1
|
Jeyakumar V, Niculescu-Morzsa E, Bauer C, Lacza Z, Nehrer S. Platelet-Rich Plasma Supports Proliferation and Redifferentiation of Chondrocytes during In Vitro Expansion. Front Bioeng Biotechnol 2017; 5:75. [PMID: 29270404 PMCID: PMC5723650 DOI: 10.3389/fbioe.2017.00075] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/23/2017] [Indexed: 01/05/2023] Open
Abstract
Articular cartilage regeneration is insufficient to restore sports injuries or defects that can occur from trauma. Treatment options for cartilage repair include autologous chondrocyte implantation (ACI) by isolation, expansion, and reimplantation of healthy donor chondrocytes. Chondrocyte expansion onto 2D substrates leads to dedifferentiation and loss of the cellular phenotype. We aimed to overcome the state of dedifferentiation by biochemical stimuli with platelet derivatives such as platelet-rich plasma (PRP) and hyperacute serum (HAS) to achieve sufficient cell numbers in combination with variable oxygen tension. Human articular chondrocytes from osteoarthritic (OA) cartilage chondrocytes were switched from 10% FCS supplementation to either 10% PRP or 10% HAS after initial passaging for further experiments under normoxic (20% O2) or hypoxic (1% O2) conditions. An XTT assay measured the effect of PRP or HAS on the cell proliferation at 3, 6, and 9 days. The chondrogenic redifferentiation potential of dedifferentiated chondrocytes was determined with reverse transcriptase quantitative real-time PCR for markers of expression for type II collagen (COL2A1), type I collagen (COL1A1), and matrix metalloproteinases MMP3, matrix metalloproteinase 13 (MMP13) at 24 and 72 h. Measured protein levels of 100% PRP or HAS by multiplex quantification revealed basic fibroblast growth factor, G-CSF, and PDGF were significantly higher in PRP than in HAS (p < 0.05) but LEPTIN levels did not differ. The quantified protein levels did not differ when isolated from same donors at a different time. Chondrocyte proliferation indicated that supplementation of 10% HAS enhanced the proliferation rate compared to 10% PRP or 10% FCS at 6 and 9 days significantly (p < 0.05). mRNA levels for expression of COL1A1 were significantly downregulated (p < 0.05) when cultured with 10% PRP than 10% HAS or 10% FCS under normoxic/hypoxic conditions. COL2A1 was significantly upregulated (p < 0.05) in PRP than 10% HAS or 10% FCS. MMP3 expression was downregulated after 72 h under all conditions. MMP13 was upregulated with 10% PRP at both 24 and 72 h but significantly downregulated under hypoxia (1% O2) for all circumstances. While HAS has its effect on chondrocyte proliferation, PRP enhances both proliferation and redifferentiation of dedifferentiated chondrocytes. PRP can replace standard usage of FCS for chondrogenic priming and expansion as implications for clinical use such as ACI procedures.
Collapse
Affiliation(s)
- Vivek Jeyakumar
- Centre for Regenerative Medicine and Orthopedics, Danube University Krems, Krems an der Donau, Austria
| | - Eugenia Niculescu-Morzsa
- Centre for Regenerative Medicine and Orthopedics, Danube University Krems, Krems an der Donau, Austria
| | - Christoph Bauer
- Centre for Regenerative Medicine and Orthopedics, Danube University Krems, Krems an der Donau, Austria
| | | | - Stefan Nehrer
- Centre for Regenerative Medicine and Orthopedics, Danube University Krems, Krems an der Donau, Austria
| |
Collapse
|
2
|
Zhang Z. Chondrons and the pericellular matrix of chondrocytes. TISSUE ENGINEERING PART B-REVIEWS 2014; 21:267-77. [PMID: 25366980 DOI: 10.1089/ten.teb.2014.0286] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In cartilage, chondrocytes are embedded within an abundant extracellular matrix (ECM). A typical chondron consists of a chondrocyte and the immediate surrounding pericellular matrix (PCM). The PCM has a patent structure, defined molecular composition, and unique physical properties that support the chondrocyte. Given this spatial position, the PCM is pivotal in mediating communication between chondrocytes and the ECM and, thus, plays a critical role in cartilage homeostasis. The biological function and mechanical properties of the PCM have been extensively studied, mostly in the form of chondrons. This review intends to summarize recent progress in chondron and chondrocyte PCM research, with emphasis on the re-establishment of the PCM by isolated chondrocytes or mesenchymal stem cells during chondrogenic differentiation, and the effects of the PCM on cartilage tissue formation.
Collapse
Affiliation(s)
- Zijun Zhang
- Orthobiologic Laboratory, MedStar Union Memorial Hospital, Baltimore, Maryland
| |
Collapse
|
3
|
Turajane T, Thitiset T, Honsawek S, Chaveewanakorn U, Aojanepong J, Papadopoulos KI. Assessment of chondrogenic differentiation potential of autologous activated peripheral blood stem cells on human early osteoarthritic cancellous tibial bone scaffold. Musculoskelet Surg 2014; 98:35-43. [PMID: 24178764 DOI: 10.1007/s12306-013-0303-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 10/17/2013] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Current therapeutic regimens in osteoarthritis (OA) address mainly pain but not the slow progressive degradation of the extracellular matrix (ECM) and the loss of a chondrogenic phenotype in articular cartilage. In the present study, using an early OA cancellous bone scaffold, we aimed to uncover evidence of the successful hyaline cartilage regenerative capacity of autologous human granulocyte colony-stimulating factor (hG-CSF)-activated peripheral blood stem cells (AAPBSC) with growth factor addition. MATERIALS AND METHODS AAPBSC were harvested in ten patients (median age 58 years, 8 females), and flow cytometry was performed for cell surface markers. Arthroscopically obtained cancellous bone scaffold specimens were seeded with AAPBSC. In Group 1, the scaffold was seeded with AAPBSC only, in Group 2, AAPBSC plus hyaluronic acid (HA), and in Group 3, AAPBSC plus HA, hG-CSF, and double-centrifuged platelet-rich plasma (PRP). The specimens were analyzed for cell attachment and proliferation by the fluorometric quantification of cellular DNA assay and scanning electron microscopy. Chondrogenic gene expression was determined by reverse transcriptase-polymerase chain reaction (RT-PCR) of Sox9, collagen type II (COL-2), and aggrecan. Histological sections of scaffold constructs for cartilaginous matrix formation were stained with toluidine blue (proteoglycan) and safranin O (sGAG) after 3 weeks. RESULTS AAPBSC displayed especially high levels of CD29 and CD44 surface markers, as well as CD90, and CD105, while only a small proportion expressed CD34. Almost half of the seeded cells attached on the bone scaffolds in all three groups (not statistically significant), whereas the means of cell proliferation on day 7 compared to day 1 were statistically significant difference with the order of increase as group 3 > group 2 > group 1. RT-PCR showed statistically significant sequential increases in Sox9, COL-2, and Aggrecan all being highest in group 3. Histological analysis demonstrated cells in the cancellous bone scaffold with a round morphology, and ECM was positively stained by toluidine blue and safranin O indicating increased proteoglycan and glycosaminoglycan content, respectively, in the newly formed cartilage matrix. CONCLUSIONS AAPBSC initiated chondrocyte differentiation on an autologous cancellous bone scaffold, and the addition of PRP and hG-CSF further stimulated cell proliferation toward a chondrocyte phenotype with potentiated Sox9 transcription resulting in sequential COL-2 and aggrecan mRNA increases that ultimately resulted in histologically confirmed increased proteoglycan and glucosaminoglycan content in newly formed hyaline cartilage.
Collapse
Affiliation(s)
- T Turajane
- Department of Orthopedic Surgery, Stem Cell Research and Treatment Center, Police General Hospital, Bangkok, Thailand
| | | | | | | | | | | |
Collapse
|
4
|
Mawatari T, Nakamichi I, Suenaga E, Maloney WJ, Smith RL. Effects of heme oxygenase-1 on bacterial antigen-induced articular chondrocyte catabolism in vitro. J Orthop Res 2013; 31:1943-9. [PMID: 24038461 DOI: 10.1002/jor.22394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 05/01/2013] [Indexed: 02/04/2023]
Abstract
This study tested the hypothesis that heme oxygenase-1 (HO-1) expression counteracts bacterial antigen-induced catabolic metabolism in human articular chondrocytes. HO-1 expression was induced in chondrocytes by the iron-containing porphoryin, hemin. Anti-catabolic and anti-apoptotic effects of HO-1 expression were evaluated following bacterial antigen (lipopolysaccharides, LPS) activation of chondrocytes by quantification of cytokine and cartilage matrix protein expression. Effects of HO-1 over-expression on chondrocyte matrix metabolism were evaluated using plasmid-driven protein synthesis. Hemin increased HO-1 expression and LPS increased interleukin-1beta and interleukin-6 gene and protein expression in chondrocytes. Hemin-induced HO-1 decreased LPS-induced interleukin-1beta and interleukin-6 gene and protein expression. Increased HO-1 expression partially reversed LPS-suppression of aggrecan and type II collagen gene expression and suppressed LPS-induced gene expression of IL-6, inducible nitric oxide synthase (iNOS), matrix metalloproteinases (MMPs), and IL-1beta. HO-1 induction was inversely correlated with LPS-induced chondrocyte apoptosis. HO-1 over-expression in chondrocytes decreased matrix protein gene expression. With LPS activation, increased HO-1 expression decreased chondrocyte catabolism, partially reversed LPS-dependent inhibition of cartilage matrix protein expression and protected against apoptosis. Without LPS, hemin-induced HO-1 and plasmid-based over-expression of HO-1 inhibited cartilage matrix gene expression. The results suggest that elevated HO-1 expression in chondrocytes is protective of cartilage in inflamed joints but may otherwise suppress matrix turn over.
Collapse
Affiliation(s)
- Taro Mawatari
- RR&D Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, 94304; Orthopaedic Research Laboratories, Stanford University School of Medicine, 300 Pasteur Drive, R105, Stanford, California, 94305
| | | | | | | | | |
Collapse
|
5
|
Marmotti A, Bonasia DE, Bruzzone M, Rossi R, Castoldi F, Collo G, Realmuto C, Tarella C, Peretti GM. Human cartilage fragments in a composite scaffold for single-stage cartilage repair: an in vitro study of the chondrocyte migration and the influence of TGF-β1 and G-CSF. Knee Surg Sports Traumatol Arthrosc 2013; 21:1819-33. [PMID: 23143386 DOI: 10.1007/s00167-012-2244-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Accepted: 10/05/2012] [Indexed: 12/20/2022]
Abstract
PURPOSE Minced chondral fragments are becoming popular as a source of cells for cartilage repair, as a growing interest is developing towards one-stage procedures to treat cartilage lesions. The purpose of this study is to (A) compare cell outgrowth from cartilage fragments of adult and young donors using two different types of scaffolds and (B) evaluate the influence of transforming-growth-factor-β1 (TGF-β1) and granulocyte colony-stimulating factor (G-CSF) on chondrocyte behaviour. METHODS In part (A) cartilage fragments from adult and young donors were either loaded onto an HA-derivative injectable paste scaffold or onto an HA-derivative membrane scaffold. Construct sections were then examined for cell counting after 1, 2 and 3 months. In part (B) only membrane scaffolds were prepared using cartilage fragments from young donors. Constructs were cultured either in standard growth medium or in the presence of specific growth factors, such as TGF-β1 or G-CSF or TGF-β1 + G-CSF. After 1 month, construct sections were examined for cell counting. Expression of chondrocyte markers (SOX9, CD151, CD49c) and proliferative markers (β-catenin, PCNA) was assessed using immunofluorescence techniques, both in unstimulated construct sections and in cells from unstimulated and stimulated construct cultures. RESULTS Part (A): histological analysis showed age-dependent and time-dependent chondrocyte migration. A significant difference (p < 0.05) was observed between young and older donors at the same time point. No difference was detected between the two types of scaffolds within the same group at the same time point. Part (B): after 1 month, the number of migrating cells/area significantly increased due to exposure to TGF-β1 and/or G-CSF (p < 0.05). Immunofluorescence revealed that outgrowing cells from unstimulated scaffold sections were positive for SOX9, CD151, CD49c and G-CSF receptor. Immunofluorescence of cells from construct cultures showed an increase in β-catenin in all stimulated groups and an increased PCNA expression in G-CSF-exposed cultures (p < 0.05). CONCLUSION Outgrowing cells may represent a subset of chondrocytes undergoing a phenotypic shift towards a proliferative state. TGF-β1, and to a greater extent G-CSF, may accelerate this outgrowth. The clinical relevance of this study may involve a potential future clinical application of scaffolds preloaded with growth factors as an additional coating for chondral fragments. Indeed, a controlled delivery of G-CSF, widely employed in various clinical settings, might improve the repair process driven by minced human cartilage fragments during one-stage cartilage repair.
Collapse
Affiliation(s)
- A Marmotti
- Department of Orthopaedics and Traumatology, University of Torino, Turin, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Acharya C, Adesida A, Zajac P, Mumme M, Riesle J, Martin I, Barbero A. Enhanced chondrocyte proliferation and mesenchymal stromal cells chondrogenesis in coculture pellets mediate improved cartilage formation. J Cell Physiol 2011; 227:88-97. [PMID: 22025108 DOI: 10.1002/jcp.22706] [Citation(s) in RCA: 180] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In this study, we aimed at investigating the interactions between primary chondrocytes and mesenchymal stem/stromal cells (MSC) accounting for improved chondrogenesis in coculture systems. Expanded MSC from human bone marrow (BM-MSC) or adipose tissue (AT-MSC) were cultured in pellets alone (monoculture) or with primary human chondrocytes from articular (AC) or nasal (NC) cartilage (coculture). In order to determine the reached cell number and phenotype, selected pellets were generated by combining: (i) human BM-MSC with bovine AC, (ii) BM-MSC from HLA-A2+ with AC from HLA-A2- donors, or (iii) human green fluorescent protein transduced BM-MSC with AC. Human BM-MSC and AC were also cultured separately in transwells. Resulting tissues and/or isolated cells were assessed immunohistologically, biochemically, cytofluorimetrically, and by RT-PCR. Coculture of NC or AC (25%) with BM-MSC or AT-MSC (75%) in pellets resulted in up to 1.6-fold higher glycosaminoglycan content than what would be expected based on the relative percentages of the different cell types. This effect was not observed in the transwell model. BM-MSC decreased in number (about fivefold) over time and, if cocultured with chondrocytes, increased type II collagen and decreased type X collagen expression. Instead, AC increased in number (4.2-fold) if cocultured with BM-MSC and maintained a differentiated phenotype. Chondro-induction in MSC-chondrocyte coculture is a robust process mediated by two concomitant effects: MSC-induced chondrocyte proliferation and chondrocyte-enhanced MSC chondrogenesis. The identified interactions between progenitor and mature cell populations may lead to the efficient use of freshly harvested chondrocytes for ex vivo cartilage engineering or in situ cartilage repair.
Collapse
|
7
|
Schwager J, Hoeller U, Wolfram S, Richard N. Rose hip and its constituent galactolipids confer cartilage protection by modulating cytokine, and chemokine expression. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 11:105. [PMID: 22051322 PMCID: PMC3231956 DOI: 10.1186/1472-6882-11-105] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 11/03/2011] [Indexed: 01/08/2023]
Abstract
Background Clinical studies have shown that rose hip powder (RHP) alleviates osteoarthritis (OA). This might be due to anti-inflammatory and cartilage-protective properties of the complete RHP or specific constituents of RHP. Cellular systems (macrophages, peripheral blood leukocytes and chondrocytes), which respond to inflammatory and OA-inducing stimuli, are used as in vitro surrogates to evaluate the possible pain-relief and disease-modifying effects of RHP. Methods (1) Inflammatory processes were induced in RAW264.7 cells or human peripheral blood leukocytes (PBL) with LPS. Inflammatory mediators (nitric oxide (NO), prostaglandin E2 (PGE2) and cytokines/chemokines) were determined by the Griess reaction, EIA and multiplex ELISA, respectively. Gene expression was quantified by RT-PCR. RHP or its constituent galactolipid, GLGPG (galactolipid (2S)-1, 2-di-O-[(9Z, 12Z, 15Z)-octadeca-9, 12, 15-trienoyl]-3-O-β-D-galactopyranosyl glycerol), were added at various concentrations and the effects on biochemical and molecular parameters were evaluated. (2) SW1353 chondrosarcoma cells and primary human knee articular chondrocytes (NHAC-kn) were treated with interleukin (IL)-1β to induce in vitro processes similar to those occurring during in vivo degradation of cartilage. Biomarkers related to OA (NO, PGE2, cytokines, chemokines, metalloproteinases) were measured by multiplex ELISA and gene expression analysis in chondrocytes. We investigated the modulation of these events by RHP and GLGPG. Results In macrophages and PBL, RHP and GLGPG inhibited NO and PGE2 production and reduced the secretion of cytokines (TNF-α, IFN-γ, IL-1β, IL-6, IL-12) and chemokines (CCL5/RANTES, CXCL10/IP-10). In SW1353 cells and primary chondrocytes, RHP and GLGPG diminished catabolic gene expression and inflammatory protein secretion as shown by lower mRNA levels of matrix metalloproteinases (MMP-1, MMP-3, MMP-13), aggrecanase (ADAMTS-4), macrophage inflammatory protein (MIP-2, MIP-3α), CCL5/RANTES, CXCL10/IP-10, IL-8, IL-1α and IL-6. The effects of GLGPG were weaker than those of RHP, which presumably contains other chondro-protective substances besides GLGPG. Conclusions RHP and GLGPG attenuate inflammatory responses in different cellular systems (macrophages, PBLs and chondrocytes). The effects on cytokine production and MMP expression indicate that RHP and its constituent GLGPG down-regulate catabolic processes associated with osteoarthritis (OA) or rheumatoid arthritis (RA). These data provide a molecular and biochemical basis for cartilage protection provided by RHP.
Collapse
|
8
|
Honda K. Interleukin-6 and soluble interleukin-6 receptor suppress osteoclastic differentiation by inducing PGE(2) production in chondrocytes. J Oral Sci 2011; 53:87-96. [PMID: 21467819 DOI: 10.2334/josnusd.53.87] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
This study examined how interleukin-6 (IL-6) and soluble IL-6 receptor (sIL-6r) influence osteoclastic differentiation through the function of chondrocytes. Chondrocytes were cultured with or without IL-6 and/or sIL-6r in the presence or absence of NS398, a specific inhibitor of cyclooxygenase (COX)-2, for up to 28 days. Chondrocytes were also cultured with or without IL-6 and sIL-6r for 28 days, and the conditioned medium from cells cultured without IL-6 and sIL-6r was used to induce differentiation of RAW264.7 cells into osteoclast precursors. Osteoclastic differentiation was assessed by tartrate-resistant acid phosphatase (TRAP) staining. Expression of osteoprotegerin (OPG), receptor activator of NF-κB ligand (RANKL), COX-2, and prostaglandin E(2) (PGE(2)) increased in cells exposed to IL-6 and sIL-6r, whereas expression of macrophage colony-stimulating factor (M-CSF) and bone resorption-related enzymes decreased. NS398 blocked the stimulatory/suppressive effects of IL-6 and sIL-6r on the expression of OPG, RANKL, and M-CSF. Fewer TRAP-positive multinucleated cells were detected after treatment with conditioned medium from IL-6- and sIL-6r-treated chondrocytes than after treatment with conditioned medium from untreated chondrocytes. These results suggest that IL-6 and sIL-6r interfere with osteoclast function through the involvement of chondrocytes. Specifically, they appear to suppress the differentiation of osteoclast precursors into osteoclasts by inducing chondrocytic PGE(2) production, which, in turn, increases OPG secretion and decreases M-CSF secretion by chondrocytes.
Collapse
Affiliation(s)
- Kazuhiro Honda
- Nihon University Graduate School of Dentistry, Tokyo, Japan.
| |
Collapse
|
9
|
Watanabe Y, Namba A, Aida Y, Honda K, Tanaka H, Suzuki N, Matsumura H, Maeno M. IL-1beta suppresses the formation of osteoclasts by increasing OPG production via an autocrine mechanism involving celecoxib-related prostaglandins in chondrocytes. Mediators Inflamm 2010; 2009:308596. [PMID: 20204061 PMCID: PMC2829618 DOI: 10.1155/2009/308596] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 08/28/2009] [Accepted: 12/01/2009] [Indexed: 11/18/2022] Open
Abstract
Elevated interleukin (IL)-1 concentrations in synovial fluid have been implicated in joint bone and cartilage destruction. Previously, we showed that IL-1beta stimulated the expression of prostaglandin (PG) receptor EP4 via increased PGE(2) production. However, the effect of IL-1beta on osteoclast formation via chondrocytes is unclear. Therefore, we examined the effect of IL-1beta and/or celecoxib on the expression of macrophage colony-stimulating factor (M-CSF), receptor activator of NF-kappaB ligand (RANKL), and osteoprotegerin (OPG) in human chondrocytes, and the indirect effect of IL-1beta on osteoclast-like cell formation using RAW264.7 cells. OPG and RANKL expression increased with IL-1beta; whereas M-CSF expression decreased. Celecoxib blocked the stimulatory effect of IL-1beta. Conditioned medium from IL-1beta-treated chondrocytes decreased TRAP staining in RAW264.7 cells. These results suggest that IL-1beta suppresses the formation of osteoclast-like cells via increased OPG production and decreased M-CSF production in chondrocytes, and OPG production may increase through an autocrine mechanism involving celecoxib-related PGs.
Collapse
Affiliation(s)
- Yusuke Watanabe
- Nihon University Graduate School of Dentistry, Tokyo 101-8310, Japan
| | - Aki Namba
- Nihon University Graduate School of Dentistry, Tokyo 101-8310, Japan
| | - Yukiko Aida
- Department of Fixed Prosthodontics, Nihon University School of Dentistry, 1-8-13, Kanda Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
- Division of Advanced Dental Treatment, Dental Research Center, Nihon University School of Dentistry, Tokyo 101-8310, Japan
| | - Kazuhiro Honda
- Nihon University Graduate School of Dentistry, Tokyo 101-8310, Japan
| | - Hideki Tanaka
- Department of Oral Health Sciences, Nihon University School of Dentistry, Tokyo 101-8310, Japan
| | - Naoto Suzuki
- Department of Biochemistry, Nihon University School of Dentistry, Tokyo 101-8310, Japan
- Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo 101-8310, Japan
| | - Hideo Matsumura
- Department of Fixed Prosthodontics, Nihon University School of Dentistry, 1-8-13, Kanda Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
- Division of Advanced Dental Treatment, Dental Research Center, Nihon University School of Dentistry, Tokyo 101-8310, Japan
| | - Masao Maeno
- Department of Oral Health Sciences, Nihon University School of Dentistry, Tokyo 101-8310, Japan
- Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo 101-8310, Japan
| |
Collapse
|