1
|
Mealey KL, Burke NS, Villarino NF, Court MH, Heusser JP. Application of eprinomectin-containing parasiticides at label doses causes neurological toxicosis in cats homozygous for ABCB11930_1931del TC. J Vet Pharmacol Ther 2024; 47:226-230. [PMID: 38366723 DOI: 10.1111/jvp.13431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/01/2024] [Accepted: 02/04/2024] [Indexed: 02/18/2024]
Abstract
The feline MDR1 mutation (ABCB11930_1931delTC) has been associated with neurological toxicosis after topical application of eprinomectin products labeled for feline use. Information was collected from veterinarians who submitted samples for ABCB11930_1931delTC genotyping. In most cases, the submission form indicated an adverse event involving eprinomectin, in other cases submitting veterinarians were contacted to determine whether the patient had experienced an adverse drug event involving eprinomectin. If so, additional information was obtained to determine whether the case met inclusion criteria. 14 cases were highly consistent with eprinomectin toxicosis. Eight cats were homozygous for ABCB11930_1931del TC (3 died; 5 recovered). Six cats were homozygous wildtype (2 died; 4 recovered). The observed ABCB11930_1931delTC frequency (57%) was higher than the expected frequency (≤1%) in the feline population (Fisher Exact test, p < 0.01). Among wildtype cats, four were concurrently treated with potential competitive inhibitors of P-glycoprotein. Results indicate that topical eprinomectin products, should be avoided in cats homozygous for ABCB11930_1931delTC. This is a serious, preventable adverse event occurring in an identifiable subpopulation treated with FDA-approved products in accordance with label directions. Acquired P-glycoprotein deficiency resulting from drug interactions may enhance susceptibility to eprinomectin-induced neurological toxicosis in any cat, regardless of ABCB1 genotype.
Collapse
Affiliation(s)
- Katrina L Mealey
- Program in Individualized Medicine (PrIMe), Washington State University, Pullman, Washington, USA
| | - Neal S Burke
- Program in Individualized Medicine (PrIMe), Washington State University, Pullman, Washington, USA
| | - Nicolas F Villarino
- Program in Individualized Medicine (PrIMe), Washington State University, Pullman, Washington, USA
| | - Michael H Court
- Program in Individualized Medicine (PrIMe), Washington State University, Pullman, Washington, USA
| | - Jennifer P Heusser
- Program in Individualized Medicine (PrIMe), Washington State University, Pullman, Washington, USA
| |
Collapse
|
2
|
Beckwith-Cohen B, Petersen-Jones SM. Manifestations of systemic disease in the retina and fundus of cats and dogs. Front Vet Sci 2024; 11:1337062. [PMID: 38444779 PMCID: PMC10912207 DOI: 10.3389/fvets.2024.1337062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/15/2024] [Indexed: 03/07/2024] Open
Abstract
The fundus is unique in that it is the only part of the body that allows for a noninvasive and uninterrupted view of vasculature and nervous tissue. Utilization of this can be a powerful tool in uncovering salient incidental findings which point to underlying systemic diseases, and for monitoring response to therapy. Retinal venules and arterioles allow the clinician to assess changes in vascular color, diameter, outline, and tortuosity. The retina and optic nerve may exhibit changes associated with increased or decreased thickness, inflammatory infiltrates, hemorrhages, and detachments. While some retinal manifestations of systemic disease may be nonspecific, others are pathognomonic, and may be the presenting sign for a systemic illness. The examination of the fundus is an essential part of the comprehensive physical examination. Systemic diseases which may present with retinal abnormalities include a variety of disease classifications, as represented by the DAMNIT-V acronym, for Degenerative/Developmental, Anomalous, Metabolic, Neoplastic, Nutritional, Inflammatory (Infectious/Immune-mediated/ischemic), Toxic, Traumatic and Vascular. This review details systemic illnesses or syndromes that have been reported to manifest in the fundus of companion animals and discusses key aspects in differentiating their underlying cause. Normal variations in retinal anatomy and morphology are also considered.
Collapse
Affiliation(s)
- Billie Beckwith-Cohen
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Simon M. Petersen-Jones
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
3
|
Vaidhya A, Ghildiyal K, Rajawat D, Nayak SS, Parida S, Panigrahi M. Relevance of pharmacogenetics and pharmacogenomics in veterinary clinical practice: A review. Anim Genet 2024; 55:3-19. [PMID: 37990577 DOI: 10.1111/age.13376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/03/2023] [Accepted: 10/24/2023] [Indexed: 11/23/2023]
Abstract
The recent advances in high-throughput next-generation sequencing technologies have heralded the arrival of the Big Data era. As a result, the use of pharmacogenetics in drug discovery and individualized drug therapy has transformed the field of precision medicine. This paradigm shift in drug development programs has effectively reshaped the old drug development practices, which were primarily concerned with the physiological status of patients for drug development. Pharmacogenomics bridges the gap between pharmacodynamics and pharmacokinetics, advancing current diagnostic and treatment strategies and enabling personalized and targeted drug therapy. The primary goals of pharmacogenetic studies are to improve drug efficacy and minimize toxicities, to identify novel drug targets, to estimate drug dosage for personalized medicine, and to incorporate it as a routine diagnostic for disease susceptibility. Although pharmacogenetics has numerous applications in individualized drug therapy and drug development, it is in its infancy in veterinary medicine. The objective of this review is to present an overview of historical landmarks, current developments in various animal species, challenges and future perspectives of genomics in drug development and dosage optimization for individualized medicine in veterinary subjects.
Collapse
Affiliation(s)
- Ayushi Vaidhya
- Division of Pharmacology & Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, India
| | - Kanika Ghildiyal
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, India
| | - Divya Rajawat
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, India
| | - Sonali Sonejita Nayak
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, India
| | - Subhashree Parida
- Division of Pharmacology & Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, India
| | - Manjit Panigrahi
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, India
| |
Collapse
|
4
|
Ivermectin Attenuates CCl 4-Induced Liver Fibrosis in Mice by Suppressing Hepatic Stellate Cell Activation. Int J Mol Sci 2022; 23:ijms232416043. [PMID: 36555680 PMCID: PMC9782196 DOI: 10.3390/ijms232416043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/04/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Liver fibrosis, a common liver dysfunction with high morbidity and mortality rates, is the leading cause of cirrhosis and hepatocellular carcinoma, for which there are no effective therapies. Ivermectin is an antiparasitic drug that also has been showing therapeutic actions in many other diseases, including antiviral and anticancer actions, as well as treating metabolic diseases. Herein, we evaluated the function of ivermectin in regulating liver fibrosis. Firstly, carbon tetrachloride (CCl4)-injected Balb/c mice were used to assess the antifibrosis effects of ivermectin in vivo. Further, CFSC, a rat hepatic stellate cell (HSC) line, was used to explore the function of ivermectin in HSC activation in vitro. The in vivo data showed that ivermectin administration alleviated histopathological changes, improved liver function, reduced collagen deposition, and downregulated the expression of profibrotic genes. Mechanistically, the ivermectin treatment inhibited intrahepatic macrophage accumulation and suppressed the production of proinflammatory factors. Importantly, the ivermectin administration significantly decreased the protein levels of α-smooth muscle actin (α-SMA) both in vivo and in vitro, suggesting that the antifibrotic effects of ivermectin are mainly due to the promotion of HSC deactivation. The present study demonstrates that ivermectin may be a potential therapeutic agent for the prevention of hepatic fibrosis.
Collapse
|
5
|
Beckers E, Casselman I, Soudant E, Daminet S, Paepe D, Peelman L, Broeckx BJG. The prevalence of the ABCB1-1Δ variant in a clinical veterinary setting: The risk of not genotyping. PLoS One 2022; 17:e0273706. [PMID: 36037240 PMCID: PMC9423603 DOI: 10.1371/journal.pone.0273706] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/11/2022] [Indexed: 11/29/2022] Open
Abstract
Multidrug sensitivity is an autosomal recessive disorder in dogs caused by a 4-bp deletion in the ABCB1 gene, often referred to as the ABCB1-1Δ variant. This disease has a high prevalence in some breeds and causes adverse reactions to certain drugs when given in normal doses. Though most dogs known to be at risk are of the collie lineage or were traced back to it, the variant has also been described in several seemingly unrelated breeds. It is generally advised to genotype dogs at risk before treating them. However, there seems to be a discrepancy between the advice and current veterinary practices, as a recent study in Belgium and the Netherlands showed that most veterinarians never order a DNA test. To assess the possible risk of not testing for multidrug sensitivity in a clinical setting, the ABCB1-1Δ variant allele frequency was established in a sample of 286 dogs from a veterinary clinic. This frequency was compared to the allelic frequency in 599 samples specifically sent for genetic testing. While the allelic frequency in the sample for genetic testing was high (21.6%) and in line with the general reports, the allelic frequency in the clinical setting was low (0.2%), demonstrating an enormous difference between laboratory and clinical frequencies. Because of the low frequency of the disease-causing variant in the general clinical population, the risk of encountering a dog displaying multidrug sensitivity despite not genotyping seems to be low. As the variant was only found in an at-risk breed, the current recommendation of routinely genotyping at-risk breeds before treatment seems justified.
Collapse
Affiliation(s)
- Evy Beckers
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Iris Casselman
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Emma Soudant
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Sylvie Daminet
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Dominique Paepe
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Luc Peelman
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Bart J. G. Broeckx
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- * E-mail:
| |
Collapse
|
6
|
DeMel D, Gleeson M, Schachterle K, Thomer A. Successful treatment of ivermectin overdose in a bearded dragon (Pogona vitticeps) using gastric lavage and intravenous lipid emulsion. J Vet Emerg Crit Care (San Antonio) 2022; 32:680-684. [PMID: 35708909 DOI: 10.1111/vec.13218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 04/06/2021] [Accepted: 04/16/2021] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To describe the clinical signs and outcome following ivermectin overdose in a bearded dragon. This case also describes the novel use of intravenous lipid emulsion (ILE) as a rescue therapy in reptiles, as well as the use of aggressive gastrointestinal decontamination. CASE SUMMARY A 4-year-old female intact bearded dragon (Pogona vitticeps) (0.6 kg) was admitted to the ICU at a specialty hospital following accidental overdose of 40 mg (66.7 mg/kg) of ivermectin enterally. The patient was physically inverted to allow passive reflux of the medication, then sedated for gastric lavage. A 20% ILE was administered intravenously due to the high risk for fatality. Additional treatments included 2 doses of activated charcoal, as well as SC fluids, enteral nutrition, and sucralfate. The patient was profoundly sedate until day 4 when mild improvements in mentation were noted. The patient started ambulating on its own on day 6 and was discharged from the hospital on day 13. The patient was alive 720 days postdischarge. NEW OR UNIQUE INFORMATION PROVIDED This is the first case report describing the events following ivermectin overdose and the use of ILE therapy and activated charcoal in a bearded dragon. These therapies were tolerated with no adverse effects noted in this patient. This report provides evidence that complete recovery from ivermectin overdose is possible.
Collapse
Affiliation(s)
- Danielle DeMel
- ACCESS Specialty Animal Hospital, Culver City, California, USA
| | - Molly Gleeson
- ACCESS Specialty Animal Hospital, Culver City, California, USA
| | | | - Amanda Thomer
- ACCESS Specialty Animal Hospital, Culver City, California, USA
| |
Collapse
|
7
|
Abstract
Introduction: Avermectins are common antiparasitic drugs, derived from Streptomyces bacteria that exhibit activity against arthropods and nematodes. Ivermectin, an avermectin derivative, is used as a treatment for parasitic infections in humans and domesticated animals.Discussion: Ivermectin's mechanism of action involves binding to ligand-gated ion channel receptors including glutamate, GABA, and glycine, resulting in parasitic paralysis and death. Due to varying expression of these ion channel receptors in vertebrate species, ivermectin toxicity is rarely reported in mammals. Ivermectin is also a substrate for P-glycoprotein, which limits its neurological toxicity in humans. Genetic polymorphisms in P-glycoprotein or coadministration of P-glycoprotein inhibitors may increase the neurotoxicity of ivermectin. Other toxic effects of ivermectin after therapeutic oral use include edema, rash, headache, and ocular complaints. Most of these effects are mild and short in duration. Ivermectin exhibits antiviral effects in-vitro at very high concentrations. This has led to suggestions of ivermectin as a potential treatment for SARS-CoV-2 (COVID-19) infection, although the drug's pharmacokinetic parameters reduce the likelihood that high concentrations of the drug can be achieved in-vivo.Conclusion: Due to concern for adverse events, specifically neurotoxicity, as well as a paucity of supporting evidence, the use of ivermectin as a routine treatment or preventive measure for COVID-19 infection is not recommended at this time.
Collapse
Affiliation(s)
- Kelly Johnson-Arbor
- Department of Plastic Surgery, MedStar Georgetown University Hospital, Washington, DC, USA.,National Capital Poison Center, Washington, DC, USA
| |
Collapse
|
8
|
Zeleke G, De Baere S, Suleman S, Devreese M. Development and Validation of a Reliable UHPLC-MS/MS Method for Simultaneous Quantification of Macrocyclic Lactones in Bovine Plasma. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030998. [PMID: 35164263 PMCID: PMC8838099 DOI: 10.3390/molecules27030998] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 11/16/2022]
Abstract
A fast, accurate and reliable ultra-high performance liquid chromatography–tandem mass spectrometry (UHPLC-MS/MS) method was developed for simultaneous quantification of ivermectin (IVER), doramectin (DORA), and moxidectin (MOXI) in bovine plasma. A priority for sample preparation was the eradication of possible infectious diseases to avoid travel restrictions. The sample preparation was based on protein precipitation using 1% formic acid in acetonitrile, followed by Ostro® 96-well plate pass-through sample clean-up. The simple and straightforward procedure, along with the short analysis time, makes the current method unique and suitable for a large set of sample analyses per day for PK studies. Chromatographic separation was performed using an Acquity UPLC HSS-T3 column, with 0.01% acetic acid in water and methanol, on an Acquity H-Class ultra-high performance liquid chromatograph (UHPLC) system. The MS/MS instrument was a Xevo TQ-S® mass spectrometer, operating in the positive electrospray ionization mode and two multiple reaction monitoring (MRM) transitions were monitored per component. The MRM transitions of m/z 897.50 > 753.4 for IVER, m/z 921.70 > 777.40 for DORA and m/z 640.40 > 123.10 for MOXI were used for quantification. The method validation was performed using matrix-matched calibration curves in a concentration range of 1 to 500 ng/mL. Calibration curves fitted a quadratic regression model with 1/x2 weighting (r ≥ 0.998 and GoF ≤ 4.85%). Limits of quantification (LOQ) values of 1 ng/mL were obtained for all the analytes, while the limits of detection (LOD) were 0.02 ng/mL for IVER, 0.03 ng/mL for DORA, and 0.58 ng/mL for MOXI. The results of within-day (RSD < 6.50%) and between-day (RSD < 8.10%) precision and accuracies fell within acceptance ranges. No carry-over and no peak were detected in the UHPLC-MS/MS chromatogram of blank samples showing good specificity of the method. The applicability of the developed method was proved by an analysis of the field PK samples.
Collapse
Affiliation(s)
- Gemechu Zeleke
- Laboratory of Pharmacology and Toxicology, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium; (G.Z.); (S.D.B.)
- Institute of Health, School of Pharmacy, Jimma University, Jimma P.O. Box 378, Ethiopia;
| | - Siegrid De Baere
- Laboratory of Pharmacology and Toxicology, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium; (G.Z.); (S.D.B.)
| | - Sultan Suleman
- Institute of Health, School of Pharmacy, Jimma University, Jimma P.O. Box 378, Ethiopia;
| | - Mathias Devreese
- Laboratory of Pharmacology and Toxicology, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium; (G.Z.); (S.D.B.)
- Correspondence: ; Tel.: +32-(0)9-264-73-47
| |
Collapse
|
9
|
Guerra JC, McKenzie EC. The use of prolonged administration of low-dose intravenous lipid emulsion to treat ivermectin toxicosis in goats. J Am Vet Med Assoc 2021; 259:914-918. [PMID: 34609187 DOI: 10.2460/javma.259.8.914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
CASE DESCRIPTION 2 Nigerian Dwarf goats (a doe [goat 1] and a wether [goat 2]) with coughing and nasal discharge since they were purchased at an auction 6 days prior were empirically treated for suspected pneumonia and intestinal parasitism. An ivermectin dosing error (intended dose, 0.4 mg/kg, PO; administered dose, 10 mg/kg, PO) was retrospectively discovered, and the owner was urged to return the goats for hospitalization and treatment. CLINICAL FINDINGS On admission 19 hours after iatrogenic ivermectin overdose, both goats had tachycardia, tachypnea, and absent menace responses. Goat 1 also had vomited in transit, was lethargic and febrile, had slow pupillary light reflexes, and walked into walls and obstacles. Goat 2 was quiet but responsive, not ataxic or febrile, and had pale mucous membranes and a prolonged capillary refill time. TREATMENT AND OUTCOME Each goat received 20% IV lipid emulsion (2 mL/kg, IV bolus over 15 minutes, followed by 0.008 mL/kg/min, IV) and immediately improved. Activated charcoal was administered by orogastric tube, and 6 hours later, mineral oil was similarly administered. Goat 1 had complete resolution of signs and was discharged by 48 and 72 hours, respectively, after admission. Goat 2 improved but developed progressive respiratory distress after the second orogastric intubation and was euthanized. Necropsy findings were consistent with acute renal tubular necrosis, acute respiratory distress syndrome of unknown cause, ruminal tympany, and mesenteric caseous lymphadenitis. CLINICAL RELEVANCE Results indicated that IV lipid emulsion could be used to successfully treat ivermectin toxicosis in goats. Treatment early in the course of ivermectin toxicosis is advisable to avoid severe clinical signs and secondary complications.
Collapse
|
10
|
Orekhova K, Mazzariol S, Sussan B, Bucci M, Bonsembiante F, Verin R, Centelleghe C. Immunohistochemical Markers of Apoptotic and Hypoxic Damage Facilitate Evidence-Based Assessment in Pups with Neurological Disorders. Vet Sci 2021; 8:203. [PMID: 34679033 PMCID: PMC8537515 DOI: 10.3390/vetsci8100203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/14/2021] [Accepted: 09/18/2021] [Indexed: 12/15/2022] Open
Abstract
Seizures in puppies often present a diagnostic challenge in terms of identifying and treating the underlying cause. Dog breeds with mutations of the MDR1-gene are known to show adverse reactions to certain drugs, yet metabolic imbalance exacerbated by physiologically immature organs and other contributing pathologies require consideration before arriving at a diagnosis. This study analysed the brains of two male, 5-week-old Australian Shepherd siblings that died after displaying severe neurological symptoms upon administration of MilproVet® to treat severe intestinal helminth infection. Despite the initial symptoms being similar, their case histories varied in terms of the symptom duration, access to supportive therapy and post-mortem interval. Histopathology and immunohistochemistry were used to obtain more information about the phase of the pathological processes in the brain, employing protein markers associated with acute hypoxic damage (β-amyloid precursor protein/APP) and apoptosis (diacylglycerolkinase-ζ/DGK-ζ, apoptotic protease activating factor 1/Apaf1, and B-cell lymphoma related protein 2/Bcl-2). The results seem to reflect the course of the animals' clinical deterioration, implicating that the hypoxic damage to the brains was incompatible with life, and suggesting the usefulness of the mentioned immunohistochemical markers in clarifying the cause of death in animals with acute neurological deficits.
Collapse
Affiliation(s)
- Ksenia Orekhova
- Department of Comparative Biomedicine and Food Science, University of Padova AGRIPOLIS, viale dell’Università 16, 35020 Legnaro, Italy; (S.M.); (F.B.); (R.V.); (C.C.)
| | - Sandro Mazzariol
- Department of Comparative Biomedicine and Food Science, University of Padova AGRIPOLIS, viale dell’Università 16, 35020 Legnaro, Italy; (S.M.); (F.B.); (R.V.); (C.C.)
| | - Beatrice Sussan
- Department of Animal Medicine, Production and Health, University of Padova AGRIPOLIS, viale dell’Università 16, 35020 Legnaro, Italy; (B.S.); (M.B.)
| | - Massimo Bucci
- Department of Animal Medicine, Production and Health, University of Padova AGRIPOLIS, viale dell’Università 16, 35020 Legnaro, Italy; (B.S.); (M.B.)
| | - Federico Bonsembiante
- Department of Comparative Biomedicine and Food Science, University of Padova AGRIPOLIS, viale dell’Università 16, 35020 Legnaro, Italy; (S.M.); (F.B.); (R.V.); (C.C.)
- Department of Animal Medicine, Production and Health, University of Padova AGRIPOLIS, viale dell’Università 16, 35020 Legnaro, Italy; (B.S.); (M.B.)
| | - Ranieri Verin
- Department of Comparative Biomedicine and Food Science, University of Padova AGRIPOLIS, viale dell’Università 16, 35020 Legnaro, Italy; (S.M.); (F.B.); (R.V.); (C.C.)
| | - Cinzia Centelleghe
- Department of Comparative Biomedicine and Food Science, University of Padova AGRIPOLIS, viale dell’Università 16, 35020 Legnaro, Italy; (S.M.); (F.B.); (R.V.); (C.C.)
| |
Collapse
|
11
|
Mealey KL, Burke NS, Connors RL. Role of an ABCB11930_1931del TC gene mutation in a temporal cluster of macrocyclic lactone-induced neurologic toxicosis in cats associated with products labeled for companion animal use. J Am Vet Med Assoc 2021; 259:72-76. [PMID: 34125616 DOI: 10.2460/javma.259.1.72] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine whether ABCB11930_1931del TC predisposed cats to macrocyclic-lactone toxicosis and the frequency of the ABCB11930_1931del TC gene mutation in banked feline DNA samples. SAMPLE DNA samples from 5 cats presented for neurologic clinical signs presumed to be caused by exposure to macrocyclic lactones and 1,006 banked feline DNA samples. PROCEDURES The medical history pertaining to 5 cats was obtained from veterinarians who examined, treated, or performed necropsies on them. The DNA from these 5 cats and 1,006 banked feline samples were analyzed for the presence of the ABCB11930_1931del TC genotype. RESULTS 4 of the 5 cats with neurologic signs presumed to be associated with macrocyclic-lactone exposure were homozygous for ABCB11930_1931del TC. The other cat had unilateral vestibular signs not typical of macrocyclic-lactone toxicosis. The distribution of genotypes from the banked feline DNA samples was as follows: 0 homozygous for ABCB11930_1931del TC, 47 heterozygous for ABCB11930_1931del TC, and 959 homozygous for the wild-type ABCB1 allele. Among the 47 cats with the mutant ABCB1 allele, only 3 were purebred (Ragdoll, Russian Blue, and Siamese). CONCLUSIONS AND CLINICAL RELEVANCE Results suggested a strong relationship between homozygosity for ABCB11930_1931del TC and neurologic toxicosis after topical application with eprinomectin-containing antiparasitic products labeled for use in cats. Although this genotype is likely rare in the general cat population, veterinarians should be aware of this genetic mutation in cats and its potential for enhancing susceptibility to adverse drug reactions.
Collapse
|
12
|
Repurposing Avermectins and Milbemycins against Mycobacteroides abscessus and Other Nontuberculous Mycobacteria. Antibiotics (Basel) 2021; 10:antibiotics10040381. [PMID: 33916775 PMCID: PMC8066277 DOI: 10.3390/antibiotics10040381] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 11/16/2022] Open
Abstract
Infections caused by nontuberculous mycobacteria (NTM) are increasing worldwide, resulting in a new global health concern. NTM treatment is complex and requires combinations of several drugs for lengthy periods. In spite of this, NTM disease is often associated with poor treatment outcomes. The anti-parasitic family of macrocyclic lactones (ML) (divided in two subfamilies: avermectins and milbemycins) was previously described as having activity against mycobacteria, including Mycobacterium tuberculosis, Mycobacterium ulcerans, and Mycobacterium marinum, among others. Here, we aimed to characterize the in vitro anti-mycobacterial activity of ML against a wide range of NTM species, including Mycobacteroides abscessus. For this, Minimum Inhibitory Concentration (MIC) values of eight ML were determined against 80 strains belonging to nine different NTM species. Macrocyclic lactones showed variable ranges of anti-mycobacterial activity that were compound and species-dependent. Milbemycin oxime was the most active compound, displaying broad-spectrum activity with MIC lower than 8 mg/L. Time kill assays confirmed MIC data and showed bactericidal and sterilizing activity of some compounds. Macrocyclic lactones are available in many formulations and have been extensively used in veterinary and human medicine with suitable pharmacokinetics and safety properties. This information could be exploited to explore repurposing of anti-helminthics for NTM therapy.
Collapse
|
13
|
Garcia-Lino AM, Garcia-Mateos D, Alvarez-Fernandez I, Blanco-Paniagua E, Medina JM, Merino G, Alvarez AI. Role of eprinomectin as inhibitor of the ruminant ABCG2 transporter: Effects on plasma distribution of danofloxacin and meloxicam in sheep. Res Vet Sci 2021; 136:478-483. [PMID: 33838457 DOI: 10.1016/j.rvsc.2021.03.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 01/17/2023]
Abstract
Therapeutic outcome results of the coadministration of several drugs in veterinary medicine is affected by, among others, the relationship between drugs and ATP-binding cassette (ABC) transporters, such as ABCG2. ABCG2 is an efflux protein involved in the bioavailability and milk secretion of drugs. The aim of this work was to determine the role of eprinomectin, a macrocyclic lactone (ML) member of avermectin class, as inhibitor of ABCG2. The experiments were carried out through in vitro inhibition assays based on mitoxantrone accumulation and transport assays in ovine ABCG2 transduced cells using the antimicrobial drug danofloxacin and the anti-inflammatory drug meloxicam, both widely used in veterinary medicine and well known ABCG2 substrates. The inhibition results obtained showed that eprinomectin was an efficient in vitro ABCG2 inhibitor, tested in mitoxantrone accumulation assays. In addition, this ML decreased ovine ABCG2-mediated transport of danofloxacin and meloxicam. To evaluate the role of eprinomectin in systemic exposure of drugs, pharmacokinetic assays based on subcutaneous coadministration of eprinomectin with danofloxacin (1.25 mg/kg) or meloxicam (0.5 mg/kg) in sheep were performed obtaining a significant increase of systemic exposure of these drugs. Especially relevant was the increase of the systemic concentration of meloxicam, since coadministration with eprinomectin increased significantly the plasma concentration of meloxicam, obtaining an increase of AUC (0-72 h) value of more than 40%.
Collapse
Affiliation(s)
- Alba M Garcia-Lino
- Departmento de Ciencias Biomédicas, Fisiología, Facultad de Veterinaria, Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), Universidad de León, Campus de Vegazana, León, Spain
| | - Dafne Garcia-Mateos
- Departmento de Ciencias Biomédicas, Fisiología, Facultad de Veterinaria, Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), Universidad de León, Campus de Vegazana, León, Spain
| | - Indira Alvarez-Fernandez
- Departmento de Ciencias Biomédicas, Fisiología, Facultad de Veterinaria, Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), Universidad de León, Campus de Vegazana, León, Spain
| | - Esther Blanco-Paniagua
- Departmento de Ciencias Biomédicas, Fisiología, Facultad de Veterinaria, Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), Universidad de León, Campus de Vegazana, León, Spain
| | - Juan M Medina
- Departmento de Ciencias Biomédicas, Fisiología, Facultad de Veterinaria, Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), Universidad de León, Campus de Vegazana, León, Spain
| | - Gracia Merino
- Departmento de Ciencias Biomédicas, Fisiología, Facultad de Veterinaria, Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), Universidad de León, Campus de Vegazana, León, Spain
| | - Ana I Alvarez
- Departmento de Ciencias Biomédicas, Fisiología, Facultad de Veterinaria, Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), Universidad de León, Campus de Vegazana, León, Spain.
| |
Collapse
|
14
|
Singh PM, Jacob A, Kathleen P. Pharmacokinetic properties of abamectin after oral administration in dogs. J Vet Pharmacol Ther 2021; 44:313-317. [PMID: 33694173 DOI: 10.1111/jvp.12963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/14/2021] [Accepted: 02/16/2021] [Indexed: 11/30/2022]
Abstract
As the introduction of concentrated cattle pour-on products containing abamectin, there have been veterinary reports of both fatal and non-fatal poisoning in New Zealand working dogs. Because these products are highly palatable to dogs, a toxic dose is readily ingested. The pharmacokinetic properties of abamectin in dogs are not published in the public domain. This information is important in understanding the processes of absorption and elimination when treating poisoned dogs and is useful in determining an appropriate treatment for poisoned dogs. The pharmacokinetic properties of abamectin administered orally to six healthy dogs (3 male and 3 female) at a dose of 0.2 mg/kg were established. Plasma concentrations of abamectin were determined by high-performance liquid chromatography (HPLC) coupled with a fluorescence detector. The maximum plasma concentration (Cmax ) for abamectin was 135.52 ± 38.6 ng/ml at 3.16 ± 0.75 h. The elimination half-life (T1/2 elim (h)) was 26.51 ± 6.86 h. The area under the curve (AUC 0-∞) was 3723.50 ± 1213.08 ng h/ml. The mean residence time (MRT) was 38.82 ± 8.93 h. These pharmacokinetic data provide helpful information regarding the treatment of poisoned dogs.
Collapse
Affiliation(s)
| | - Antony Jacob
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Parton Kathleen
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| |
Collapse
|
15
|
Simpson AC. Successful treatment of otodemodicosis due to Demodex cati with sarolaner/selamectin topical solution in a cat. JFMS Open Rep 2021; 7:2055116920984386. [PMID: 33598306 PMCID: PMC7863163 DOI: 10.1177/2055116920984386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Case summary A 10-year-old spayed female Russian Blue cat was presented with a 3-month history of excessive otic discharge and scratching, only involving the right ear. Other than a moderate amount of ceruminous exudate present within the right ear on video-otoscopic examination, there were no other cutaneous abnormalities. The cat was deemed to be otherwise in good health based on physical examination and several laboratory profiles. A diagnosis of otodemodicosis was determined due to the presence of a large number of Demodex cati mites retrieved from cerumen. Treatment consisted only of monthly topical application of sarolaner/selamectin to the nape of the neck with a marked reduction in mite counts and otic pruritus after a single dose. Complete resolution was achieved after a total of four doses. Relevance and novel information This is the first report to describe the resolution of mite infestation owing to D cati after treatment with a sarolaner-containing spot-on product. In addition, to the best of the author’s knowledge, this is the first report of any isoxazoline product used in the successful treatment of demodicosis affecting the ear canal. In general, there is a lack of reports describing safe and effective treatments for feline otodemodicosis. Topically applied sarolaner/selamectin resulted in resolution of mites while avoiding any potential ototoxic events from medications applied directly into the ear, and provided a treatment that was easier to apply than oral or injectable macrocyclic lactones.
Collapse
Affiliation(s)
- Andrew C Simpson
- Dermatology Department, VCA Aurora Animal Hospital, Aurora, IL, USA
| |
Collapse
|
16
|
Liu Y, Wang H, Li S, Zhang Y, Cheng X, Xiang W, Wang X. Engineering of primary metabolic pathways for titer improvement of milbemycins in Streptomyces bingchenggensis. Appl Microbiol Biotechnol 2021; 105:1875-1887. [PMID: 33564920 DOI: 10.1007/s00253-021-11164-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/18/2021] [Accepted: 02/02/2021] [Indexed: 12/11/2022]
Abstract
Milbemycins are used commercially as insect repellents and acaricides; however, their high cost remains a significant challenge to commercial production. Hence, improving the titer of milbemycins for commercial application is an urgent priority. The present study aimed to effectively increase the titer of milbemycins using a combination of genome re-sequencing and metabolic engineering. First, 133 mutation sites were identified by genome re-sequencing in the mutagenized high-yielding strain BC04. Among them, three modifiable candidate genes (sbi_04868 encoding citrate synthase, sbi_06921 and sbi_06922 encoding alpha and beta subunits of acetyl-CoA carboxylase, and sbi_04683 encoding carbon uptake system gluconate transporter) related to primary metabolism were screened and identified. Next, the DNase-deactivated Cpf1-based integrative CRISPRi system was used in S. bingchenggensis to downregulate the transcription level of gene sbi_04868. Then, overexpression of the potential targets sbi_06921-06922 and sbi_04683 further facilitated milbemycin biosynthesis. Finally, those candidate genes were engineered to produce strains with combinatorial downregulation and overexpression, which resulted in the titer of milbemycin A3/A4 increased by 27.6% to 3164.5 mg/L. Our research not only identified three genes in S. bingchenggensis that are closely related to the production of milbemycins, but also offered an efficient engineering strategy to improve the titer of milbemycins using genome re-sequencing. KEY POINTS: • We compared the genomes of two strains with different titers of milbemycins. • We found three genes belonging to primary metabolism influence milbemycin production. • We improved titer of milbemycins by a combinatorial engineering of three targets.
Collapse
Affiliation(s)
- Yuqing Liu
- School of Life Science, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Haiyan Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Shanshan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Yanyan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Xu Cheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Wensheng Xiang
- School of Life Science, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, China. .,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.
| | - Xiangjing Wang
- School of Life Science, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, China.
| |
Collapse
|
17
|
Yu Z, Chen Z, Li Q, Yang K, Huang Z, Wang W, Zhao S, Hu H. What dominates the changeable pharmacokinetics of natural sesquiterpene lactones and diterpene lactones: a review focusing on absorption and metabolism. Drug Metab Rev 2020; 53:122-140. [PMID: 33211987 DOI: 10.1080/03602532.2020.1853151] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Sesquiterpene lactones (STLs) and diterpene lactones (DTLs) are two groups of common phytochemicals with similar structures. It's frequently reported that both exhibit changeable pharmacokinetics (PK) in vivo, especially the unstable absorption and extensive metabolism. However, the recognition of their PK characteristics is still scattered. In this review, representative STLs (atractylenolides, alantolactone, costunolide, artemisinin, etc.) and DTLs (ginkgolides, andrographolide, diosbulbins, triptolide, etc.) as typical cases are discussed in detail. We show how the differences of treatment regimens and subjects alter the PK of STLs and DTLs, with emphasis on the effects from absorption and metabolism. These compounds tend to be quite permeable in intestinal epithelium, but gastrointestinal pH and efflux transporters (represented by P-glycoprotein) have great impact and result in the unstable absorption. As the only characteristic functional moiety, the metabolic behavior of lactone ring is not dominant. The α, β-unsaturated lactone moiety has the strongest metabolic activity. While with the increase of low-activity saturated lactone moieties, the metabolism is led by other groups more easily. The phase I (oxidation, reduction and hydrolysis reaction) and II metabolism (conjugation reaction) are both extensive. CYP450s, mainly CYP3A4, are largely involved in biotransformation. However, only UGTs (UGT1A3, UGT1A4, UGT2B4 and UGT2B7) has been mentioned in studies about phase II metabolic enzymes. Our work offers a beneficial reference for promoting the safety evaluation and maximizing the utilization of STLs and DTLs.
Collapse
Affiliation(s)
- Ziwei Yu
- Key Laboratory of Standardization of Chinese Herbal Medicine, State Key Laboratory Breeding Base of Characteristic Chinese Medicine Resources in Southwest China, Ministry of Education, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ziqiang Chen
- Key Laboratory of Standardization of Chinese Herbal Medicine, State Key Laboratory Breeding Base of Characteristic Chinese Medicine Resources in Southwest China, Ministry of Education, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qijuan Li
- Key Laboratory of Standardization of Chinese Herbal Medicine, State Key Laboratory Breeding Base of Characteristic Chinese Medicine Resources in Southwest China, Ministry of Education, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ke Yang
- Key Laboratory of Standardization of Chinese Herbal Medicine, State Key Laboratory Breeding Base of Characteristic Chinese Medicine Resources in Southwest China, Ministry of Education, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zecheng Huang
- Key Laboratory of Standardization of Chinese Herbal Medicine, State Key Laboratory Breeding Base of Characteristic Chinese Medicine Resources in Southwest China, Ministry of Education, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenjun Wang
- Key Laboratory of Standardization of Chinese Herbal Medicine, State Key Laboratory Breeding Base of Characteristic Chinese Medicine Resources in Southwest China, Ministry of Education, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Siyu Zhao
- Key Laboratory of Standardization of Chinese Herbal Medicine, State Key Laboratory Breeding Base of Characteristic Chinese Medicine Resources in Southwest China, Ministry of Education, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huiling Hu
- Key Laboratory of Standardization of Chinese Herbal Medicine, State Key Laboratory Breeding Base of Characteristic Chinese Medicine Resources in Southwest China, Ministry of Education, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
18
|
Li XQ, Yue CW, Xu WH, Lü YH, Huang YJ, Tian P, Liu T. A milbemycin compound isolated from Streptomyces Sp. FJS31-2 with cytotoxicity and reversal of cisplatin resistance activity in A549/DDP cells. Biomed Pharmacother 2020; 128:110322. [PMID: 32505822 DOI: 10.1016/j.biopha.2020.110322] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 05/21/2020] [Accepted: 05/23/2020] [Indexed: 01/04/2023] Open
Abstract
Streptomyces Sp FJS31-2 is a strain isolated from special habitat soils in the early stage of our laboratory for producing a new type of halogenated type II polyketide antibiotic with good anti-MRSA activity. In this experiment, a variety of chromatographic and spectroscopic methods was used to isolate and identify a milbemycin compound VM48130 from the ethyl acetate extract of the fermentation products. To investigate its bioactivity, Cell Counting Kit-8 (CCK-8) assay was used to test the cytotoxic activity of the compound against a variety of cancer cells (human liver cancer cell line MHCC97H and SK-Hep1, human nasopharyngeal carcinoma cell line CNE1, mouse melanoma cell line B16, human colon cancer cell line LOVO, human lung adenocarcinoma cell line A549) and normal cells (human bronchial epithelial cell line 16HBE, human normal liver cell line L02, human nasopharyngeal epithelial cell line NP69). The results showed that the compound had significant cytotoxic activity against the above cancer cells, and the IC50 values were 21.96 ± 1.45, 22.18 ± 0.55, 19.42 ± 0.71, 18.61 ± 1.68, 18.62 ± 0.67, 18.52 ± 0.64 μM, respectively. Furthermore, the CCK-8 method was used to evaluate the compound's reversal of cisplatin resistance in multidrug resistant cisplatin-resistant human lung adenocarcinoma (A549/DDP) cells. The results indicated that when the compound concentration was 0.5 μM, the reversal fold (RF) reached 6.25 and showed a dose-dependent effect. At 5 μM, the RF reached 8.35, which was approximately equivalent to the reversal effect of the positive drug verapamil at the same concentration. The expression of MDR1, MRP1, LRP, MAST1 resistance genes and the corresponding proteins were analyzed by quantitative RT-PCR and Western blot assay, and found that the compound could significantly down-regulate the expression of these genes and proteins. These results indicated that VM48130 had the potential of being a lead compound for the treatment or adjuvant treatment of cancer.
Collapse
Affiliation(s)
- Xiao-Qian Li
- The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Central Laboratory, Guizhou, 563002, PR China
| | - Chang-Wu Yue
- College of Medicine, Yanan University, Yanan, 716000, PR China
| | - Wen-Hui Xu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, PR China
| | - Yu-Hong Lü
- College of Medicine, Yanan University, Yanan, 716000, PR China
| | - Yan-Jie Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China
| | - Peng Tian
- The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Central Laboratory, Guizhou, 563002, PR China
| | - Tie Liu
- The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Central Laboratory, Guizhou, 563002, PR China.
| |
Collapse
|
19
|
Wang H, Cheng X, Liu Y, Li S, Zhang Y, Wang X, Xiang W. Improved milbemycin production by engineering two Cytochromes P450 in Streptomyces bingchenggensis. Appl Microbiol Biotechnol 2020; 104:2935-2946. [PMID: 32043186 DOI: 10.1007/s00253-020-10410-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/15/2020] [Accepted: 01/23/2020] [Indexed: 12/25/2022]
Abstract
Milbemycins and their semisynthetic derivatives are recognized as effective and eco-friendly pesticides, whereas the high price limits their widespread applications in agriculture. One of the pivotal questions is the accumulation of milbemycin-like by-products, which not only reduces the yield of the target products milbemycin A3/A4, but also brings difficulty to the purification. With other analogous by-products abolished, α9/α10 and β-family milbemycins remain to be eliminated. Herein, we solved these issues by engineering of post-modification steps. First, Cyp41, a CYP268 family cytochrome P450, was identified to participate in α9/α10 biosynthesis. By deleting cyp41, milbemycin α9/α10 was eliminated with an increase of milbemycin A3/A4 titer from 2382.5 ± 55.7 mg/L to 2625.6 ± 64.5 mg/L. Then, MilE, a CYP171 family cytochrome P450, was determined to be responsible for the generation of the furan ring between C6 and C8a of milbemycins. By further overexpression of milE, the production of β-family milbemycins was reduced by 77.2%. Finally, the titer of milbemycin A3/A4 was increased by 53.1% to 3646.9 ± 69.9 mg/L. Interestingly, overexpression of milE resulted in increased transcriptional levels of milbemycin biosynthetic genes and production of total milbemycins, which implied that the insufficient function of MilE was a limiting factor to milbemycin biosynthesis. Our research not only provides an efficient engineering strategy to improve the production of a commercially important product milbemycins, but also offers the clues for future study about transcriptional regulation of milbemycin biosynthesis.
Collapse
Affiliation(s)
- Haiyan Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.,School of Life Science, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, China
| | - Xu Cheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Yuqing Liu
- School of Life Science, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, China
| | - Shanshan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Yanyan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Xiangjing Wang
- School of Life Science, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, China.
| | - Wensheng Xiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.
| |
Collapse
|
20
|
Prichard RK, Geary TG. Perspectives on the utility of moxidectin for the control of parasitic nematodes in the face of developing anthelmintic resistance. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2019; 10:69-83. [PMID: 31229910 PMCID: PMC6593148 DOI: 10.1016/j.ijpddr.2019.06.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/12/2019] [Accepted: 06/12/2019] [Indexed: 12/22/2022]
Abstract
Macrocyclic lactone (ML) anthelmintics are the most important class of anthelmintics because of our high dependence on them for the control of nematode parasites and some ectoparasites in livestock, companion animals and in humans. However, resistance to MLs is of increasing concern. Resistance is commonplace throughout the world in nematode parasites of small ruminants and is of increasing concern in horses, cattle, dogs and other animals. It is suspected in Onchocerca volvulus in humans. In most animals, resistance first arose to the avermectins, such as ivermectin (IVM), and subsequently to moxidectin (MOX). Usually when parasite populations are ML-resistant, MOX is more effective than avermectins. MOX may have higher intrinsic potency against some parasites, especially filarial nematodes, than the avermectins. However, it clearly has a significantly different pharmacokinetic profile. It is highly distributed to lipid tissues, less likely to be removed by ABC efflux transporters, is poorly metabolized and has a long half-life. This results in effective concentrations persisting for longer in target hosts. It also has a high safety index. Limited data suggest that anthelmintic resistance may be overcome, at least temporarily, if a high concentration can be maintained at the site of the parasites for a prolonged period of time. Because of the properties of MOX, there are reasonable prospects that strains of parasites that are resistant to avermectins at currently recommended doses will be controlled by MOX if it can be administered at sufficiently high doses and in formulations that enhance its persistence in the host. This review examines the properties of MOX that support this contention and compares them with the properties of other MLs. The case for using MOX to better control ML-resistant parasites is summarised and some outstanding research questions are presented.
Collapse
Affiliation(s)
- Roger K Prichard
- Institute of Parasitology, McGill University, Sainte Anne-de-Bellevue, Quebec, Canada, H9X3V9.
| | - Timothy G Geary
- Institute of Parasitology, McGill University, Sainte Anne-de-Bellevue, Quebec, Canada, H9X3V9.
| |
Collapse
|
21
|
Campion DP, Dowell FJ. Translating Pharmacogenetics and Pharmacogenomics to the Clinic: Progress in Human and Veterinary Medicine. Front Vet Sci 2019; 6:22. [PMID: 30854372 PMCID: PMC6396708 DOI: 10.3389/fvets.2019.00022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/18/2019] [Indexed: 12/29/2022] Open
Abstract
As targeted personalized therapy becomes more widely used in human medicine, clients will expect the veterinary clinician to be able to implement an evidence-based strategy regarding both the prescribing of medicines and also recognition of the potential for adverse drug reactions (ADR) for their pet, at breed and individual level. This review aims to provide an overview of current developments and challenges in pharmacogenetics in medicine for a veterinary audience and to map these to developments in veterinary pharmacogenetics. Pharmacogenetics has been in development over the past 100 years but has been revolutionized following the publication of the human, and then veterinary species genomes. Genetic biomarkers called pharmacogenes have been identified as specific genetic loci on chromosomes which are associated with either positive or adverse drug responses. Pharmacogene variation may be classified according to the associated drug response, such as a change in (1) the pharmacokinetics; (2) the pharmacodynamics; (3) genes in the downstream pathway of the drug or (4) the effect of “off-target” genes resulting in a response that is unrelated to the intended target. There are many barriers to translation of pharmacogenetic information to the clinic, however, in human medicine, international initiatives are promising real change in the delivery of personalized medicine by 2025. We argue that for effective translation into the veterinary clinic, clinicians, international experts, and stakeholders must collaborate to ensure quality assurance and genetic test validation so that animals may also benefit from this genomics revolution.
Collapse
Affiliation(s)
- Deirdre P Campion
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Fiona J Dowell
- Division of Veterinary Science and Education, School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|