1
|
Martin S, Fournes F, Ambrosini G, Iseli C, Bojkowska K, Marquis J, Guex N, Collier J. DNA methylation by CcrM contributes to genome maintenance in the Agrobacterium tumefaciens plant pathogen. Nucleic Acids Res 2024; 52:11519-11535. [PMID: 39228370 PMCID: PMC11514494 DOI: 10.1093/nar/gkae757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 09/05/2024] Open
Abstract
The cell cycle-regulated DNA methyltransferase CcrM is conserved in most Alphaproteobacteria, but its role in bacteria with complex or multicentric genomes remains unexplored. Here, we compare the methylome, the transcriptome and the phenotypes of wild-type and CcrM-depleted Agrobacterium tumefaciens cells with a dicentric chromosome with two essential replication origins. We find that DNA methylation has a pleiotropic impact on motility, biofilm formation and viability. Remarkably, CcrM promotes the expression of the repABCCh2 operon, encoding proteins required for replication initiation/partitioning at ori2, and represses gcrA, encoding a conserved global cell cycle regulator. Imaging ori1 and ori2 in live cells, we show that replication from ori2 is often delayed in cells with a hypo-methylated genome, while ori2 over-initiates in cells with a hyper-methylated genome. Further analyses show that GcrA promotes the expression of the RepCCh2 initiator, most likely through the repression of a RepECh2 anti-sense RNA. Altogether, we propose that replication at ori1 leads to a transient hemi-methylation and activation of the gcrA promoter, allowing repCCh2 activation by GcrA and contributing to initiation at ori2. This study then uncovers a novel and original connection between CcrM-dependent DNA methylation, a conserved epigenetic regulator and genome maintenance in an Alphaproteobacterial pathogen.
Collapse
Affiliation(s)
- Sandra Martin
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne CH-1015, Switzerland
| | - Florian Fournes
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne CH-1015, Switzerland
| | - Giovanna Ambrosini
- Bioinformatics Competence Center, University of Lausanne, Lausanne CH-1015, Switzerland
- Bioinformatics Competence Center, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Christian Iseli
- Bioinformatics Competence Center, University of Lausanne, Lausanne CH-1015, Switzerland
- Bioinformatics Competence Center, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Karolina Bojkowska
- Lausanne Genomic Technologies Facility, Faculty of Biology and Medicine, University of Lausanne, Lausanne CH-1015, Switzerland
| | - Julien Marquis
- Lausanne Genomic Technologies Facility, Faculty of Biology and Medicine, University of Lausanne, Lausanne CH-1015, Switzerland
| | - Nicolas Guex
- Bioinformatics Competence Center, University of Lausanne, Lausanne CH-1015, Switzerland
- Bioinformatics Competence Center, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Justine Collier
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne CH-1015, Switzerland
| |
Collapse
|
2
|
Wagner M, Döhlemann J, Geisel D, Sobetzko P, Serrania J, Lenz P, Becker A. Engineering a Sinorhizobium meliloti Chassis with Monopartite, Single Replicon Genome Configuration. ACS Synth Biol 2024; 13:2515-2532. [PMID: 39109796 DOI: 10.1021/acssynbio.4c00281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Multipartite bacterial genomes pose challenges for genome engineering and the establishment of additional replicons. We simplified the tripartite genome structure (3.65 Mbp chromosome, 1.35 Mbp megaplasmid pSymA, 1.68 Mbp chromid pSymB) of the nitrogen-fixing plant symbiont Sinorhizobium meliloti. Strains with bi- and monopartite genome configurations were generated by targeted replicon fusions. Our design preserved key genomic features such as replichore ratios, GC skew, KOPS, and coding sequence distribution. Under standard culture conditions, the growth rates of these strains and the wild type were nearly comparable, and the ability for symbiotic nitrogen fixation was maintained. Spatiotemporal replicon organization and segregation were maintained in the triple replicon fusion strain. Deletion of the replication initiator-encoding genes, including the oriVs of pSymA and pSymB from this strain, resulted in a monopartite genome with oriC as the sole origin of replication, a strongly unbalanced replichore ratio, slow growth, aberrant cellular localization of oriC, and deficiency in symbiosis. Suppressor mutation R436H in the cell cycle histidine kinase CckA and a 3.2 Mbp inversion, both individually, largely restored growth, but only the genomic rearrangement recovered the symbiotic capacity. These strains will facilitate the integration of secondary replicons in S. meliloti and thus be useful for genome engineering applications, such as generating hybrid genomes.
Collapse
Affiliation(s)
- Marcel Wagner
- Center for Synthetic Microbiology (SYNMIKRO), 35043 Marburg, Germany
- Department of Biology, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Johannes Döhlemann
- Center for Synthetic Microbiology (SYNMIKRO), 35043 Marburg, Germany
- Department of Biology, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - David Geisel
- Department of Physics, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Patrick Sobetzko
- Center for Synthetic Microbiology (SYNMIKRO), 35043 Marburg, Germany
| | - Javier Serrania
- Center for Synthetic Microbiology (SYNMIKRO), 35043 Marburg, Germany
- Department of Biology, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Peter Lenz
- Department of Physics, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Anke Becker
- Center for Synthetic Microbiology (SYNMIKRO), 35043 Marburg, Germany
- Department of Biology, Philipps-Universität Marburg, 35043 Marburg, Germany
| |
Collapse
|
3
|
Ponndara S, Kortebi M, Boccard F, Bury-Moné S, Lioy VS. Principles of bacterial genome organization, a conformational point of view. Mol Microbiol 2024. [PMID: 38922728 DOI: 10.1111/mmi.15290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Bacterial chromosomes are large molecules that need to be highly compacted to fit inside the cells. Chromosome compaction must facilitate and maintain key biological processes such as gene expression and DNA transactions (replication, recombination, repair, and segregation). Chromosome and chromatin 3D-organization in bacteria has been a puzzle for decades. Chromosome conformation capture coupled to deep sequencing (Hi-C) in combination with other "omics" approaches has allowed dissection of the structural layers that shape bacterial chromosome organization, from DNA topology to global chromosome architecture. Here we review the latest findings using Hi-C and discuss the main features of bacterial genome folding.
Collapse
Affiliation(s)
- Sokrich Ponndara
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Mounia Kortebi
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Frédéric Boccard
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Stéphanie Bury-Moné
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Virginia S Lioy
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| |
Collapse
|
4
|
Mansky J, Wang H, Wagner-Döbler I, Tomasch J. The effect of site-specific recombinases XerCD on the removal of over-replicated chromosomal DNA through outer membrane vesicles in bacteria. Microbiol Spectr 2024; 12:e0234323. [PMID: 38349173 PMCID: PMC10913375 DOI: 10.1128/spectrum.02343-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 01/22/2024] [Indexed: 03/06/2024] Open
Abstract
Outer membrane vesicles (OMVs) are universally produced by Gram-negative bacteria and play important roles in symbiotic and pathogenic interactions. The DNA from the lumen of OMVs from the Alphaproteobacterium Dinoroseobacter shibae was previously shown to be enriched for the region around the terminus of replication ter and specifically for the recognition sequence dif of the two site-specific recombinases XerCD. These enzymes are highly conserved in bacteria and play an important role in the last phase of cell division. Here, we show that a similar enrichment of ter and dif is found in the DNA inside OMVs from Prochlorococcus marinus, Pseudomonas aeruginosa, Vibrio cholerae, and Escherichia coli. The deletion of xerC or xerD in E. coli reduced the enrichment peak directly at the dif sequence, while the enriched DNA region around ter became broader, demonstrating that either enzyme influences the DNA content inside the lumen of OMVs. We propose that the intra-vesicle DNA originated from over-replication repair and the XerCD enzymes might play a role in this process, providing them with a new function in addition to resolving chromosome dimers.IMPORTANCEImprecise termination of replication can lead to over-replicated parts of bacterial chromosomes that have to be excised and removed from the dividing cell. The underlying mechanism is poorly understood. Our data show that outer membrane vesicles (OMVs) from diverse Gram-negative bacteria are enriched for DNA around the terminus of replication ter and the site-specific XerCD recombinases influence this enrichment. Clearing the divisome from over-replicated parts of the bacterial chromosome might be a so far unrecognized and conserved function of OMVs.
Collapse
Affiliation(s)
- Johannes Mansky
- Institute of Microbiology, Technical University of Braunschweig, Braunschweig, Germany
| | - Hui Wang
- Institute of Microbiology, Technical University of Braunschweig, Braunschweig, Germany
| | - Irene Wagner-Döbler
- Institute of Microbiology, Technical University of Braunschweig, Braunschweig, Germany
| | - Jürgen Tomasch
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology of the Czech Academy of Science–Centre Algatech, Třeboň, Czech Republic
| |
Collapse
|
5
|
Niault T, Czarnecki J, Lambérioux M, Mazel D, Val ME. Cell cycle-coordinated maintenance of the Vibrio bipartite genome. EcoSal Plus 2023; 11:eesp00082022. [PMID: 38277776 PMCID: PMC10729929 DOI: 10.1128/ecosalplus.esp-0008-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
To preserve the integrity of their genome, bacteria rely on several genome maintenance mechanisms that are co-ordinated with the cell cycle. All members of the Vibrio family have a bipartite genome consisting of a primary chromosome (Chr1) homologous to the single chromosome of other bacteria such as Escherichia coli and a secondary chromosome (Chr2) acquired by a common ancestor as a plasmid. In this review, we present our current understanding of genome maintenance in Vibrio cholerae, which is the best-studied model for bacteria with multi-partite genomes. After a brief overview on the diversity of Vibrio genomic architecture, we describe the specific, common, and co-ordinated mechanisms that control the replication and segregation of the two chromosomes of V. cholerae. Particular attention is given to the unique checkpoint mechanism that synchronizes Chr1 and Chr2 replication.
Collapse
Affiliation(s)
- Théophile Niault
- Bacterial Genome Plasticity Unit, CNRS UMR3525, Institut Pasteur, Université Paris Cité, Paris, France
- Collège Doctoral, Sorbonne Université, Paris, France
| | - Jakub Czarnecki
- Bacterial Genome Plasticity Unit, CNRS UMR3525, Institut Pasteur, Université Paris Cité, Paris, France
| | - Morgan Lambérioux
- Bacterial Genome Plasticity Unit, CNRS UMR3525, Institut Pasteur, Université Paris Cité, Paris, France
- Collège Doctoral, Sorbonne Université, Paris, France
| | - Didier Mazel
- Bacterial Genome Plasticity Unit, CNRS UMR3525, Institut Pasteur, Université Paris Cité, Paris, France
| | - Marie-Eve Val
- Bacterial Genome Plasticity Unit, CNRS UMR3525, Institut Pasteur, Université Paris Cité, Paris, France
| |
Collapse
|
6
|
Weisberg AJ, Wu Y, Chang JH, Lai EM, Kuo CH. Virulence and Ecology of Agrobacteria in the Context of Evolutionary Genomics. ANNUAL REVIEW OF PHYTOPATHOLOGY 2023; 61:1-23. [PMID: 37164023 DOI: 10.1146/annurev-phyto-021622-125009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Among plant-associated bacteria, agrobacteria occupy a special place. These bacteria are feared in the field as agricultural pathogens. They cause abnormal growth deformations and significant economic damage to a broad range of plant species. However, these bacteria are revered in the laboratory as models and tools. They are studied to discover and understand basic biological phenomena and used in fundamental plant research and biotechnology. Agrobacterial pathogenicity and capability for transformation are one and the same and rely on functions encoded largely on their oncogenic plasmids. Here, we synthesize a substantial body of elegant work that elucidated agrobacterial virulence mechanisms and described their ecology. We review findings in the context of the natural diversity that has been recently unveiled for agrobacteria and emphasize their genomics and plasmids. We also identify areas of research that can capitalize on recent findings to further transform our understanding of agrobacterial virulence and ecology.
Collapse
Affiliation(s)
- Alexandra J Weisberg
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA;
| | - Yu Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan;
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Jeff H Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA;
| | - Erh-Min Lai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan;
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan;
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
7
|
Random transposon mutagenesis identifies genes essential for transformation in Methanococcus maripaludis. Mol Genet Genomics 2023; 298:537-548. [PMID: 36823423 PMCID: PMC10133366 DOI: 10.1007/s00438-023-01994-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/15/2023] [Indexed: 02/25/2023]
Abstract
Natural transformation, the process whereby a cell acquires DNA directly from the environment, is an important driver of evolution in microbial populations, yet the mechanism of DNA uptake is only characterized in bacteria. To expand our understanding of natural transformation in archaea, we undertook a genetic approach to identify a catalog of genes necessary for transformation in Methanococcus maripaludis. Using an optimized method to generate random transposon mutants, we screened 6144 mutant strains for defects in natural transformation and identified 25 transformation-associated candidate genes. Among these are genes encoding components of the type IV-like pilus, transcription/translation associated genes, genes encoding putative membrane bound transport proteins, and genes of unknown function. Interestingly, similar genes were identified regardless of whether replicating or integrating plasmids were provided as a substrate for transformation. Using allelic replacement mutagenesis, we confirmed that several genes identified in these screens are essential for transformation. Finally, we identified a homolog of a membrane bound substrate transporter in Methanoculleus thermophilus and verified its importance for transformation using allelic replacement mutagenesis, suggesting a conserved mechanism for DNA transfer in multiple archaea. These data represent an initial characterization of the genes important for transformation which will inform efforts to understand gene flow in natural populations. Additionally, knowledge of the genes necessary for natural transformation may assist in identifying signatures of transformation machinery in archaeal genomes and aid the establishment of new model genetic systems for studying archaea.
Collapse
|
8
|
Funnell BE. Chromosome dynamics: Rearranging the choreography of a multipartite bacterial genome. Curr Biol 2022; 32:R889-R891. [PMID: 35998600 DOI: 10.1016/j.cub.2022.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A new study identifies a novel fusion between a linear and a circular bacterial chromosome, with unusual requirements for DNA recombination and replication. Understanding how cells accommodate this chromosome promises to inform analyses and elucidate mechanisms of chromosome dynamics in bacteria.
Collapse
Affiliation(s)
- Barbara E Funnell
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada.
| |
Collapse
|