intersections, liposomes frequently paused (~2 s), suggesting kinesins simultaneously bind both MTs and engage in a tug-of-war. Liposomes showed no directional outcome bias in 2D (1.1 straight:turn ratio) but preferentially went straight (1.8 straight:turn ratio) in 3D intersections. To explain these data, we developed a mathematical model of liposome transport incorporating the known mechanochemistry of kinesins, which diffuse on the liposome surface, and have stiff tails in both compression and extension that impact how motors engage the intersecting MTs. Our model predicts the ~3 engaged motor limit observed in the optical trap and the bias toward going straight in 3D intersections. The striking similarity of these results to our previous study of liposome transport by myosin Va suggests a "universal" mechanism by which cargoes navigate 3D intersections.
Collapse
Affiliation(s)
- Brandon M. Bensel
- Department of Molecular Physiology and Biophysics, University of Vermont Larner College of Medicine, Burlington, VT05405
| | - Samantha Beck Previs
- Department of Molecular Physiology and Biophysics, University of Vermont Larner College of Medicine, Burlington, VT05405
| | - Carol Bookwalter
- Department of Molecular Physiology and Biophysics, University of Vermont Larner College of Medicine, Burlington, VT05405
| | - Kathleen M. Trybus
- Department of Molecular Physiology and Biophysics, University of Vermont Larner College of Medicine, Burlington, VT05405
| | - Sam Walcott
- Department of Mathematical Sciences, and Bioinformatics and Computational Biology, Worcester Polytechnic Institute, Worcester, MA01609
| | - David M. Warshaw
- Department of Molecular Physiology and Biophysics, University of Vermont Larner College of Medicine, Burlington, VT05405
| |
Collapse
|
3
|
Yan Y, Dai L, Wang T, Zhang Y. Damage-repair events increase the instability of cortical microtubules in Arabidopsis. Mol Biol Cell 2024; 35:ar86. [PMID: 38656813 PMCID: PMC11238082 DOI: 10.1091/mbc.e23-11-0461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/09/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024] Open
Abstract
Microtubules rely on dynamic assembly and disassembly for their functions. Increasing evidences support that the damage-repair of microtubule lattices can affect microtubule dynamics in vitro and in animal cells. Here we successfully established a way for visualizing damage-repair sites on microtubule lattices in plant cells, via labeling the tubulin proteins with the photoconvertible fluorescent protein mEOS3.2. We observed that the crossovers of the microtubule lattice were more prone to be damaged and repaired, with the frequency of damage-repair events positively correlated with the crossing angle between microtubules. The microtubules with damage-repair events displayed shorter lifespans and significantly increased severing frequency compared with the undamaged microtubules. These observations suggested that the damage-repair events promoted instability of cortical microtubules in plant cells.
Collapse
Affiliation(s)
- Yu Yan
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, China
| | - Liufeng Dai
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, China
- Center for Biological Science and Technology, Zhuhai-Macao Biotechnology Joint Laboratory, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai 519087, China
| | - Ting Wang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, China
| | - Yi Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
4
|
Andreu-Carbó M, Egoldt C, Velluz MC, Aumeier C. Microtubule damage shapes the acetylation gradient. Nat Commun 2024; 15:2029. [PMID: 38448418 PMCID: PMC10918088 DOI: 10.1038/s41467-024-46379-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/16/2024] [Indexed: 03/08/2024] Open
Abstract
The properties of single microtubules within the microtubule network can be modulated through post-translational modifications (PTMs), including acetylation within the lumen of microtubules. To access the lumen, the enzymes could enter through the microtubule ends and at damage sites along the microtubule shaft. Here we show that the acetylation profile depends on damage sites, which can be caused by the motor protein kinesin-1. Indeed, the entry of the deacetylase HDAC6 into the microtubule lumen can be modulated by kinesin-1-induced damage sites. In contrast, activity of the microtubule acetylase αTAT1 is independent of kinesin-1-caused shaft damage. On a cellular level, our results show that microtubule acetylation distributes in an exponential gradient. This gradient results from tight regulation of microtubule (de)acetylation and scales with the size of the cells. The control of shaft damage represents a mechanism to regulate PTMs inside the microtubule by giving access to the lumen.
Collapse
Affiliation(s)
| | - Cornelia Egoldt
- Department of Biochemistry, University of Geneva, 1211, Geneva, Switzerland
| | | | - Charlotte Aumeier
- Department of Biochemistry, University of Geneva, 1211, Geneva, Switzerland.
| |
Collapse
|
5
|
Rudyak VY, Lopushenko A, Palyulin VV, Chertovich AV. Long-range ordering of velocity-aligned active polymers. J Chem Phys 2024; 160:044905. [PMID: 38275191 DOI: 10.1063/5.0181252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
In this work, we study the effect of covalent bonding on the behavior of non-equilibrium systems with the active force acting on particles along their velocity. Self-ordering of single particles does not occur in this model. However, starting from some critical polymerization degree, the ordered state is observed. It is homogeneous and exhibits no phase separation. In the ordered state, the chains prefer a near-two-dimensional configuration and all move in one direction. Importantly, the self-ordering is obtained only at intermediate active force magnitudes. At high magnitudes, the transition from the disordered to ordered state is suppressed by the swelling of the chains during the transition, as we show by the transition kinetics analysis. We demonstrate the bistable behavior of the system in a particular range of polymerization degrees, amplitudes of active force, densities, and thermostat temperatures. Overall, we show that covalent bonding greatly aids the self-ordering in this active particle model, in contrast to active Brownian particles.
Collapse
Affiliation(s)
- Vladimir Yu Rudyak
- Semenov Federal Research Center for Chemical Physics, Kosygina, 4, 119991 Moscow, Russia
| | - Alexander Lopushenko
- Semenov Federal Research Center for Chemical Physics, Kosygina, 4, 119991 Moscow, Russia
| | - Vladimir V Palyulin
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, 121205 Moscow, Russia
| | - Alexander V Chertovich
- Semenov Federal Research Center for Chemical Physics, Kosygina, 4, 119991 Moscow, Russia
- Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
6
|
Liu X, Gennerich A. Insect Cell-Based Expression of Cytoskeletal Motor Proteins for Single-Molecule Studies. Methods Mol Biol 2024; 2694:69-90. [PMID: 37824000 PMCID: PMC10880877 DOI: 10.1007/978-1-0716-3377-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Cytoskeletal motor proteins are essential molecular machines that hydrolyze ATP to generate force and motion along cytoskeletal filaments. Members of the dynein and kinesin superfamilies play critical roles in transporting biological payloads (such as proteins, organelles, and vesicles) along microtubule pathways, cause the beating of flagella and cilia, and act within the mitotic and meiotic spindles to segregate replicated chromosomes to progeny cells. Understanding the underlying mechanisms and behaviors of motor proteins is critical to provide better strategies for the treatment of motor protein-related diseases. Here, we provide detailed protocols for the recombinant expression of the Kinesin-1 motor KIF5C using a baculovirus/insect cell system and provide updated protocols for performing single-molecule studies using total internal reflection fluorescence microscopy and optical tweezers to study the motility and force generation of the purified motor.
Collapse
Affiliation(s)
- Xinglei Liu
- Department of Biochemistry and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Arne Gennerich
- Department of Biochemistry and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
7
|
Bensel BM, Previs S, Bookwalter C, Trybus KM, Walcott S, Warshaw DM. "Spatial Relationships Matter: Kinesin-1 Molecular Motors Transport Liposome Cargo Through 3D Microtubule Intersections In Vitro". BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.01.569616. [PMID: 38076816 PMCID: PMC10705568 DOI: 10.1101/2023.12.01.569616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Kinesin-1 ensembles maneuver vesicular cargoes through intersections in the 3-dimensional (3D) intracellular microtubule (MT) network. To characterize directional outcomes (straight, turn, terminate) at MT intersections, we challenge 350 nm fluid-like liposomes transported by ~10 constitutively active, truncated kinesin-1 KIF5B (K543) with perpendicular 2-dimensional (2D) and 3D intersections in vitro. Liposomes frequently pause at 2D and 3D intersections (~2s), suggesting that motor teams can simultaneously engage each MT and undergo a tug-of-war. Once resolved, the directional outcomes at 2D MT intersections have a straight to turn ratio of 1.1; whereas at 3D MT intersections, liposomes more frequently go straight (straight to turn ratio of 1.8), highlighting that spatial relationships at intersections bias directional outcomes. Using 3D super-resolution microscopy (STORM), we define the gap between intersecting MTs and the liposome azimuthal approach angle heading into the intersection. We develop an in silico model in which kinesin-1 motors diffuse on the liposome surface, simultaneously engage the intersecting MTs, generate forces and detach from MTs governed by the motors' mechanochemical cycle, and undergo a tug-of-war with the winning team determining the directional outcome in 3D. The model predicts that 1-3 motors typically engage the MT, consistent with optical trapping measurements. Modeled liposomes also predominantly go straight through 3D intersections over a range of intersection gaps and liposome approach angles, even when obstructed by the crossing MT. Our observations and modeling offer mechanistic insights into how cells might tune the MT cytoskeleton, cargo, and motors to modulate cargo transport.
Collapse
Affiliation(s)
- Brandon M Bensel
- Department of Molecular Physiology and Biophysics, University of Vermont Larner College of Medicine, Burlington, VT 05405
| | - Samantha Previs
- Department of Molecular Physiology and Biophysics, University of Vermont Larner College of Medicine, Burlington, VT 05405
| | - Carol Bookwalter
- Department of Molecular Physiology and Biophysics, University of Vermont Larner College of Medicine, Burlington, VT 05405
| | - Kathleen M Trybus
- Department of Molecular Physiology and Biophysics, University of Vermont Larner College of Medicine, Burlington, VT 05405
| | - Sam Walcott
- Department of Mathematical Sciences, Worcester Polytechnic Institute, Worcester, MA 01609
| | - David M Warshaw
- Department of Molecular Physiology and Biophysics, University of Vermont Larner College of Medicine, Burlington, VT 05405
| |
Collapse
|
8
|
Lawrence EJ, Chatterjee S, Zanic M. More is different: Reconstituting complexity in microtubule regulation. J Biol Chem 2023; 299:105398. [PMID: 37898404 PMCID: PMC10694663 DOI: 10.1016/j.jbc.2023.105398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 10/30/2023] Open
Abstract
Microtubules are dynamic cytoskeletal filaments that undergo stochastic switching between phases of polymerization and depolymerization-a behavior known as dynamic instability. Many important cellular processes, including cell motility, chromosome segregation, and intracellular transport, require complex spatiotemporal regulation of microtubule dynamics. This coordinated regulation is achieved through the interactions of numerous microtubule-associated proteins (MAPs) with microtubule ends and lattices. Here, we review the recent advances in our understanding of microtubule regulation, focusing on results arising from biochemical in vitro reconstitution approaches using purified multiprotein ensembles. We discuss how the combinatory effects of MAPs affect both the dynamics of individual microtubule ends, as well as the stability and turnover of the microtubule lattice. In addition, we highlight new results demonstrating the roles of protein condensates in microtubule regulation. Our overall intent is to showcase how lessons learned from reconstitution approaches help unravel the regulatory mechanisms at play in complex cellular environments.
Collapse
Affiliation(s)
- Elizabeth J Lawrence
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Saptarshi Chatterjee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Marija Zanic
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA; Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee, USA; Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA.
| |
Collapse
|
9
|
Smith G, Sweeney ST, O’Kane CJ, Prokop A. How neurons maintain their axons long-term: an integrated view of axon biology and pathology. Front Neurosci 2023; 17:1236815. [PMID: 37564364 PMCID: PMC10410161 DOI: 10.3389/fnins.2023.1236815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/06/2023] [Indexed: 08/12/2023] Open
Abstract
Axons are processes of neurons, up to a metre long, that form the essential biological cables wiring nervous systems. They must survive, often far away from their cell bodies and up to a century in humans. This requires self-sufficient cell biology including structural proteins, organelles, and membrane trafficking, metabolic, signalling, translational, chaperone, and degradation machinery-all maintaining the homeostasis of energy, lipids, proteins, and signalling networks including reactive oxygen species and calcium. Axon maintenance also involves specialised cytoskeleton including the cortical actin-spectrin corset, and bundles of microtubules that provide the highways for motor-driven transport of components and organelles for virtually all the above-mentioned processes. Here, we aim to provide a conceptual overview of key aspects of axon biology and physiology, and the homeostatic networks they form. This homeostasis can be derailed, causing axonopathies through processes of ageing, trauma, poisoning, inflammation or genetic mutations. To illustrate which malfunctions of organelles or cell biological processes can lead to axonopathies, we focus on axonopathy-linked subcellular defects caused by genetic mutations. Based on these descriptions and backed up by our comprehensive data mining of genes linked to neural disorders, we describe the 'dependency cycle of local axon homeostasis' as an integrative model to explain why very different causes can trigger very similar axonopathies, providing new ideas that can drive the quest for strategies able to battle these devastating diseases.
Collapse
Affiliation(s)
- Gaynor Smith
- Cardiff University, School of Medicine, College of Biomedical and Life Sciences, Cardiff, United Kingdom
| | - Sean T. Sweeney
- Department of Biology, University of York and York Biomedical Research Institute, York, United Kingdom
| | - Cahir J. O’Kane
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Andreas Prokop
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biology, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
10
|
Naren P, Samim KS, Tryphena KP, Vora LK, Srivastava S, Singh SB, Khatri DK. Microtubule acetylation dyshomeostasis in Parkinson's disease. Transl Neurodegener 2023; 12:20. [PMID: 37150812 PMCID: PMC10165769 DOI: 10.1186/s40035-023-00354-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/06/2023] [Indexed: 05/09/2023] Open
Abstract
The inter-neuronal communication occurring in extensively branched neuronal cells is achieved primarily through the microtubule (MT)-mediated axonal transport system. This mechanistically regulated system delivers cargos (proteins, mRNAs and organelles such as mitochondria) back and forth from the soma to the synapse. Motor proteins like kinesins and dynein mechanistically regulate polarized anterograde (from the soma to the synapse) and retrograde (from the synapse to the soma) commute of the cargos, respectively. Proficient axonal transport of such cargos is achieved by altering the microtubule stability via post-translational modifications (PTMs) of α- and β-tubulin heterodimers, core components constructing the MTs. Occurring within the lumen of MTs, K40 acetylation of α-tubulin via α-tubulin acetyl transferase and its subsequent deacetylation by HDAC6 and SIRT2 are widely scrutinized PTMs that make the MTs highly flexible, which in turn promotes their lifespan. The movement of various motor proteins, including kinesin-1 (responsible for axonal mitochondrial commute), is enhanced by this PTM, and dyshomeostasis of neuronal MT acetylation has been observed in a variety of neurodegenerative conditions, including Alzheimer's disease and Parkinson's disease (PD). PD is the second most common neurodegenerative condition and is closely associated with impaired MT dynamics and deregulated tubulin acetylation levels. Although the relationship between status of MT acetylation and progression of PD pathogenesis has become a chicken-and-egg question, our review aims to provide insights into the MT-mediated axonal commute of mitochondria and dyshomeostasis of MT acetylation in PD. The enzymatic regulators of MT acetylation along with their synthetic modulators have also been briefly explored. Moving towards a tubulin-based therapy that enhances MT acetylation could serve as a disease-modifying treatment in neurological conditions that lack it.
Collapse
Affiliation(s)
- Padmashri Naren
- Molecular and Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Khan Sabiya Samim
- Molecular and Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Kamatham Pushpa Tryphena
- Molecular and Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK.
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India.
| | - Shashi Bala Singh
- Molecular and Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Dharmendra Kumar Khatri
- Molecular and Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India.
| |
Collapse
|
11
|
Qiu R, Zhang J, Xiang X. Kinesin-1 autoinhibition facilitates the initiation of dynein cargo transport. J Cell Biol 2023; 222:e202205136. [PMID: 36524956 PMCID: PMC9802684 DOI: 10.1083/jcb.202205136] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 11/04/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
The functional significance of Kinesin-1 autoinhibition has been unclear. Kinesin-1 transports multiple cargoes including cytoplasmic dynein to microtubule plus ends. From a genetic screen for Aspergillus mutants defective in dynein-mediated early endosome transport, we identified a kinesin-1 mutation kinAK895* at the C-terminal IAK motif involved in autoinhibition. The kinA∆IAK and kinAK895E mutants exhibited a similar defect in dynein-mediated early endosome transport, verifying the importance of kinesin-1 autoinhibition in dynein-mediated transport. Kinesin-1 autoinhibition is not critical for dynein accumulation at microtubule plus ends or for the secretory vesicle cargoes of kinesin-1 to reach the hyphal tip. However, it facilitates dynein to initiate early endosome transport. This is unrelated to a direct competition between dynein and kinesin-1 on early endosomes because kinesin-3 rather than kinesin-1 drives the plus-end-directed early endosome movement. This effect of kinesin-1 autoinhibition on dynein-mediated early endosome transport is related to cargo adapter-mediated dynein activation but at a step beyond the switching of dynein from its autoinhibited conformation.
Collapse
Affiliation(s)
- Rongde Qiu
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences, F. Edward Hébert School of Medicine, Bethesda, MA, USA
| | - Jun Zhang
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences, F. Edward Hébert School of Medicine, Bethesda, MA, USA
| | - Xin Xiang
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences, F. Edward Hébert School of Medicine, Bethesda, MA, USA
| |
Collapse
|
12
|
Verhey KJ, Ohi R. Causes, costs and consequences of kinesin motors communicating through the microtubule lattice. J Cell Sci 2023; 136:293511. [PMID: 36866642 PMCID: PMC10022682 DOI: 10.1242/jcs.260735] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
Microtubules are critical for a variety of important functions in eukaryotic cells. During intracellular trafficking, molecular motor proteins of the kinesin superfamily drive the transport of cellular cargoes by stepping processively along the microtubule surface. Traditionally, the microtubule has been viewed as simply a track for kinesin motility. New work is challenging this classic view by showing that kinesin-1 and kinesin-4 proteins can induce conformational changes in tubulin subunits while they are stepping. These conformational changes appear to propagate along the microtubule such that the kinesins can work allosterically through the lattice to influence other proteins on the same track. Thus, the microtubule is a plastic medium through which motors and other microtubule-associated proteins (MAPs) can communicate. Furthermore, stepping kinesin-1 can damage the microtubule lattice. Damage can be repaired by the incorporation of new tubulin subunits, but too much damage leads to microtubule breakage and disassembly. Thus, the addition and loss of tubulin subunits are not restricted to the ends of the microtubule filament but rather, the lattice itself undergoes continuous repair and remodeling. This work leads to a new understanding of how kinesin motors and their microtubule tracks engage in allosteric interactions that are critical for normal cell physiology.
Collapse
Affiliation(s)
- Kristen J. Verhey
- Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Author for correspondence ()
| | - Ryoma Ohi
- Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
13
|
Gazzola M, Schaeffer A, Butler-Hallissey C, Friedl K, Vianay B, Gaillard J, Leterrier C, Blanchoin L, Théry M. Microtubules self-repair in living cells. Curr Biol 2023; 33:122-133.e4. [PMID: 36565699 DOI: 10.1016/j.cub.2022.11.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/21/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022]
Abstract
Microtubule self-repair has been studied both in vitro and in vivo as an underlying mechanism of microtubule stability. The turnover of tubulin dimers along the microtubule has challenged the pre-existing dogma that only growing ends are dynamic. However, although there is clear evidence of tubulin incorporation into the shaft of polymerized microtubules in vitro, the possibility of such events occurring in living cells remains uncertain. In this study, we investigated this possibility by microinjecting purified tubulin dimers labeled with a red fluorophore into the cytoplasm of cells expressing GFP-tubulin. We observed the appearance of red dots along the pre-existing green microtubule within minutes. We found that the fluorescence intensities of these red dots were inversely correlated with the green signal, suggesting that the red dimers were incorporated into the microtubules and replaced the pre-existing green dimers. Lateral distance from the microtubule center was similar to that in incorporation sites and in growing ends. The saturation of the size and spatial frequency of incorporations as a function of injected tubulin concentration and post-injection delay suggested that the injected dimers incorporated into a finite number of damaged sites. By our low estimate, within a few minutes of the injections, free dimers incorporated into major repair sites every 70 μm of microtubules. Finally, we mapped the location of these sites in micropatterned cells and found that they were more concentrated in regions where the actin filament network was less dense and where microtubules exhibited greater lateral fluctuations.
Collapse
Affiliation(s)
- Morgan Gazzola
- University of Paris, INSERM, CEA, UMRS1160, Institut de Recherche Saint Louis, CytoMorpho Lab, Hôpital Saint Louis, 10 Avenue Claude Vellefaux, 75010 Paris, France
| | - Alexandre Schaeffer
- University of Paris, INSERM, CEA, UMRS1160, Institut de Recherche Saint Louis, CytoMorpho Lab, Hôpital Saint Louis, 10 Avenue Claude Vellefaux, 75010 Paris, France
| | - Ciarán Butler-Hallissey
- Aix Marseille Université, CNRS, INP UMR7051, NeuroCyto Lab, 27 Boulevard Jean Moulin, 13385 Marseille, France
| | - Karoline Friedl
- Aix Marseille Université, CNRS, INP UMR7051, NeuroCyto Lab, 27 Boulevard Jean Moulin, 13385 Marseille, France; Abbelight, 191 Avenue Aristide Briand, 94230 Cachan, France
| | - Benoit Vianay
- University of Paris, INSERM, CEA, UMRS1160, Institut de Recherche Saint Louis, CytoMorpho Lab, Hôpital Saint Louis, 10 Avenue Claude Vellefaux, 75010 Paris, France
| | - Jérémie Gaillard
- University of Grenoble-Alpes, CEA, CNRS, UMR5168, Interdisciplinary Research Institute of Grenoble, CytoMorpho Lab, 17 rue des Martyrs, 38054 Grenoble, France
| | - Christophe Leterrier
- Aix Marseille Université, CNRS, INP UMR7051, NeuroCyto Lab, 27 Boulevard Jean Moulin, 13385 Marseille, France
| | - Laurent Blanchoin
- University of Grenoble-Alpes, CEA, CNRS, UMR5168, Interdisciplinary Research Institute of Grenoble, CytoMorpho Lab, 17 rue des Martyrs, 38054 Grenoble, France.
| | - Manuel Théry
- University of Paris, INSERM, CEA, UMRS1160, Institut de Recherche Saint Louis, CytoMorpho Lab, Hôpital Saint Louis, 10 Avenue Claude Vellefaux, 75010 Paris, France.
| |
Collapse
|
14
|
Kuo YW, Mahamdeh M, Tuna Y, Howard J. The force required to remove tubulin from the microtubule lattice by pulling on its α-tubulin C-terminal tail. Nat Commun 2022; 13:3651. [PMID: 35752623 PMCID: PMC9233703 DOI: 10.1038/s41467-022-31069-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/01/2022] [Indexed: 11/18/2022] Open
Abstract
Severing enzymes and molecular motors extract tubulin from the walls of microtubules by exerting mechanical force on subunits buried in the lattice. However, how much force is needed to remove tubulin from microtubules is not known, nor is the pathway by which subunits are removed. Using a site-specific functionalization method, we applied forces to the C-terminus of α-tubulin with an optical tweezer and found that a force of ~30 pN is required to extract tubulin from the microtubule wall. Additionally, we discovered that partial unfolding is an intermediate step in tubulin removal. The unfolding and extraction forces are similar to those generated by AAA-unfoldases. Lastly, we show that three kinesin-1 motor proteins can also extract tubulin from the microtubule lattice. Our results provide the first experimental investigation of how tubulin responds to mechanical forces exerted on its α-tubulin C-terminal tail and have implications for the mechanisms of severing enzymes and microtubule stability. Tubulin, the building blocks of microtubules, can be removed from the microtubule wall by mechanical forces. Using single-molecule methods, the authors show that tubulin partially unfolds prior to its removal and determined the tubulin-extraction force.
Collapse
Affiliation(s)
- Yin-Wei Kuo
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Mohammed Mahamdeh
- Harvard Medical School, Boston, MA, USA.,Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Yazgan Tuna
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Jonathon Howard
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
| |
Collapse
|
15
|
Sabo J, Lansky Z. Molecular motors: Turning kinesin-1 into a microtubule destroyer. Curr Biol 2022; 32:R518-R520. [PMID: 35671724 DOI: 10.1016/j.cub.2022.04.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Kinesin-1 is a typical microtubule-associated molecular motor that drives cargo transport in the cell. New work now shows that small changes in its structure can bring out unforeseen powers in this motor, turning it into a microtubule destroyer and highlighting the interdependencies between the biological motor and its track.
Collapse
Affiliation(s)
- Jan Sabo
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Prague West, Czech Republic
| | - Zdenek Lansky
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Prague West, Czech Republic.
| |
Collapse
|