1
|
Tannouri N, Simmons DBD. Characterizing the origin of blood plasma proteins from organ tissues in rainbow trout (Oncorhynchus mykiss) using a comparative non-targeted proteomics approach. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 46:101070. [PMID: 36871493 DOI: 10.1016/j.cbd.2023.101070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/05/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023]
Abstract
Protein expression patterns adapt to various cues to meet the needs of an organism. The dynamicity of an organism's proteome can therefore reveal information about an organism's health. Proteome databases contain limited information regarding organisms outside of medicinal biology. The UniProt human and mouse proteomes are extensively reviewed and ∼50 % of both proteomes include tissue specificity, while >99 % of the rainbow trout proteome lacks tissue specificity. This study aimed to expand knowledge on the rainbow trout proteome with a focus on understanding the origin of blood plasma proteins. Blood, brain, heart, liver, kidney, and gills were collected from adult rainbow trout, plasma and tissue proteins were analyzed using liquid chromatography tandem mass spectrometry. Over 10,000 proteins were identified across all groups. Our data indicated that the majority of the plasma proteome is shared amongst multiple tissue types, though 4-7 % of the plasma proteome is uniquely originated from each tissue (gill > heart > liver > kidney > brain).
Collapse
Affiliation(s)
- Nancy Tannouri
- Ontario Tech University, 2000 Simcoe St N, Oshawa, ON L1G 0C5, Canada. https://twitter.com/nancytannouri
| | | |
Collapse
|
2
|
Abstract
An air embolism is induced by intravascular bubbles that block the blood flow in vessels, which causes a high risk of pulmonary hypertension and myocardial and cerebral infarction. However, it is still unclear how a moving bubble is stopped in the blood flow to form an air embolism in small vessels. In this work, microfluidic experiments, in vivo and in vitro, are performed in small vessels, where bubbles are seen to deform and stop gradually in the flow. A clot is always found to originate at the tail of a moving bubble, which is attributed to the special flow field around the bubble. As the clot grows, it breaks the lubrication film between the bubble and the channel wall; thus, the friction force is increased to stop the bubble. This study illustrates the stopping process of elongated bubbles in small vessels and brings insight into the formation of air embolism.
Collapse
|
3
|
do Carmo TLL, Azevedo VC, de Siqueira PR, Galvão TD, Dos Santos FA, Dos Reis Martinez CB, Appoloni CR, Fernandes MN. Reactive oxygen species and other biochemical and morphological biomarkers in the gills and kidneys of the Neotropical freshwater fish, Prochilodus lineatus, exposed to titanium dioxide (TiO 2) nanoparticles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:22963-22976. [PMID: 29858996 DOI: 10.1007/s11356-018-2393-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 05/23/2018] [Indexed: 06/08/2023]
Abstract
This study investigated the action of titanium dioxide nanoparticles (TiO2-NPs), on the gills and kidneys of Neotropical freshwater fish, Prochilodus lineatus, with emphasis on reactive oxygen species (ROS) production, antioxidant responses, and morphological changes. Fish were exposed to 1, 5, 10, and 50 mg L-1 nominal TiO2-NPs suspended into water for 2 or 14 days. In gills, ROS decreased and glutathione (GSH) increased after 2 days, while ROS and GSH increased and superoxide dismutase activity decreased after 14 days. In kidneys, GSH and lipoperoxidation increased after 2 days and catalase activity decreased after 14 days. Common histopathologies in gills were epithelium hyperplasia, cellular hypertrophy, proliferation of mitochondria-rich cells (MRC), and lamellar stasis; in kidneys, there were cellular and nuclear hypertrophy, focal tubule degeneration, necrosis, and melanomacrophage (MM) proliferation. Although environmentally unlikely, high-dose exposures clarified biological effects of TiO2-NPs, such as ROS formation and MRC responses in the gills, which may impair ionic balance. It was also found that MM are likely responsible for eliminating NPs in the kidney. These findings will help to regulate TiO2-NP disposal, but longer-term studies are still needed.
Collapse
Affiliation(s)
- Talita Laurie Lustosa do Carmo
- Physiological Sciences Department, Federal University of São Carlos, Rodovia Washington Luiz, km 235, São Carlos, SP, 13565-905, Brazil
| | - Vinicius Cavicchioli Azevedo
- Physiological Sciences Department, Federal University of São Carlos, Rodovia Washington Luiz, km 235, São Carlos, SP, 13565-905, Brazil
| | - Priscila Rodrigues de Siqueira
- Physiological Sciences Department, Federal University of São Carlos, Rodovia Washington Luiz, km 235, São Carlos, SP, 13565-905, Brazil
| | - Tiago Dutra Galvão
- Physics Department, State University of Londrina, Rodovia Celso Garcia Cid | Pr 445 Km 380, Londrina, PR, 86055-900, Brazil
| | - Fabrício Aparecido Dos Santos
- Physics Institute of São Carlos, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, SP, 13566-970, Brazil
| | - Cláudia Bueno Dos Reis Martinez
- Physiological Sciences Department, State University of Londrina, Rodovia Celso Garcia Cid | Pr 445 Km 380, Londrina, PR, 86055-990, Brazil
| | - Carlos Roberto Appoloni
- Physics Department, State University of Londrina, Rodovia Celso Garcia Cid | Pr 445 Km 380, Londrina, PR, 86055-900, Brazil
| | - Marisa Narciso Fernandes
- Physiological Sciences Department, Federal University of São Carlos, Rodovia Washington Luiz, km 235, São Carlos, SP, 13565-905, Brazil.
| |
Collapse
|
4
|
Smith SA, Newman SJ, Coleman MP, Alex C. Characterization of the histologic appearance of normal gill tissue using special staining techniques. J Vet Diagn Invest 2018; 30:688-698. [PMID: 30029586 DOI: 10.1177/1040638718791819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Anatomic pathologists are familiar with stains used in light microscopy to identify cells, storage products, tissue deposits, and pathogens. Assessment of the surrounding tissue with special stains may reveal aspects of interest for the tissue or the species. We illustrate the expected staining characteristics of normal rainbow trout gill tissue with routine hematoxylin and eosin and 18 other histochemical stains.
Collapse
Affiliation(s)
- Stephen A Smith
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (Smith, Coleman, Alex).,College of Veterinary Medicine, University of Tennessee, Knoxville, TN (Newman)
| | - Shelley J Newman
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (Smith, Coleman, Alex).,College of Veterinary Medicine, University of Tennessee, Knoxville, TN (Newman)
| | - Matthew P Coleman
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (Smith, Coleman, Alex).,College of Veterinary Medicine, University of Tennessee, Knoxville, TN (Newman)
| | - Charles Alex
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (Smith, Coleman, Alex).,College of Veterinary Medicine, University of Tennessee, Knoxville, TN (Newman)
| |
Collapse
|