1
|
Jin SW, Ha HS, Lee I. Selective reactivation of value- and place-dependent information during sharp-wave ripples in the intermediate and dorsal hippocampus. SCIENCE ADVANCES 2024; 10:eadn0416. [PMID: 39110810 PMCID: PMC11305392 DOI: 10.1126/sciadv.adn0416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 06/26/2024] [Indexed: 08/10/2024]
Abstract
Reactivating place cells during sharp-wave ripples in the hippocampus is important for memory consolidation. However, whether hippocampal reactivation is affected by the values of events experienced by the animal is largely unknown. Here, we investigated whether place cells in the dorsal (dHP) and intermediate hippocampus (iHP) of rats are differentially reactivated depending on the value associated with a place during the learning of places associated with higher-value rewards in a T-maze. Place cells in the iHP representing the high-value location were reactivated significantly more frequently than those representing the low-value location, characteristics not observed in the dHP. In contrast, the activities of place cells in the dHP coding the routes leading to high-value locations were replayed more than those in the iHP. Our findings suggest that value-based differential reactivation patterns along the septotemporal axis of the hippocampus may play essential roles in optimizing goal-directed spatial learning for maximal reward.
Collapse
Affiliation(s)
| | - Hee-Seung Ha
- Department of Brain and Cognitive Sciences, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Korea
| | - Inah Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Korea
| |
Collapse
|
2
|
Nguyen ND, Lutas A, Amsalem O, Fernando J, Ahn AYE, Hakim R, Vergara J, McMahon J, Dimidschstein J, Sabatini BL, Andermann ML. Cortical reactivations predict future sensory responses. Nature 2024; 625:110-118. [PMID: 38093002 PMCID: PMC11014741 DOI: 10.1038/s41586-023-06810-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 10/31/2023] [Indexed: 01/05/2024]
Abstract
Many theories of offline memory consolidation posit that the pattern of neurons activated during a salient sensory experience will be faithfully reactivated, thereby stabilizing the pattern1,2. However, sensory-evoked patterns are not stable but, instead, drift across repeated experiences3-6. Here, to investigate the relationship between reactivations and the drift of sensory representations, we imaged the calcium activity of thousands of excitatory neurons in the mouse lateral visual cortex. During the minute after a visual stimulus, we observed transient, stimulus-specific reactivations, often coupled with hippocampal sharp-wave ripples. Stimulus-specific reactivations were abolished by local cortical silencing during the preceding stimulus. Reactivations early in a session systematically differed from the pattern evoked by the previous stimulus-they were more similar to future stimulus response patterns, thereby predicting both within-day and across-day representational drift. In particular, neurons that participated proportionally more or less in early stimulus reactivations than in stimulus response patterns gradually increased or decreased their future stimulus responses, respectively. Indeed, we could accurately predict future changes in stimulus responses and the separation of responses to distinct stimuli using only the rate and content of reactivations. Thus, reactivations may contribute to a gradual drift and separation in sensory cortical response patterns, thereby enhancing sensory discrimination7.
Collapse
Affiliation(s)
- Nghia D Nguyen
- Program in Neuroscience, Harvard University, Boston, MA, USA
| | - Andrew Lutas
- Division of Endocrinology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Diabetes, Endocrinology and Obesity Branch, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Oren Amsalem
- Division of Endocrinology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Jesseba Fernando
- Division of Endocrinology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Andy Young-Eon Ahn
- Division of Endocrinology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Richard Hakim
- Program in Neuroscience, Harvard University, Boston, MA, USA
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Josselyn Vergara
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Justin McMahon
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Jordane Dimidschstein
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Bernardo L Sabatini
- Program in Neuroscience, Harvard University, Boston, MA, USA
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Mark L Andermann
- Program in Neuroscience, Harvard University, Boston, MA, USA.
- Division of Endocrinology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|