1
|
Madureira Ferreira M, Santos B, Skarbek A, Mills C, Thom H, Prentice D, McConnel C, Leal Yepes FA. Bovine Respiratory Disease (BRD) in Post-Weaning Calves with Different Prevention Strategies and the Impact on Performance and Health Status. Animals (Basel) 2024; 14:2807. [PMID: 39409755 PMCID: PMC11476203 DOI: 10.3390/ani14192807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Our study aimed to compare Bovine Respiratory Disease (BRD) morbidity, mortality, and growth in dairy and dairy beef cross-bred calves during the commingle period, 81-120 days of age, using two different BRD prevention strategies. The calves (n = 1799) were randomly assigned into groups: (1) Control (CON; received no vaccine or metaphylaxis); (2) Tulathromycin metaphylaxis (TUL; IncrexxaTM, Elanco Animal Health Inc., Greenfield, IN, USA); and (3) Mannheimia haemolytica vaccine (VACC; Nuplura® PH, Elanco Animal Health Inc., Greenfield, IN, USA). Calves were individually weighed three times during the study to estimate average daily gain (ADG). Deep nasopharyngeal swabs, thoracic ultrasonography, health scores, and treatment records were collected during the study. Ultrasound and health score results were not different across treatments. In this study, the TUL group had a lower cumulative BRD incidence than CON. The cumulative incidence and 95% CI of BRD during the commingle period, 81-120 days of age for CON, TUL, and VACC were 0.43 (0.38 to 0.47), 0.36 (0.38 to 0.40), and 0.39 (0.35 to 0.43), respectively. The ADG for CON, TUL, and VACC were 0.25 ± 0.15, 0.32 ± 0.15, and 0.17 ± 0.15 kg, respectively. There was no difference among the treatment groups for ADG. Management and environmental conditions were variable at this operation throughout the study period and likely impacted the calves. Earlier interventions may be needed when the BRD incidence is elevated in high-risk calves.
Collapse
Affiliation(s)
- Marina Madureira Ferreira
- Department of Animal Science, College of Agricultural and Life Sciences, Cornell University, Ithaca, NY 14853, USA;
| | - Bruna Santos
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA; (B.S.); (A.S.); (C.M.); (H.T.)
| | - Agata Skarbek
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA; (B.S.); (A.S.); (C.M.); (H.T.)
| | - Carley Mills
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA; (B.S.); (A.S.); (C.M.); (H.T.)
| | - Hannah Thom
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA; (B.S.); (A.S.); (C.M.); (H.T.)
| | | | - Craig McConnel
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA; (B.S.); (A.S.); (C.M.); (H.T.)
| | - Francisco A. Leal Yepes
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
2
|
Abi Younes JN, Campbell JR, Otto SJG, Gow SP, Woolums AR, Jelinski M, Lacoste S, Waldner CL. Variation in Pen-Level Prevalence of BRD Bacterial Pathogens and Antimicrobial Resistance Following Feedlot Arrival in Beef Calves. Antibiotics (Basel) 2024; 13:322. [PMID: 38666998 PMCID: PMC11047553 DOI: 10.3390/antibiotics13040322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/29/2024] Open
Abstract
Antimicrobials are crucial for treating bovine respiratory disease (BRD) in beef feedlots. Evidence is needed to support antimicrobial use (AMU) decisions, particularly in the early part of the feeding period when BRD risk is highest. The study objective was to describe changes in prevalence and antimicrobial susceptibility of BRD bacterial pathogens at feedlot processing (1 day on feed (1DOF)), 12 days later (13DOF), and for a subset at 36DOF following metaphylactic antimicrobial treatment. Mixed-origin steer calves (n = 1599) from Western Canada were managed as 16 pens of 100 calves, receiving either tulathromycin (n = 1199) or oxytetracycline (n = 400) at arrival. Deep nasopharyngeal swabs collected at all time points underwent culture and antimicrobial susceptibility testing (AST). Variability in the pen-level prevalence of bacteria and antimicrobial susceptibility profiles were observed over time, between years, and metaphylaxis options. Susceptibility to most antimicrobials was high, but resistance increased from 1DOF to 13DOF, especially for tetracyclines and macrolides. Simulation results suggested that sampling 20 to 30 calves per pen of 200 reflected the relative pen-level prevalence of the culture and AST outcomes of interest. Pen-level assessment of antimicrobial resistance early in the feeding period can inform the evaluation of AMU protocols and surveillance efforts and support antimicrobial stewardship in animal agriculture.
Collapse
Affiliation(s)
- Jennifer N. Abi Younes
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada; (J.N.A.Y.)
| | - John R. Campbell
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada; (J.N.A.Y.)
| | - Simon J. G. Otto
- School of Public Health, University of Alberta, Edmonton, AB T6G 1C9, Canada;
| | - Sheryl P. Gow
- Canadian Integrated Program for Antimicrobial Resistance Surveillance, Public Health Agency of Canada, Saskatoon, SK S7L 0Z2, Canada
| | - Amelia R. Woolums
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA
| | - Murray Jelinski
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada; (J.N.A.Y.)
| | - Stacey Lacoste
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada; (J.N.A.Y.)
| | - Cheryl L. Waldner
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada; (J.N.A.Y.)
| |
Collapse
|
3
|
Credille B, Berghaus RD, Jane Miller E, Credille A, Schrag NFD, Naikare H. Antimicrobial Metaphylaxis and its Impact on Health, Performance, Antimicrobial Resistance, and Contextual Antimicrobial Use in High-Risk Beef Stocker Calves. J Anim Sci 2024; 102:skad417. [PMID: 38126883 PMCID: PMC10941641 DOI: 10.1093/jas/skad417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/16/2023] [Indexed: 12/23/2023] Open
Abstract
The objective of this blinded, cluster-randomized, complete block trial was to evaluate the impact of metaphylaxis on health, performance, antimicrobial resistance, and contextual antimicrobial use (AMU) in high-risk beef stocker calves. Calves (n = 155) were randomly assigned to receive either saline or tulathromycin at the time of arrival processing. Deep nasopharyngeal swabs were collected from each calf at arrival and 14 d later. Calves were monitored for bovine respiratory disease (BRD) for 42 d. Body weights were obtained at arrival, days 14, 28, and 42. Contextual antimicrobial use (AMU) was calculated using dose and mass-based metrics. Calves given tulathromycin had a greater average daily gain (0.96 ± 0.07 kg vs. 0.82 ± 0.07 kg; P = 0.034) and lower prevalence of BRD than controls (17% vs. 40%; P = 0.008). Proportions of calves with BRD pathogens identified at arrival were similar between treatment groups [17%; P = 0.94]. Proportions of calves with BRD pathogens identified at day 14 were lower for calves receiving tulathromycin compared to controls (15% vs. 60%, P < 0.001). Overall, 81% of Pastuerella multocida isolates and 47% of Mannheimia haemolytica isolates were pansusceptible. When measured as regimens per head in, AMU in calves receiving tulathromycin was higher than calves receiving saline (P = 0.01). Under the conditions of this study, metaphylaxis had positive impacts on the health and performance of high-risk beef stocker calves, did not contribute to the selection of resistant bacterial isolates in the nasopharynx of treated cattle, and increased AMU.
Collapse
Affiliation(s)
- Brent Credille
- Department of Population Health, Food Animal Health and Management Program, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Roy D Berghaus
- Department of Population Health, Food Animal Health and Management Program, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Ella Jane Miller
- Department of Population Health, Food Animal Health and Management Program, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Allison Credille
- Department of Population Health, Food Animal Health and Management Program, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Nora F D Schrag
- Livestock Veterinary Resources, LLC, Oldsburg, KS 66520, USA
| | - Hemant Naikare
- Department of Pathology, Tifton Veterinary Diagnostic and Investigational Laboratory, College of Veterinary Medicine, University of Georgia, Tifton, GA 31793, USA
| |
Collapse
|
4
|
Jourquin S, Bokma J, De Cremer L, van Leenen K, Vereecke N, Pardon B. Randomized field trial comparing the efficacy of florfenicol and oxytetracycline in a natural outbreak of calf pneumonia using lung reaeration as a cure criterion. J Vet Intern Med 2022; 36:820-828. [PMID: 34994480 PMCID: PMC8965221 DOI: 10.1111/jvim.16348] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 12/10/2021] [Accepted: 12/21/2021] [Indexed: 11/29/2022] Open
Abstract
Background Respiratory infections are the main indication for antimicrobial use in calves. Optimal treatment duration currently is unknown, but shorter duration would likely decrease selection for antimicrobial resistance. Hypothesis/Objectives Determine differences in cure rate and healing time between animals treated with florfenicol and oxytetracycline in a natural outbreak of respiratory disease using reaeration observed on thoracic ultrasound examination as healing criterion. Animals Commercial farm housing 130, 3 to 9 month old Belgian blue beef calves. Methods Randomized clinical trial during an outbreak of respiratory disease. Metaphylactic treatment was initiated, randomly treating animals with either florfenicol or oxytetracycline. Ultrasonographic follow‐up was done the first day and every other day for a 14‐day period. At the individual animal level, treatment was discontinued when reaeration of the lungs occurred. Differences in cure rate and healing time were determined. Results Of the 130 animals studied, 67.7% developed a lung consolidation ≥0.5 cm. The mean ultrasonographic healing time was 2.5 days in the florfenicol group compared to 3.1 days in the oxytetracycline group (P = .04). After single treatment, 80.6% and 60.3% had no consolidations in the florfenicol and oxytetracycline groups, respectively (P = .01). A Mycoplasma bovis strain was genetically and phenotypically determined to be susceptible to both antimicrobials. Conclusions and Clinical Importance Ultrasonographic lung reaeration shows potential as a cure criterion to rationalize antimicrobial use for outbreaks of pneumonia. In our study, florfenicol resulted in a faster cure and higher reduction in antimicrobial usage than did oxytetracycline.
Collapse
Affiliation(s)
- Stan Jourquin
- Department of Large Animal Internal Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Jade Bokma
- Department of Large Animal Internal Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.,Department of Pathology, Bacteriology and Poultry Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Lieze De Cremer
- Department of Large Animal Internal Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Katharina van Leenen
- Department of Large Animal Internal Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Nick Vereecke
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.,PathoSense, Merelbeke, Belgium
| | - Bart Pardon
- Department of Large Animal Internal Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
5
|
Bringhenti L, Pallu M, Silva JC, Tomazi T, Tomazi ACCH, Rodrigues MX, Cruzado-Bravo M, Bilby TR, Bicalho RC. Effect of treatment of pneumonia and otitis media with tildipirosin or florfenicol + flunixin meglumine on health and upper respiratory tract microbiota of preweaned Holstein dairy heifers. J Dairy Sci 2021; 104:10291-10309. [PMID: 34099293 DOI: 10.3168/jds.2020-19945] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/19/2021] [Indexed: 01/02/2023]
Abstract
The objective of this randomized clinical study was to compare the effect of 2 antimicrobial interventions, tildipirosin or florfenicol + flunixin meglumine, used for treatment of pneumonia and extralabel treatment for otitis on health parameters and upper respiratory tract (URT) microbiota of preweaned Holstein calves. Housed preweaned Holstein heifers diagnosed with either otitis or pneumonia were assigned into 1 of 2 treatment groups, receiving a single subcutaneous injection of either 4 mg/kg of tildipirosin (TLD; n = 444) or 40 mg/kg of florfenicol combined with 2.2 mg/kg of a nonsteroidal anti-inflammatory, flunixin meglumine (FLF; n = 442). Calves were enrolled and treated on the day of diagnosis of the first case of pneumonia or otitis. If a calf had a recurrent case, the opposite drug was administered, respecting an interval of 5 d between drug injections. Blood samples for leukocyte counts were collected at 0, 2, 4, and 6 d after treatment, and rectal temperature was measured daily during the 5 d after treatment. Ear scores were observed from calves with otitis. Additionally, swabs of the URT were collected from a subset of 20 calves in each treatment group at d 0, 3, 6, 9, and 11 following enrollment for analysis of URT microbiota through next-generation sequencing of the 16S rRNA gene and quantitative PCR. Swabs were also collected from a comparative group of 20 healthy calves that did not receive any drug. No differences were observed between groups for recurrence risk of either pneumonia (TLD = 32.4%; FLF = 29.7%) or otitis (TLD = 72.7%; FLF = 73.6%). Similarly, no differences were observed for the total number of treatments for pneumonia (TLD = 1.45; FLF = 1.42) or otitis (TLD = 2.96; FLF = 3.07). On the other hand, both drugs reduced rectal temperature, ear scores, and leukocyte counts, with FLF calves having a greater reduction in rectal temperature within 4 d after treatment. Both TLD and FLF reduced the total bacterial load when compared with healthy untreated calves, but no differences were observed between treatment groups. Furthermore, compared with the untreated group, treated calves had lower mean relative abundances (MRA) of the genera Mannheimia, Moraxella, and Pasteurella within 11, 9, and 3 d after treatment, respectively; however, no significant differences were observed between TLD and FLF. On the other hand, MRA of Mycoplasma was not decreased by both treatments compared to untreated animals, and a higher MRA was observed in the TLD group during 11 d after treatment in comparison to FLF and untreated calves. Based on this data, we concluded that both drugs used in the study were effective in reducing rectal temperature, ear scores, leukocyte counts, and MRA of the genera Mannheimia, Pasteurella, and Moraxella in the URT, and calves treated with FLF had a greater reduction in rectal temperature.
Collapse
Affiliation(s)
- L Bringhenti
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853-6401
| | - M Pallu
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853-6401
| | - J C Silva
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853-6401
| | - T Tomazi
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853-6401
| | - A C C H Tomazi
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853-6401
| | - M X Rodrigues
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853-6401
| | - M Cruzado-Bravo
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853-6401
| | | | - R C Bicalho
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853-6401.
| |
Collapse
|
6
|
The Bacterial and Viral Agents of BRDC: Immune Evasion and Vaccine Developments. Vaccines (Basel) 2021; 9:vaccines9040337. [PMID: 33916119 PMCID: PMC8066859 DOI: 10.3390/vaccines9040337] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/19/2022] Open
Abstract
Bovine respiratory disease complex (BRDC) is a multifactorial disease of cattle which presents as bacterial and viral pneumonia. The causative agents of BRDC work in synergy to suppress the host immune response and increase the colonisation of the lower respiratory tracts by pathogenic bacteria. Environmental stress and/or viral infection predispose cattle to secondary bacterial infections via suppression of key innate and adaptive immune mechanisms. This allows bacteria to descend the respiratory tract unchallenged. BRDC is the costliest disease among feedlot cattle, and whilst vaccines exist for individual pathogens, there is still a lack of evidence for the efficacy of these vaccines and uncertainty surrounding the optimum timing of delivery. This review outlines the immunosuppressive actions of the individual pathogens involved in BRDC and highlights the key issues in the development of vaccinations against them.
Collapse
|
7
|
Binversie ES, Ruegg PL, Combs DK, Ollivett TL. Randomized clinical trial to assess the effect of antibiotic therapy on health and growth of preweaned dairy calves diagnosed with respiratory disease using respiratory scoring and lung ultrasound. J Dairy Sci 2020; 103:11723-11735. [PMID: 33222860 DOI: 10.3168/jds.2019-18044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 08/07/2020] [Indexed: 01/18/2023]
Abstract
The primary objective of this randomized field study was to assess the effect of antibiotic therapy on health and growth of preweaned dairy calves diagnosed with naturally occurring respiratory disease, using respiratory scoring and portable lung ultrasound. A secondary objective was to determine whether treatment response depended on clinical presentation at the time of diagnosis. Holstein calves (n = 357) were enrolled at 3 to 6 d of age and followed until 52 d on 2 commercial dairies. Calves were examined twice weekly by blinded members of the research team. Clinical respiratory and ultrasonographic lung scores were assigned at each exam and used to classify the first detected respiratory disease event (BRD1) into upper respiratory tract disease (clinical, no significant consolidation); subclinical lobular pneumonia (not clinical, patchy consolidation ≥1 cm2); clinical lobular pneumonia (clinical, patchy consolidation ≥1 cm2); subclinical lobar pneumonia (not clinical, ≥1 lobe consolidated); and clinical lobar pneumonia (clinical, ≥1 lobe consolidated). At BRD1, calves were blocked by their respiratory disease status and randomized to receive an antibiotic (tulathromycin, 2.5 mg/kg subcutaneous) or placebo (sterile saline, equal volume subcutaneous). Multivariable linear and logistic regression analyses were used to model response to therapy. At BRD1 (n = 289), the distribution of diagnoses was 29% (upper respiratory tract disease), 43% (subclinical lobular pneumonia), 13% (clinical lobular pneumonia), 8% (subclinical lobar pneumonia), and 7% (clinical lobar pneumonia). Early antibiotic therapy limited progression of lung consolidation immediately following treatment, reduced the likelihood of requiring treatment within 7 d of BRD1, and improved growth and mortality before weaning. Despite receiving multiple doses of antibiotics after BRD1, calves treated with either antibiotic or placebo were equally likely to enter the weaning phase with pneumonia. Clinical presentation was associated with response to treatment for worsening of consolidation, early treatment failure, days to retreatment, and average daily gain. Overall, treatment was associated with short-term benefits, but more research is needed to develop treatment protocols that more effectively treat pneumonia and ensure that calves enter the weaning period with ultrasonographically clean lungs.
Collapse
Affiliation(s)
- E S Binversie
- Saskatoon Colostrum Company Ltd. (SCCL), Mesa, AZ 85206
| | - P L Ruegg
- Department of Animal Science, Michigan State University, East Lansing 48824
| | - D K Combs
- Department of Animal Science, College of Agricultural and Life Sciences, University of Wisconsin, Madison 53706
| | - T L Ollivett
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison 53706.
| |
Collapse
|
8
|
Coetzee JF, Cernicchiaro N, Sidhu PK, Kleinhenz MD. Association between antimicrobial drug class selection for treatment and retreatment of bovine respiratory disease and health, performance, and carcass quality outcomes in feedlot cattle. J Anim Sci 2020; 98:5816850. [PMID: 32255182 DOI: 10.1093/jas/skaa109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/04/2020] [Indexed: 11/14/2022] Open
Abstract
Treatment and control of bovine respiratory disease (BRD) is predicated on the use of two categories of antimicrobials, namely bacteriostatic drugs that inhibit bacterial growth and replication (STATIC), and bactericidal drugs that kill bacteria in in vitro culture systems (CIDAL). Recently, we reported that initial BRD treatment with a STATIC antimicrobial followed by retreatment with a CIDAL antimicrobial was associated with a higher frequency of multidrug-resistant bacteria isolated from field cases of BRD submitted to a veterinary diagnostic laboratory. The present study was conducted to test the hypothesis that calves administered the same class of antimicrobial for first and second BRD treatment (i.e., CIDAL-CIDAL or STATIC-STATIC) would have improved health and performance outcomes at the feedlot compared to calves that received a different antimicrobial class for retreatment (i.e., STATIC-CIDAL or CIDAL-STATIC). The association between antimicrobial treatments and health, performance, and carcass quality outcomes were determined by a retrospective analysis of 4,252 BRD treatment records from a commercial feedlot operation collected from 2001 to 2005. Data were compared using generalized linear mixed statistical models that included gender, season, and arrival weight as covariates. The mean (±SE) probability of BRD cases identified as requiring four or more treatments compared to three treatments was greater in calves that received STATIC-CIDAL (73.58 ± 2.38%) or STATIC-STATIC (71.32 ± 2.52%) first and second antimicrobial treatments compared to calves receiving CIDAL-CIDAL (50.35 ± 3.46%) first and second treatments (P < 0.001). Calves receiving CIDAL-CIDAL first and second treatments also had an increased average daily gain (1.11 ± 0.03 kg/d) compared to calves receiving STATIC-CIDAL (0.95 ± 0.03 kg/d) and STATIC-STATIC (0.84 ± 0.02 kg/d) treatments (P < 0.001). Furthermore, CIDAL-CIDAL-treated calves had a higher probability of a choice quality grade at slaughter (36.44 ± 4.80%) compared to STATIC-CIDAL calves (28.09 ± 3.88%) (P = 0.037). There was no effect of antimicrobial treatment combination on BRD mortality (P = 0.855) or yield grade (P = 0.240) outcomes. These observations suggest that consideration should be given to antimicrobial pharmacodynamics when selecting drugs for retreatment of BRD. These findings have implications for developing BRD treatment protocols that address both post-treatment production and antimicrobial stewardship concerns.
Collapse
Affiliation(s)
- Johann F Coetzee
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS
| | - Natalia Cernicchiaro
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, College of Veterinary Medicine, Kansas State University, Manhattan, KS
| | - Pritam K Sidhu
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS
| | - Michael D Kleinhenz
- Department of Clinical Sciences, College of Veterinary Medicine, College of Veterinary Medicine, Kansas State University, Manhattan, KS
| |
Collapse
|
9
|
Lardé H, Dufour S, Archambault M, Léger D, Loest D, Roy JP, Francoz D. Assignment of Canadian Defined Daily Doses and Canadian Defined Course Doses for Quantification of Antimicrobial Usage in Cattle. Front Vet Sci 2020; 7:10. [PMID: 32083099 PMCID: PMC7001643 DOI: 10.3389/fvets.2020.00010] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/08/2020] [Indexed: 11/21/2022] Open
Abstract
Standardized units are essential to allow quantification and comparison of antimicrobial usage (AMU) between species and regions. In Canada, defined daily and course doses have not yet been harmonized for cattle. Our objective was to assign defined daily and course doses (named DDDbovCA and DCDbovCA, respectively) for cattle in Canada, by antimicrobial agent (AM) and by route of administration, based on the label of all products containing at least one AM, marketed and authorized in Canada for use in cattle. In April and December 2019, a systematic search was performed from the online Drug Product Database (DPD) of Health Canada to identify veterinary products containing at least one AM, marketed in Canada for use in cattle. Products were divided by route of administration (intramammary, intrauterine, injectable, oral, and topical). The monograph was retrieved for each product from the DPD, or from the Canadian Edition of the Compendium of Veterinary Products (CVP), and read completely to extract recommended dosages in cattle. Standard weights were applied to compute doses if required. DDDbovCA and DCDbovCA were assigned by calculating an average of daily and course doses, respectively, by AM and route of administration. Two products were excluded from calculations because of their claim as growth promotion or feed efficiency (no longer authorized in Canada for certain categories of AM). Overall, 39 injectable, 75 oral (including 23 medicated premixes), 8 intramammary (4 for lactating cows and 4 for dry cows), 5 intrauterine, and 4 topical products were used for calculations. DDDbovCA and DCDbovCA values were assigned successfully for each AM identified, by route of administration. These metrics will allow harmonized and transparent quantification of AMU in cattle in Canada.
Collapse
Affiliation(s)
- Hélène Lardé
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada.,Fonds de Recherche du Québec - Nature et Technologies Strategic Cluster Op+lait, Regroupement de Recherche Pour un Lait de Qualité Optimale, Saint-Hyacinthe, QC, Canada
| | - Simon Dufour
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada.,Fonds de Recherche du Québec - Nature et Technologies Strategic Cluster Op+lait, Regroupement de Recherche Pour un Lait de Qualité Optimale, Saint-Hyacinthe, QC, Canada
| | - Marie Archambault
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada.,Fonds de Recherche du Québec - Nature et Technologies Strategic Cluster Op+lait, Regroupement de Recherche Pour un Lait de Qualité Optimale, Saint-Hyacinthe, QC, Canada
| | - David Léger
- Centre for Food-borne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, ON, Canada
| | - Daleen Loest
- Centre for Food-borne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, ON, Canada
| | - Jean-Philippe Roy
- Fonds de Recherche du Québec - Nature et Technologies Strategic Cluster Op+lait, Regroupement de Recherche Pour un Lait de Qualité Optimale, Saint-Hyacinthe, QC, Canada.,Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - David Francoz
- Fonds de Recherche du Québec - Nature et Technologies Strategic Cluster Op+lait, Regroupement de Recherche Pour un Lait de Qualité Optimale, Saint-Hyacinthe, QC, Canada.,Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
| |
Collapse
|
10
|
Coetzee JF, Magstadt DR, Sidhu PK, Follett L, Schuler AM, Krull AC, Cooper VL, Engelken TJ, Kleinhenz MD, O'Connor AM. Association between antimicrobial drug class for treatment and retreatment of bovine respiratory disease (BRD) and frequency of resistant BRD pathogen isolation from veterinary diagnostic laboratory samples. PLoS One 2019; 14:e0219104. [PMID: 31835273 PMCID: PMC6910856 DOI: 10.1371/journal.pone.0219104] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 11/19/2019] [Indexed: 02/07/2023] Open
Abstract
Although 90% of BRD relapses are reported to receive retreatment with a different class of antimicrobial, studies examining the impact of antimicrobial selection (i.e. bactericidal or bacteriostatic) on retreatment outcomes and the emergence of antimicrobial resistance (AMR) are deficient in the published literature. This survey was conducted to determine the association between antimicrobial class selection for treatment and retreatment of BRD relapses on antimicrobial susceptibility of Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni. Pathogens were isolated from samples submitted to the Iowa State University Veterinary Diagnostic Laboratory from January 2013 to December 2015. A total of 781 isolates with corresponding animal case histories, including treatment protocols, were included in the analysis. Original susceptibility testing of these isolates for ceftiofur, danofloxacin, enrofloxacin, florfenicol, oxytetracycline, spectinomycin, tilmicosin, and tulathromycin was performed using Clinical and Laboratory Standards Institute guidelines. Data were analyzed using a Bayesian approach to evaluate whether retreatment with antimicrobials of different mechanistic classes (bactericidal or bacteriostatic) increased the probability of resistant BRD pathogen isolation in calves. The posterior distribution we calculated suggests that an increased number of treatments is associated with a greater probability of isolates resistant to at least one antimicrobial. Furthermore, the frequency of resistant BRD bacterial isolates was greater with retreatment using antimicrobials of different mechanistic classes than retreatment with the same class. Specifically, treatment protocols using a bacteriostatic drug first followed by retreatment with a bactericidal drug were associated with a higher frequency of resistant BRD pathogen isolation. In particular, first treatment with tulathromycin (bacteriostatic) followed by ceftiofur (bactericidal) was associated with the highest probability of resistant M. haemolytica among all antimicrobial combinations. These observations suggest that consideration should be given to antimicrobial pharmacodynamics when selecting drugs for retreatment of BRD. However, prospective studies are needed to determine the clinical relevance to antimicrobial stewardship programs in livestock production systems.
Collapse
Affiliation(s)
- Johann F Coetzee
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States of America.,Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States of America
| | - Drew R Magstadt
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States of America
| | - Pritam K Sidhu
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States of America
| | - Lendie Follett
- Department of Information Management and Business Analytics, College of Business and Public Administration, Drake University, Des Moines, IA, United States of America
| | - Adlai M Schuler
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States of America
| | - Adam C Krull
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States of America
| | - Vickie L Cooper
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States of America
| | - Terry J Engelken
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States of America
| | - Michael D Kleinhenz
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States of America
| | - Annette M O'Connor
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States of America
| |
Collapse
|
11
|
Holschbach CL, Raabis SM, Ollivett TL. Effect of antibiotic treatment in preweaned Holstein calves after experimental bacterial challenge with Pasteurella multocida. J Dairy Sci 2019; 102:11359-11369. [PMID: 31548072 PMCID: PMC7094633 DOI: 10.3168/jds.2019-16992] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/05/2019] [Indexed: 11/19/2022]
Abstract
The primary objective of this randomized controlled challenge study was to investigate the effect of ampicillin on ultrasonographic (US) lung consolidation after experimental challenge with Pasteurella multocida in preweaned dairy calves. The secondary objectives were to determine whether ampicillin affected respiratory score, gross consolidation, or the detection of P. multocida in lung tissue at postmortem exam (PME). Holstein bull calves (n = 39) were transported to the University of Wisconsin-Madison School of Veterinary Medicine isolation facility at the mean (±SD) age of 52 ± 6 d. After a 7-d acclimation period, 30 calves were inoculated intratracheally with 1010 cfu of ampicillin-sensitive P. multocida. Lung US and respiratory scoring were performed 2, 6, 12, and 24 h post-challenge, then US once daily and respiratory scoring twice daily until d 14. Calves were randomized to receive ampicillin [n = 17, treatment (TX), 6.6 mg/kg i.m. once daily for 3 d] or placebo [n = 11, control (CON), saline, equal volume, i.m. once daily for 3 d] when ≥1 cm2 of lung consolidation was observed and ≥6 h had elapsed since challenge. Lung lesions ≥1 cm2 were considered positive for consolidation. Calves were respiratory score positive if ≥2 in 2 or more categories based on the Wisconsin respiratory health score chart. Area under the curve (AUC) was calculated for US score and respiratory score as a proxy for time with consolidation and clinical respiratory disease, respectively. Gross lung lesions and pathogens were quantified following PME. At the time of first treatment, consolidation had developed in 28/30 calves (TX, n = 17; CON, n = 11) and 6% (1 out of 17) of TX and 9% (1 out of 11) of CON calves had a positive respiratory score. The TX calves had a significantly lower median (interquartile range given in parentheses) AUC for US score [TX: 23 (20, 29), CON: 47 (33, 53)], whereas mean AUC for respiratory score was not different between groups (TX: 93 ± 28, CON: 96 ± 17). On d 14, 70% (12 out of 17) of TX and 100% (11 out of 11) of CON calves had lung consolidation, and 24% (4 out of 17) of TX and 27% (3 out of 11) of CON calves had clinical respiratory disease. On PME, median consolidation was 10% (6, 15) for TX and 10% (2, 28) for CON calves. Lung cultures were positive for P. multocida in 77% (13 out of 17) of TX and 91% (10 out of 11) of CON calves. Lung health benefited from a 3-d ampicillin therapy, but benefits were short-lived. Treatment failures might be due to incomplete resolution of the initial lung infection. Future studies are needed to optimize TX strategies to improve long-term lung health.
Collapse
Affiliation(s)
- C L Holschbach
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison 53706
| | - S M Raabis
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison 53706
| | - T L Ollivett
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison 53706.
| |
Collapse
|
12
|
Abstract
Optimization of antimicrobial treatment is a cornerstone in the fight against antimicrobial resistance. Various national and international authorities and professional veterinary and farming associations have released generic guidelines on prudent antimicrobial use in animals. However, these generic guidelines need to be translated into a set of animal species- and disease-specific practice recommendations. This article focuses on prevention of antimicrobial resistance and its complex relationship with treatment efficacy, highlighting key situations where the current antimicrobial drug products, treatment recommendations, and practices may be insufficient to minimize antimicrobial selection. The authors address this topic using a multidisciplinary approach involving microbiology, pharmacology, clinical medicine, and animal husbandry. In the first part of the article, we define four key targets for implementing the concept of optimal antimicrobial treatment in veterinary practice: (i) reduction of overall antimicrobial consumption, (ii) improved use of diagnostic testing, (iii) prudent use of second-line, critically important antimicrobials, and (iv) optimization of dosage regimens. In the second part, we provided practice recommendations for achieving these four targets, with reference to specific conditions that account for most antimicrobial use in pigs (intestinal and respiratory disease), cattle (respiratory disease and mastitis), dogs and cats (skin, intestinal, genitourinary, and respiratory disease), and horses (upper respiratory disease, neonatal foal care, and surgical infections). Lastly, we present perspectives on the education and research needs for improving antimicrobial use in the future.
Collapse
|
13
|
Stroebel C, Alexander T, Workentine ML, Timsit E. Effects of transportation to and co-mingling at an auction market on nasopharyngeal and tracheal bacterial communities of recently weaned beef cattle. Vet Microbiol 2018; 223:126-133. [PMID: 30173738 DOI: 10.1016/j.vetmic.2018.08.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/03/2018] [Accepted: 08/03/2018] [Indexed: 12/13/2022]
Abstract
The objective was to study effects of transportation to and co-mingling at an auction market on nasopharyngeal and tracheal bacterial communities of feedlot cattle. Two groups of 30 Angus-cross heifers were studied from weaning to 28 d after arrival at a feedlot. For each group, half the heifers were either transported directly to a feedlot after weaning (RANC) or transported to and co-mingled at an auction market for 24 h before being placed in a feedlot (AUCT). Deep nasal swabs (DNS) and trans-tracheal aspirates (TTA) were collected at weaning (d0) and at on-arrival processing at the feedlot (d2). At 7 (d9) and 28 d (d30) after arrival, DNS were repeated. The DNA was extracted from DNS and TTA and the V4 region of the 16S rRNA gene sequenced (MiSeq). Alpha diversity analysis did not reveal differences between AUCT and RANC. However, bacterial diversity decreased over time in the nasopharynx, especially at d9. Although beta-diversity was not different between AUCT and RANC, interval after arrival and feedlot where heifers were placed affected composition of the nasopharyngeal bacterial communities. In both groups, a large increase in Mycoplasma was observed after arrival; in one group, Mycoplasma bovis was dominant at d9 and remained dominant until d30. However, in the other group, Mycoplasma dispar dominated at d9 and was replaced by Moraxella at d30. We concluded that transportation to and co-mingling at an auction market for 24 h did not significantly influence diversity or composition of nasopharyngeal or tracheal bacterial communities.
Collapse
Affiliation(s)
- Christina Stroebel
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Trevor Alexander
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada.
| | | | - Edouard Timsit
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada; Simpson Ranch Chair in Beef Cattle Health and Wellness, University of Calgary, Calgary, AB, Canada; Feedlot Health Management Services, Okotoks, AB, Canada.
| |
Collapse
|
14
|
Woolums AR, Karisch BB, Frye JG, Epperson W, Smith DR, Blanton J, Austin F, Kaplan R, Hiott L, Woodley T, Gupta SK, Jackson CR, McClelland M. Multidrug resistant Mannheimia haemolytica isolated from high-risk beef stocker cattle after antimicrobial metaphylaxis and treatment for bovine respiratory disease. Vet Microbiol 2018; 221:143-152. [PMID: 29981701 DOI: 10.1016/j.vetmic.2018.06.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 05/16/2018] [Accepted: 06/07/2018] [Indexed: 10/14/2022]
Abstract
Antimicrobial resistance (AMR) in bacterial respiratory pathogens in high-risk stocker cattle has been poorly characterized. The objective of this study was to describe the prevalence of multidrug resistant (MDR; resistance to > 3 antimicrobial classes) respiratory pathogens in 50 conventionally managed stocker cattle over 21 days after arrival. Cattle received tildipirosin metaphylaxis on day 0 and were eligible to receive up to 3 additional antimicrobials for bovine respiratory disease (BRD): florfenicol, ceftiofur and enrofloxacin. Nasopharyngeal swabs were collected on days 0, 7, 14, and 21 for bacterial culture and antimicrobial susceptibility testing using disc diffusion and broth microdilution. Mannheimia haemolytica was isolated from 5 of 48, 27 of 50, 44 of 50, and 40 of 50 cattle on days 0, 7, 14, and 21, respectively. One of 5, 27 of 27, 43 of 44, and 40 of 40 M. haemolytica were MDR on days 0, 7, 14, and 21, respectively. Pasteurella multocida was isolated from 6 of 48 cattle on day 0 and none were MDR; no other pathogens were isolated. Twenty-four cattle required at least one BRD treatment; M. haemolytica was isolated before treatment from 13 of 24 cattle; all were MDR. One hundred-eighteen M. haemolytica isolates were subjected to pulsed-field gel electrophoresis (PFGE); multiple genotypes were identified. Whole genome sequencing of 33 isolates revealed 14 known AMR genes. Multidrug resistant M. haemolytica can be highly prevalent and genetically diverse in stocker cattle; additional research is necessary to determine factors that influence prevalence and the impact on cattle health.
Collapse
Affiliation(s)
- Amelia R Woolums
- Department of Veterinary Pathobiology and Population Medicine, Mississippi State University, Mississippi State, MS, USA.
| | - Brandi B Karisch
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Jonathan G Frye
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, U.S. Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Athens, GA, USA
| | - William Epperson
- Department of Veterinary Pathobiology and Population Medicine, Mississippi State University, Mississippi State, MS, USA
| | - David R Smith
- Department of Veterinary Pathobiology and Population Medicine, Mississippi State University, Mississippi State, MS, USA
| | - John Blanton
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Frank Austin
- Department of Veterinary Pathobiology and Population Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Ray Kaplan
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Lari Hiott
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, U.S. Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Athens, GA, USA
| | - Tiffanie Woodley
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, U.S. Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Athens, GA, USA
| | - Sushim K Gupta
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, U.S. Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Athens, GA, USA
| | - Charlene R Jackson
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, U.S. Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Athens, GA, USA
| | - Michael McClelland
- Department of Microbiology and Molecular Genetics, and Department of Pathology and Laboratory Medicine, University of California, Irvine, CA, USA
| |
Collapse
|
15
|
Chamorro MF, Cernicchiaro N, Haines DM. Evaluation of the effects of colostrum replacer supplementation of the milk replacer ration on the occurrence of disease, antibiotic therapy, and performance of pre-weaned dairy calves. J Dairy Sci 2016; 100:1378-1387. [PMID: 27939546 DOI: 10.3168/jds.2016-11652] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 10/17/2016] [Indexed: 12/23/2022]
Abstract
The objective of this study was to evaluate the effects of colostrum supplementation of the milk replacer ration on disease occurrence, antibiotic therapy, and performance of pre-weaned dairy calves with adequate transfer of passive immunity. Two hundred and two 1-d-old Holstein dairy calves were assigned to 1 of 2 groups after arrival to a dairy calf rearing facility. Calves assigned to the control group (n = 100) received milk replacer (28% crude protein and 20% crude fat) without colostrum inclusion twice daily. Calves assigned to the treatment group (n = 102) received 150 g of supplemental colostrum replacer powder added to their milk replacer twice daily for the first 14 d of life. Before group assignment, serum samples were collected from all calves to confirm transfer of passive immunity. Calves were evaluated daily until weaning (56 d of life) for signs of clinical disease as well as any treatment with antibiotics. Presentation of clinical disease and antibiotic treatment was recorded daily by personnel blinded to treatment allocation. Adequate transfer of passive immunity was confirmed in all calves at the start of the study and mean serum IgG values were similar among calves from treatment and control groups. The odds ratios of having abnormal feces and abnormal respiration during the pre-weaning period for calves from the treatment group were 0.15 and 0.46 the odds ratios of calves from the control group, respectively. The odds ratios of receiving antibiotic therapy during the pre-weaning period for calves from the treatment group were 0.09 the odds ratios of calves from the control group. Mean body weight and average daily gain at weaning were not significantly different among calves from the treatment and control groups. Colostrum replacer supplementation of the milk replacer ration was effective in reducing antibiotic therapy and occurrence of disease during the pre-weaning period.
Collapse
Affiliation(s)
- Manuel F Chamorro
- Department of Clinical Research, The Saskatoon Colostrum Company Ltd., Saskatoon, Canada S7K 6A2.
| | - Natalia Cernicchiaro
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan 66506
| | - Deborah M Haines
- Department of Clinical Research, The Saskatoon Colostrum Company Ltd., Saskatoon, Canada S7K 6A2; Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada S7K 6A2
| |
Collapse
|