1
|
Mustakim N, Vera LFR, Pinto JP, Seo SW. Gold Nanorod-Embedded PDMS Micro-Pillar Array for Localized Photothermal Stimulation. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS : A JOINT IEEE AND ASME PUBLICATION ON MICROSTRUCTURES, MICROACTUATORS, MICROSENSORS, AND MICROSYSTEMS 2024; 33:543-549. [PMID: 39364062 PMCID: PMC11449256 DOI: 10.1109/jmems.2024.3418373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Gold nanorods (GNRs) are one of the most promising biomaterial choices for the photothermal activation of neurons due to their relative biocompatibility, unique photothermal properties, and broad optical tunability through their synthetic shape control. While photothermal stimulation using randomly accumulated GNRs successfully demonstrates the potential treatment of functional neural disorders by modulating the neuronal activities using localized heating, there are limited demonstrations to translate this new concept into large-arrayed neural stimulations. In this paper, we report an arrayed PDMS micropillar platform in which GNRs are embedded as pixel-like, arrayed photothermal stimulators at the tips of the pillars. The proposed platform will be able to localize GNRs at predetermined pillar positions and create thermal stimulations using near-infrared (NIR) light. This will address the limitations of randomly distributed GNR-based approaches. Furthermore, a flexible PDMS pillar structure will create intimate interfaces on target cells. By characterizing the spatiotemporal temperature change in the platform with rhodamine B dye, we have shown that the localized temperature can be optically modulated within 4°C, which is in the range of temperature variation required for neuromodulation using NIR light. We envision that our proposed platform has the potential to be applied as a photothermal, neuronal stimulation interface with high spatiotemporal resolution.
Collapse
Affiliation(s)
- Nafis Mustakim
- Department of Electrical Engineering, The City College of New York, New York, NY 10031 USA
| | - Luis F Rodriguez Vera
- Department of Electrical Engineering, The City College of New York, New York, NY 10031 USA; Cadence Design Systems, San Jose, CA 95134 USA
| | - Jose Pacheco Pinto
- Department of Electrical Engineering, The City College of New York, New York, NY 10031 USA
| | - Sang-Woo Seo
- Department of Electrical Engineering, The City College of New York, New York, NY 10031 USA
| |
Collapse
|
2
|
Cornean J, Molina-Obando S, Gür B, Bast A, Ramos-Traslosheros G, Chojetzki J, Lörsch L, Ioannidou M, Taneja R, Schnaitmann C, Silies M. Heterogeneity of synaptic connectivity in the fly visual system. Nat Commun 2024; 15:1570. [PMID: 38383614 PMCID: PMC10882054 DOI: 10.1038/s41467-024-45971-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/08/2024] [Indexed: 02/23/2024] Open
Abstract
Visual systems are homogeneous structures, where repeating columnar units retinotopically cover the visual field. Each of these columns contain many of the same neuron types that are distinguished by anatomic, genetic and - generally - by functional properties. However, there are exceptions to this rule. In the 800 columns of the Drosophila eye, there is an anatomically and genetically identifiable cell type with variable functional properties, Tm9. Since anatomical connectivity shapes functional neuronal properties, we identified the presynaptic inputs of several hundred Tm9s across both optic lobes using the full adult female fly brain (FAFB) electron microscopic dataset and FlyWire connectome. Our work shows that Tm9 has three major and many sparsely distributed inputs. This differs from the presynaptic connectivity of other Tm neurons, which have only one major, and more stereotypic inputs than Tm9. Genetic synapse labeling showed that the heterogeneous wiring exists across individuals. Together, our data argue that the visual system uses heterogeneous, distributed circuit properties to achieve robust visual processing.
Collapse
Affiliation(s)
- Jacqueline Cornean
- Institute of Developmental Biology and Neurobiology, Johannes-Gutenberg University, 55128, Mainz, Germany
| | - Sebastian Molina-Obando
- Institute of Developmental Biology and Neurobiology, Johannes-Gutenberg University, 55128, Mainz, Germany
| | - Burak Gür
- Institute of Developmental Biology and Neurobiology, Johannes-Gutenberg University, 55128, Mainz, Germany
| | - Annika Bast
- Institute of Developmental Biology and Neurobiology, Johannes-Gutenberg University, 55128, Mainz, Germany
| | - Giordano Ramos-Traslosheros
- Institute of Developmental Biology and Neurobiology, Johannes-Gutenberg University, 55128, Mainz, Germany
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Jonas Chojetzki
- Institute of Developmental Biology and Neurobiology, Johannes-Gutenberg University, 55128, Mainz, Germany
| | - Lena Lörsch
- Institute of Developmental Biology and Neurobiology, Johannes-Gutenberg University, 55128, Mainz, Germany
| | - Maria Ioannidou
- Institute of Developmental Biology and Neurobiology, Johannes-Gutenberg University, 55128, Mainz, Germany
| | - Rachita Taneja
- Institute of Developmental Biology and Neurobiology, Johannes-Gutenberg University, 55128, Mainz, Germany
| | - Christopher Schnaitmann
- Institute of Developmental Biology and Neurobiology, Johannes-Gutenberg University, 55128, Mainz, Germany
| | - Marion Silies
- Institute of Developmental Biology and Neurobiology, Johannes-Gutenberg University, 55128, Mainz, Germany.
| |
Collapse
|