1
|
Kupers ER, Knapen T, Merriam EP, Kay KN. Principles of intensive human neuroimaging. Trends Neurosci 2024:S0166-2236(24)00183-8. [PMID: 39455343 DOI: 10.1016/j.tins.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/28/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024]
Abstract
The rise of large, publicly shared functional magnetic resonance imaging (fMRI) data sets in human neuroscience has focused on acquiring either a few hours of data on many individuals ('wide' fMRI) or many hours of data on a few individuals ('deep' fMRI). In this opinion article, we highlight an emerging approach within deep fMRI, which we refer to as 'intensive' fMRI: one that strives for extensive sampling of cognitive phenomena to support computational modeling and detailed investigation of brain function at the single voxel level. We discuss the fundamental principles, trade-offs, and practical considerations of intensive fMRI. We also emphasize that intensive fMRI does not simply mean collecting more data: it requires careful design of experiments to enable a rich hypothesis space, optimizing data quality, and strategically curating public resources to maximize community impact.
Collapse
Affiliation(s)
- Eline R Kupers
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA; Department of Psychology, Stanford University, Stanford, CA, USA.
| | - Tomas Knapen
- Spinoza Centre for Neuroimaging, Amsterdam, the Netherlands; Netherlands Institute for Neuroscience, Royal Netherlands Academy of Sciences, Amsterdam, the Netherlands; Cognitive Psychology, Faculty of Behavioural and Movement Sciences, Vrije Universiteit, Amsterdam, the Netherlands
| | - Elisha P Merriam
- Laboratory of Brain and Cognition, National Institute of Mental Health, NIH, Bethesda, MD, USA
| | - Kendrick N Kay
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
2
|
Alais D, Burr D, Carlson TA. Positive serial dependence in ratings of food images for appeal and calories. Curr Biol 2024:S0960-9822(24)01223-5. [PMID: 39362216 DOI: 10.1016/j.cub.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/25/2024] [Accepted: 09/06/2024] [Indexed: 10/05/2024]
Abstract
Food is fundamental to survival, and our brains are highly attuned to rapidly process food stimuli. Neural signals show that foods can be discriminated as edible or inedible as early as 85 ms after stimulus onset,1 distinguished as processed or unprocessed beginning at 130 ms,2 and as high or low density from 165 ms.3 Recent evidence revealed specialized processing of food stimuli in the ventral visual pathway,4,5,6 an area that underlies perception of faces and other important objects. For many visual objects, perception can be biased toward recent perceptual history (known as serial dependence7,8). We examined serial dependence for food in two large samples (n > 300) who rated sequences of food images for either "appeal" or "calories." Ratings for calories were highly correlated between participants and were similar for males and females. Appeal ratings varied considerably between participants, consistent with the idiosyncratic nature of food preferences, and tended to be higher for males than females. High-calorie ratings were associated with high appeal, especially in males. Importantly, response biases showed clear positive serial dependences: higher stimulus values in the previous trials led to positive biases, and vice versa. The effects were similar for males and females and for calories and appeal ratings and were remarkably consistent across participants. These findings square with recently found food selectively in the visual temporal cortex, reveal a new mechanism influencing food decision-making, and suggest a new sensory-level component that could complement cognitive strategies in diet intervention.
Collapse
Affiliation(s)
- David Alais
- School of Psychology, The University of Sydney, Sydney, NSW 2006, Australia.
| | - David Burr
- School of Psychology, The University of Sydney, Sydney, NSW 2006, Australia; Department of Neuroscience, Psychology, Pharmacology, and Child Health, University of Florence, 50135 Florence, Italy
| | - Thomas A Carlson
- School of Psychology, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
3
|
Contier O, Baker CI, Hebart MN. Distributed representations of behaviour-derived object dimensions in the human visual system. Nat Hum Behav 2024:10.1038/s41562-024-01980-y. [PMID: 39251723 DOI: 10.1038/s41562-024-01980-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 08/06/2024] [Indexed: 09/11/2024]
Abstract
Object vision is commonly thought to involve a hierarchy of brain regions processing increasingly complex image features, with high-level visual cortex supporting object recognition and categorization. However, object vision supports diverse behavioural goals, suggesting basic limitations of this category-centric framework. To address these limitations, we mapped a series of dimensions derived from a large-scale analysis of human similarity judgements directly onto the brain. Our results reveal broadly distributed representations of behaviourally relevant information, demonstrating selectivity to a wide variety of novel dimensions while capturing known selectivities for visual features and categories. Behaviour-derived dimensions were superior to categories at predicting brain responses, yielding mixed selectivity in much of visual cortex and sparse selectivity in category-selective clusters. This framework reconciles seemingly disparate findings regarding regional specialization, explaining category selectivity as a special case of sparse response profiles among representational dimensions, suggesting a more expansive view on visual processing in the human brain.
Collapse
Affiliation(s)
- Oliver Contier
- Vision and Computational Cognition Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
- Max Planck School of Cognition, Leipzig, Germany.
| | - Chris I Baker
- Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Martin N Hebart
- Vision and Computational Cognition Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Department of Medicine, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
4
|
Ritchie JB, Andrews ST, Vaziri-Pashkam M, Baker CI. Graspable foods and tools elicit similar responses in visual cortex. Cereb Cortex 2024; 34:bhae383. [PMID: 39319569 DOI: 10.1093/cercor/bhae383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/28/2024] [Accepted: 09/04/2024] [Indexed: 09/26/2024] Open
Abstract
The extrastriatal visual cortex is known to exhibit distinct response profiles to complex stimuli of varying ecological importance (e.g. faces, scenes, and tools). Although food is primarily distinguished from other objects by its edibility, not its appearance, recent evidence suggests that there is also food selectivity in human visual cortex. Food is also associated with a common behavior, eating, and food consumption typically also involves the manipulation of food, often with hands. In this context, food items share many properties with tools: they are graspable objects that we manipulate in self-directed and stereotyped forms of action. Thus, food items may be preferentially represented in extrastriatal visual cortex in part because of these shared affordance properties, rather than because they reflect a wholly distinct kind of category. We conducted functional MRI and behavioral experiments to test this hypothesis. We found that graspable food items and tools were judged to be similar in their action-related properties and that the location, magnitude, and patterns of neural responses for images of graspable food items were similar in profile to the responses for tool stimuli. Our findings suggest that food selectivity may reflect the behavioral affordances of food items rather than a distinct form of category selectivity.
Collapse
Affiliation(s)
- John Brendan Ritchie
- The Laboratory of Brain and Cognition, The National Institute of Mental Health, 10 Center Drive, Bethesda, MD 20982, United States
| | - Spencer T Andrews
- The Laboratory of Brain and Cognition, The National Institute of Mental Health, 10 Center Drive, Bethesda, MD 20982, United States
- Harvard Law School, Harvard University, 1585 Massachusetts Ave, Cambridge, MA 02138, United States
| | - Maryam Vaziri-Pashkam
- The Laboratory of Brain and Cognition, The National Institute of Mental Health, 10 Center Drive, Bethesda, MD 20982, United States
- Department of Psychological and Brain Sciences, University of Delaware, 434 Wolf Hall, Newark, DE 19716, United States
| | - Chris I Baker
- The Laboratory of Brain and Cognition, The National Institute of Mental Health, 10 Center Drive, Bethesda, MD 20982, United States
| |
Collapse
|
5
|
Contier O, Baker CI, Hebart MN. Distributed representations of behavior-derived object dimensions in the human visual system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.23.553812. [PMID: 37662312 PMCID: PMC10473665 DOI: 10.1101/2023.08.23.553812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Object vision is commonly thought to involve a hierarchy of brain regions processing increasingly complex image features, with high-level visual cortex supporting object recognition and categorization. However, object vision supports diverse behavioral goals, suggesting basic limitations of this category-centric framework. To address these limitations, we mapped a series of dimensions derived from a large-scale analysis of human similarity judgments directly onto the brain. Our results reveal broadly distributed representations of behaviorally-relevant information, demonstrating selectivity to a wide variety of novel dimensions while capturing known selectivities for visual features and categories. Behavior-derived dimensions were superior to categories at predicting brain responses, yielding mixed selectivity in much of visual cortex and sparse selectivity in category-selective clusters. This framework reconciles seemingly disparate findings regarding regional specialization, explaining category selectivity as a special case of sparse response profiles among representational dimensions, suggesting a more expansive view on visual processing in the human brain.
Collapse
Affiliation(s)
- O Contier
- Vision and Computational Cognition Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Max Planck School of Cognition, Leipzig, Germany
| | - C I Baker
- Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda MD, USA
| | - M N Hebart
- Vision and Computational Cognition Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Department of Medicine, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
6
|
Devoto F, Mariano M, Gornetti E, Paulesu E, Zapparoli L. Trait food craving predicts functional connectivity between dopaminergic midbrain and the fusiform food area during eating imagery. Front Psychiatry 2024; 15:1396376. [PMID: 38774434 PMCID: PMC11107427 DOI: 10.3389/fpsyt.2024.1396376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/18/2024] [Indexed: 05/24/2024] Open
Abstract
Neurofunctional coupling between the dopaminergic midbrain (i.e., ventral tegmental area, VTA) and higher-order visual regions may contribute to food craving, leading to the onset or maintenance of obesity. We recently showed that the VTA resting-state functional connectivity with the occipitotemporal cortex, at the level of the fusiform gyrus (FFG), was specifically associated with trait food craving and the implicit bias for food images, suggesting that VTA-FFG connectivity may reflect the association between the visual representations of food and its motivational properties. To further test this hypothesis, this time we studied task-based functional connectivity in twenty-eight healthy-weight participants while imagining eating their most liked high-calorie (HC) or least liked low-calorie food (LC) or drinking water (control condition). Trait food craving scores were used to predict changes in task-based functional connectivity of the VTA during imagery of HC compared to LC foods (relative to the control condition). Trait food craving was positively associated with the functional connectivity of the VTA with the left FFG: people with higher trait food craving scores show stronger VTA-FFG connectivity, specifically for the imagery of the liked HC foods. This association was not linked to the quality of imagery nor to state measures of craving, appetite, or thirst. These findings emphasize the contribution of the functional coupling between dopaminergic midbrain and higher-order visual regions to food craving, suggesting a neurofunctional mechanism by which the mental representations of the HC food we like can become much more salient if not irresistible.
Collapse
Affiliation(s)
- Francantonio Devoto
- Psychology Department and NeuroMi – Milan Centre for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Marika Mariano
- Psychology Department and NeuroMi – Milan Centre for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Edoardo Gornetti
- Psychology Department and NeuroMi – Milan Centre for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Eraldo Paulesu
- Psychology Department and NeuroMi – Milan Centre for Neuroscience, University of Milano-Bicocca, Milan, Italy
- fMRI Unit, IRCCS Orthopedic Institute Galeazzi, Milan, Italy
| | - Laura Zapparoli
- Psychology Department and NeuroMi – Milan Centre for Neuroscience, University of Milano-Bicocca, Milan, Italy
- fMRI Unit, IRCCS Orthopedic Institute Galeazzi, Milan, Italy
| |
Collapse
|
7
|
Ritchie JB, Andrews S, Vaziri-Pashkam M, Baker CI. Graspable foods and tools elicit similar responses in visual cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.20.581258. [PMID: 38529495 PMCID: PMC10962699 DOI: 10.1101/2024.02.20.581258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Extrastriatal visual cortex is known to exhibit distinct response profiles to complex stimuli of varying ecological importance (e.g., faces, scenes, and tools). The dominant interpretation of these effects is that they reflect activation of distinct "category-selective" brain regions specialized to represent these and other stimulus categories. We sought to explore an alternative perspective: that the response to these stimuli is determined less by whether they form distinct categories, and more by their relevance to different forms of natural behavior. In this regard, food is an interesting test case, since it is primarily distinguished from other objects by its edibility, not its appearance, and there is evidence of food-selectivity in human visual cortex. Food is also associated with a common behavior, eating, and food consumption typically also involves the manipulation of food, often with the hands. In this context, food items share many properties in common with tools: they are graspable objects that we manipulate in self-directed and stereotyped forms of action. Thus, food items may be preferentially represented in extrastriatal visual cortex in part because of these shared affordance properties, rather than because they reflect a wholly distinct kind of category. We conducted fMRI and behavioral experiments to test this hypothesis. We found that behaviorally graspable food items and tools were judged to be similar in their action-related properties, and that the location, magnitude, and patterns of neural responses for images of graspable food items were similar in profile to the responses for tool stimuli. Our findings suggest that food-selectivity may reflect the behavioral affordances of food items rather than a distinct form of category-selectivity.
Collapse
Affiliation(s)
- J. Brendan Ritchie
- The Laboratory of Brain and Cognition, The National Institute of Mental Health, MD, USA
| | - Spencer Andrews
- The Laboratory of Brain and Cognition, The National Institute of Mental Health, MD, USA
| | - Maryam Vaziri-Pashkam
- The Laboratory of Brain and Cognition, The National Institute of Mental Health, MD, USA
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA
| | - Christopher I. Baker
- The Laboratory of Brain and Cognition, The National Institute of Mental Health, MD, USA
| |
Collapse
|
8
|
Waraich SA, Victor JD. The Geometry of Low- and High-Level Perceptual Spaces. J Neurosci 2024; 44:e1460232023. [PMID: 38267235 PMCID: PMC10860617 DOI: 10.1523/jneurosci.1460-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 01/26/2024] Open
Abstract
Low-level features are typically continuous (e.g., the gamut between two colors), but semantic information is often categorical (there is no corresponding gradient between dog and turtle) and hierarchical (animals live in land, water, or air). To determine the impact of these differences on cognitive representations, we characterized the geometry of perceptual spaces of five domains: a domain dominated by semantic information (animal names presented as words), a domain dominated by low-level features (colored textures), and three intermediate domains (animal images, lightly texturized animal images that were easy to recognize, and heavily texturized animal images that were difficult to recognize). Each domain had 37 stimuli derived from the same animal names. From 13 participants (9F), we gathered similarity judgments in each domain via an efficient psychophysical ranking paradigm. We then built geometric models of each domain for each participant, in which distances between stimuli accounted for participants' similarity judgments and intrinsic uncertainty. Remarkably, the five domains had similar global properties: each required 5-7 dimensions, and a modest amount of spherical curvature provided the best fit. However, the arrangement of the stimuli within these embeddings depended on the level of semantic information: dendrograms derived from semantic domains (word, image, and lightly texturized images) were more "tree-like" than those from feature-dominated domains (heavily texturized images and textures). Thus, the perceptual spaces of domains along this feature-dominated to semantic-dominated gradient shift to a tree-like organization when semantic information dominates, while retaining a similar global geometry.
Collapse
Affiliation(s)
| | - Jonathan D Victor
- Division of Systems Neurology and Neuroscience, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York 10065, New York
| |
Collapse
|
9
|
Yao M, Wen B, Yang M, Guo J, Jiang H, Feng C, Cao Y, He H, Chang L. High-dimensional topographic organization of visual features in the primate temporal lobe. Nat Commun 2023; 14:5931. [PMID: 37739988 PMCID: PMC10517140 DOI: 10.1038/s41467-023-41584-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 09/07/2023] [Indexed: 09/24/2023] Open
Abstract
The inferotemporal cortex supports our supreme object recognition ability. Numerous studies have been conducted to elucidate the functional organization of this brain area, but there are still important questions that remain unanswered, including how this organization differs between humans and non-human primates. Here, we use deep neural networks trained on object categorization to construct a 25-dimensional space of visual features, and systematically measure the spatial organization of feature preference in both male monkey brains and human brains using fMRI. These feature maps allow us to predict the selectivity of a previously unknown region in monkey brains, which is corroborated by additional fMRI and electrophysiology experiments. These maps also enable quantitative analyses of the topographic organization of the temporal lobe, demonstrating the existence of a pair of orthogonal gradients that differ in spatial scale and revealing significant differences in the functional organization of high-level visual areas between monkey and human brains.
Collapse
Affiliation(s)
- Mengna Yao
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bincheng Wen
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Mingpo Yang
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jiebin Guo
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Haozhou Jiang
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Chao Feng
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yilei Cao
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Huiguang He
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Le Chang
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
10
|
Devoto F, Ferrulli A, Banfi G, Luzi L, Zapparoli L, Paulesu E. How images of food become cravingly salient in obesity. Obesity (Silver Spring) 2023; 31:2294-2303. [PMID: 37605635 DOI: 10.1002/oby.23834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 08/23/2023]
Abstract
OBJECTIVE This case-control study was aimed at testing two main hypotheses: (i) obesity is characterized by neurofunctional alterations within the mesocorticolimbic reward system, a brain network originating from the midbrain ventral tegmental area (VTA); and (ii) these alterations are associated with a bias for food-related stimuli and craving. METHODS Normal-weight individuals and individuals with obesity underwent a resting-state functional magnetic resonance imaging scan and the assessment of impulsivity, food craving, appetite, and implicit bias for food and non-food stimuli. The VTA was used as a seed to map, for each participant, the strength of its functional connections with the rest of the brain. The between-group difference in functional connectivity was then computed, and brain-behavior correlations were performed. RESULTS Individuals with obesity showed hyper-connectivity of the VTA with part of the ventral occipitotemporal cortex, recently found to be specialized for food images, and hypo-connectivity with the left inferior frontal gyrus, devoted to cognitive control. VTA-ventral occipitotemporal cortex connectivity was positively associated with food craving and food-related bias; the reverse correlation was observed for VTA-inferior frontal gyrus connectivity. CONCLUSIONS These findings reveal that, in obesity, food-related visual stimuli become cravingly salient through an imbalanced connectivity of the reward system with sensory-specific regions and the frontal cortex involved in cognitive control.
Collapse
Affiliation(s)
| | - Anna Ferrulli
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Giuseppe Banfi
- IRCCS Orthopedic Institute Galeazzi, Milan, Italy
- University Vita e Salute San Raffaele, Milan, Italy
| | - Livio Luzi
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Laura Zapparoli
- Department of Psychology, University of Milano-Bicocca, Milan, Italy
- IRCCS Orthopedic Institute Galeazzi, Milan, Italy
| | - Eraldo Paulesu
- Department of Psychology, University of Milano-Bicocca, Milan, Italy
- IRCCS Orthopedic Institute Galeazzi, Milan, Italy
| |
Collapse
|
11
|
Conway BR, Malik-Moraleda S, Gibson E. Color appearance and the end of Hering's Opponent-Colors Theory. Trends Cogn Sci 2023; 27:791-804. [PMID: 37394292 PMCID: PMC10527909 DOI: 10.1016/j.tics.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 07/04/2023]
Abstract
Hering's Opponent-Colors Theory has been central to understanding color appearance for 150 years. It aims to explain the phenomenology of colors with two linked propositions. First, a psychological hypothesis stipulates that any color is described necessarily and sufficiently by the extent to which it appears reddish-versus-greenish, bluish-versus-yellowish, and blackish-versus-whitish. Second, a physiological hypothesis stipulates that these perceptual mechanisms are encoded by three innate brain mechanisms. We review the evidence and conclude that neither side of the linking proposition is accurate: the theory is wrong. We sketch out an alternative, Utility-Based Coding, by which the known retinal cone-opponent mechanisms represent optimal encoding of spectral information given competing selective pressure to extract high-acuity spatial information; and phenomenological color categories represent an adaptive, efficient, output of the brain governed by behavioral demands.
Collapse
Affiliation(s)
- Bevil R Conway
- Laboratory of Sensorimotor Research, National Eye Institute and National Institute of Mental Health, Bethesda, MD 20892, USA.
| | - Saima Malik-Moraleda
- Department of Brain and Cognitive Sciences, M.I.T., Cambridge, MA 02139, USA; Program in Speech and Hearing Bioscience and Technology, Harvard University, Cambridge, MA 02114, USA
| | - Edward Gibson
- Department of Brain and Cognitive Sciences, M.I.T., Cambridge, MA 02139, USA
| |
Collapse
|
12
|
Gong Z, Zhou M, Dai Y, Wen Y, Liu Y, Zhen Z. A large-scale fMRI dataset for the visual processing of naturalistic scenes. Sci Data 2023; 10:559. [PMID: 37612327 PMCID: PMC10447576 DOI: 10.1038/s41597-023-02471-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/14/2023] [Indexed: 08/25/2023] Open
Abstract
One ultimate goal of visual neuroscience is to understand how the brain processes visual stimuli encountered in the natural environment. Achieving this goal requires records of brain responses under massive amounts of naturalistic stimuli. Although the scientific community has put a lot of effort into collecting large-scale functional magnetic resonance imaging (fMRI) data under naturalistic stimuli, more naturalistic fMRI datasets are still urgently needed. We present here the Natural Object Dataset (NOD), a large-scale fMRI dataset containing responses to 57,120 naturalistic images from 30 participants. NOD strives for a balance between sampling variation between individuals and sampling variation between stimuli. This enables NOD to be utilized not only for determining whether an observation is generalizable across many individuals, but also for testing whether a response pattern is generalized to a variety of naturalistic stimuli. We anticipate that the NOD together with existing naturalistic neuroimaging datasets will serve as a new impetus for our understanding of the visual processing of naturalistic stimuli.
Collapse
Affiliation(s)
- Zhengxin Gong
- Beijing Key Laboratory of Applied Experimental Psychology, Faculty of Psychology, Beijing Normal University, Beijing, 100875, China
| | - Ming Zhou
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Yuxuan Dai
- Beijing Key Laboratory of Applied Experimental Psychology, Faculty of Psychology, Beijing Normal University, Beijing, 100875, China
| | - Yushan Wen
- Beijing Key Laboratory of Applied Experimental Psychology, Faculty of Psychology, Beijing Normal University, Beijing, 100875, China
| | - Youyi Liu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.
| | - Zonglei Zhen
- Beijing Key Laboratory of Applied Experimental Psychology, Faculty of Psychology, Beijing Normal University, Beijing, 100875, China.
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
13
|
Pathare NN, Fayet-Moore F, Fogarty JA, Jacka FN, Strandwitz P, Strangman GE, Donoviel DB. Nourishing the brain on deep space missions: nutritional psychiatry in promoting resilience. Front Neural Circuits 2023; 17:1170395. [PMID: 37663891 PMCID: PMC10469890 DOI: 10.3389/fncir.2023.1170395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
The grueling psychological demands of a journey into deep space coupled with ever-increasing distances away from home pose a unique problem: how can we best take advantage of the benefits of fresh foods in a place that has none? Here, we consider the biggest challenges associated with our current spaceflight food system, highlight the importance of supporting optimal brain health on missions into deep space, and discuss evidence about food components that impact brain health. We propose a future food system that leverages the gut microbiota that can be individually tailored to best support the brain and mental health of crews on deep space long-duration missions. Working toward this goal, we will also be making investments in sustainable means to nourish the crew that remains here on spaceship Earth.
Collapse
Affiliation(s)
- Nihar N. Pathare
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, United States
| | | | - Jennifer A. Fogarty
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, United States
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
- Translational Research Institute for Space Health (TRISH), Houston, TX, United States
| | - Felice N. Jacka
- Food and Mood Centre, Institute for Mental and Physical Health and Clinical Translation (IMPACT) Strategic Research Centre, Deakin University, Geelong, VIC, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
| | | | - Gary E. Strangman
- Neural Systems Group, Division of Health Sciences and Technology, Massachusetts General Hospital, Harvard Medical School and Harvard-MIT, Charlestown, MA, United States
- Department of Psychology, Harvard University, Cambridge, MA, United States
| | - Dorit B. Donoviel
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, United States
- Translational Research Institute for Space Health (TRISH), Houston, TX, United States
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
14
|
Coggan DD, Tong F. Spikiness and animacy as potential organizing principles of human ventral visual cortex. Cereb Cortex 2023; 33:8194-8217. [PMID: 36958809 PMCID: PMC10321104 DOI: 10.1093/cercor/bhad108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 03/25/2023] Open
Abstract
Considerable research has been devoted to understanding the fundamental organizing principles of the ventral visual pathway. A recent study revealed a series of 3-4 topographical maps arranged along the macaque inferotemporal (IT) cortex. The maps articulated a two-dimensional space based on the spikiness and animacy of visual objects, with "inanimate-spiky" and "inanimate-stubby" regions of the maps constituting two previously unidentified cortical networks. The goal of our study was to determine whether a similar functional organization might exist in human IT. To address this question, we presented the same object stimuli and images from "classic" object categories (bodies, faces, houses) to humans while recording fMRI activity at 7 Tesla. Contrasts designed to reveal the spikiness-animacy object space evoked extensive significant activation across human IT. However, unlike the macaque, we did not observe a clear sequence of complete maps, and selectivity for the spikiness-animacy space was deeply and mutually entangled with category-selectivity. Instead, we observed multiple new stimulus preferences in category-selective regions, including functional sub-structure related to object spikiness in scene-selective cortex. Taken together, these findings highlight spikiness as a promising organizing principle of human IT and provide new insights into the role of category-selective regions in visual object processing.
Collapse
Affiliation(s)
- David D Coggan
- Department of Psychology, Vanderbilt University, 111 21st Ave S, Nashville, TN 37240, United States
| | - Frank Tong
- Department of Psychology, Vanderbilt University, 111 21st Ave S, Nashville, TN 37240, United States
| |
Collapse
|