1
|
Turkel I, Tahtalioglu S, Celik E, Yazgan B, Kubat GB, Ozerklig B, Kosar SN. Time-course and muscle-specific gene expression of matrix metalloproteinases and inflammatory cytokines in response to acute treadmill exercise in rats. Mol Biol Rep 2024; 51:667. [PMID: 38780696 DOI: 10.1007/s11033-024-09637-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND The extracellular matrix (ECM) of skeletal muscle plays a pivotal role in tissue repair and growth, and its remodeling tightly regulated by matrix metalloproteinases (MMPs), tissue inhibitors of metalloproteinases (TIMPs), and inflammatory cytokines. This study aimed to investigate changes in the mRNA expression of MMPs (Mmp-2 and Mmp-14), TIMPs (Timp-1 and Timp-2), and inflammatory cytokines (Il-1β, Tnf-α, and Tgfβ1) in the soleus (SOL) and extensor digitorum longus (EDL) muscles of rats following acute treadmill exercise. Additionally, muscle morphology was examined using hematoxylin and eosin (H&E) staining. METHODS AND RESULTS Male rats were subjected to acute treadmill exercise at 25 m/min for 60 min with a %0 slope. The mRNA expression of ECM components and muscle morphology in the SOL and EDL were assessed in both sedentary and exercise groups at various time points (immediately (0) and 1, 3, 6, 12, and 24 h post-exercise). Our results revealed a muscle-specific response, with early upregulation of the mRNA expression of Mmp-2, Mmp-14, Timp-1, Timp-2, Il-1β, and Tnf-α observed in the SOL compared to the EDL. A decrease in Tgfβ1 mRNA expression was evident in the SOL at all post-exercise time points. Conversely, Tgfβ1 mRNA expression increased at 0 and 3 h post-exercise in the EDL. Histological analysis also revealed earlier cell infiltration in the SOL than in the EDL following acute exercise. CONCLUSIONS Our results highlight how acute exercise modulates ECM components and muscle structure differently in the SOL and EDL muscles, leading to distinct muscle-specific responses.
Collapse
Affiliation(s)
- Ibrahim Turkel
- Department of Exercise and Sport Sciences, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey.
| | - Sema Tahtalioglu
- Department of Biotechnology, Institute of Sciences, Amasya University, Amasya, Turkey
| | - Ertugrul Celik
- Department of Pathology, Gulhane Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Burak Yazgan
- Department of Medical Services and Techniques, Sabuncuoğlu Serefeddin Health Services Vocational School, Amasya University, Amasya, Turkey
| | - Gokhan Burcin Kubat
- Department of Mitochondria and Cellular Research, Gulhane Health Sciences Institute, University of Health Sciences, Ankara, Turkey
| | - Berkay Ozerklig
- Department of Exercise and Sport Sciences, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey
| | - Sukran Nazan Kosar
- Division of Exercise Nutrition and Metabolism, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey
| |
Collapse
|
2
|
Ghozali DA, Doewes M, Soetrisno S, Indarto D, Ilyas MF. Dose-response effect of L-citrulline on skeletal muscle damage after acute eccentric exercise: an in vivo study in mice. PeerJ 2023; 11:e16684. [PMID: 38130917 PMCID: PMC10734431 DOI: 10.7717/peerj.16684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
Background Eccentric exercise may trigger mechanical stress, resulting in muscle damage that may decrease athletic performance. L-citrulline potentially prevents skeletal muscle damage after acute eccentric exercise. This study aimed to assess the dose-response effect of L-citrulline as a preventive therapy for skeletal muscle damage in mice after acute eccentric exercise. Methods This is a controlled laboratory in vivo study with a post-test-only design. Male mice (BALB/c, n = 25) were randomized into the following groups: a normal control (C1) (n = 5); a negative control (C2) with downhill running and placebo intervention (n = 5); treatment groups: T1 (n = 5), T2 (n = 5), and T3 (n = 5), were subjected to downhill running and 250, 500, and 1,000 mg/kg of L-citrulline, respectively, for seven days. Blood plasma was used to determine the levels of TNNI2 and gastrocnemius muscle tissue NOX2, IL-6, and caspase 3 using ELISA. NF-κB and HSP-70 expressions were determined by immunohistochemistry. Results Skeletal muscle damage (plasma TNNI2 levels) in mice after eccentric exercise was lower after 250 and 500 mg/kg of L-citrulline. Further, changes in oxidative stress markers, NOX2, were reduced after a 1,000 mg/kg dose. However, a lower level of change has been observed in levels of cellular response markers (NF-κB, HSP-70, IL-6, and caspase 3) after administration of L-citrulline doses of 250, 500, and 1,000 mg/kg. Conclusion L-citrulline may prevent skeletal muscle damage in mice after acute eccentric exercise through antioxidant effects as well as inflammatory and apoptotic pathways. In relation to dose-related effects, it was found that L-citrulline doses of 250, 500, and 1,000 mg/kg significantly influenced the expression of NF-κB and HSP-70, as well as the levels of IL-6 and caspase 3. Meanwhile, only doses of 250 and 500 mg/kg had an impact on TNNI2 levels, and the 1,000 mg/kg dose affected NOX2 levels.
Collapse
Affiliation(s)
- Dhoni Akbar Ghozali
- Department of Anatomy and Embryology, Universitas Sebelas Maret, Surakarta, Central Java, Indonesia
- Doctoral Program of Medical Sciences, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Central Java, Indonesia
| | - Muchsin Doewes
- Doctoral Program of Medical Sciences, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Central Java, Indonesia
| | - Soetrisno Soetrisno
- Departement of Obstetrics and Gynecology, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Central Java, Indonesia
| | - Dono Indarto
- Department of Physiology, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Central Java, Indonesia
| | - Muhana Fawwazy Ilyas
- Department of Anatomy and Embryology, Universitas Sebelas Maret, Surakarta, Central Java, Indonesia
- Department of Neurology, Universitas Sebelas Maret, Surakarta, Central Java, Indonesia
| |
Collapse
|
3
|
Szűcs G, Pipicz M, Szabó MR, Csont T, Török L, Csonka C. Effect of Eccentric Exercise on Metabolic Health in Diabetes and Obesity. SPORTS MEDICINE - OPEN 2023; 9:91. [PMID: 37775653 PMCID: PMC10541389 DOI: 10.1186/s40798-023-00596-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/12/2023] [Indexed: 10/01/2023]
Abstract
There is a growing body of evidence showing the importance of physical activity against civilization-induced metabolic diseases, including type 2 diabetes (T2DM) and obesity. Eccentric contraction, when skeletal muscles generate force by lengthening, is a unique type of skeletal muscle activity. Eccentric contraction may lead to better power production characteristics of the muscle because eccentric contraction requires less energy and can result in higher tension. Therefore, it is an ideal tool in the rehabilitation program of patients. However, the complex metabolic effect (i.e., fat mass reduction, increased lipid oxidation, improvement in blood lipid profile, and increased insulin sensitivity) of the eccentric contraction alone has scarcely been investigated. This paper aims to review the current literature to provide information on whether eccentric contraction can influence metabolic health and body composition in T2DM or obesity. We also discussed the potential role of myokines in mediating the effects of eccentric exercise. A better understanding of the mechanism of eccentric training and particularly their participation in the regulation of metabolic diseases may widen their possible therapeutic use and, thereby, may support the fight against the leading global risks for mortality in the world.
Collapse
Affiliation(s)
- Gergő Szűcs
- Metabolic Diseases and Cell Signaling (MEDICS) Research Group, Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 9, Szeged, 6720, Hungary
- Centre of Excellence for Interdisciplinary Research, Development and Innovation of the University of Szeged, 6720, Szeged, Hungary
| | - Márton Pipicz
- Metabolic Diseases and Cell Signaling (MEDICS) Research Group, Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 9, Szeged, 6720, Hungary
- Centre of Excellence for Interdisciplinary Research, Development and Innovation of the University of Szeged, 6720, Szeged, Hungary
| | - Márton Richárd Szabó
- Metabolic Diseases and Cell Signaling (MEDICS) Research Group, Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 9, Szeged, 6720, Hungary
- Centre of Excellence for Interdisciplinary Research, Development and Innovation of the University of Szeged, 6720, Szeged, Hungary
| | - Tamás Csont
- Metabolic Diseases and Cell Signaling (MEDICS) Research Group, Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 9, Szeged, 6720, Hungary
- Centre of Excellence for Interdisciplinary Research, Development and Innovation of the University of Szeged, 6720, Szeged, Hungary
| | - László Török
- Department of Traumatology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis utca 6, Szeged, 6720, Hungary
- Department of Sports Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Tisza Lajos krt. 107, Szeged, 6720, Hungary
| | - Csaba Csonka
- Metabolic Diseases and Cell Signaling (MEDICS) Research Group, Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 9, Szeged, 6720, Hungary.
- Centre of Excellence for Interdisciplinary Research, Development and Innovation of the University of Szeged, 6720, Szeged, Hungary.
- Department of Sports Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Tisza Lajos krt. 107, Szeged, 6720, Hungary.
| |
Collapse
|
4
|
Yang Z, Gao Y, He K, Sui X, Chen J, Wang T, Chen M, Wang Z, Yi J, Zhao L. Voluntarily wheel running inhibits the growth of CRPC xenograft by inhibiting HMGB1 in mice. Exp Gerontol 2023; 174:112118. [PMID: 36758649 DOI: 10.1016/j.exger.2023.112118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/17/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023]
Abstract
INTRODUCTION Exercise has been proved to reduce the risk of recurrence and mortality of cancer. Emerging evidence indicated that exercise may regulate both systematical and local metabolism, immunity and other ways. Although the role of exercise in inhibiting castration-resistant prostate cancer is well established, the underlying mechanism remains unclear. METHOD Twenty C57BL/6 male mice were used to construct CRPC xenograft models and randomly divided into exercise group (n = 10) and control group (n = 10). After exercised with voluntarily wheel running for 21 days, the mice were sacrificed and the tumor tissues and serum were collected. TUNEL staining was used to detect the apoptosis of tumor cells. The expression of PI3K signal pathway and apoptosis related proteins were detected by Western blot. The expression of AR and HMGB1 were examined by Western blot and Immunohistochemical staining. IFN-γ, TNF-α, TGF-β, IL-4, IL-6, IL-10 in serum was examined using ELISA kits. RESULTS Voluntarily wheel running inhibited the growth of CRPC xenografts, inhibited the proliferation of tumor cells and promoted the apoptosis of tumor cells. HMGB1 levels in serum and tumor tissues were significantly reduced after exercise, which enhanced local immunity by inducing more leukocyte infiltration and inhibited systemic inflammatory response by regulating cytokines. CONCLUSION Voluntary wheel running can down-regulate the expression of HMGB1 in serum and transplanted tumor tissues, inhibit proliferation and promote apoptosis of tumor cells, enhance immune cell infiltration and systemic inflammatory response, and regulate local anti-tumor effects in tumor microenvironment.
Collapse
Affiliation(s)
- Zhaoyun Yang
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun 130021, China
| | - Yan Gao
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun 130021, China
| | - Kang He
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun 130021, China
| | - Xin Sui
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun 130021, China
| | - Junyu Chen
- Department of Gynecology and Obstetrics, the Second Hospital of Jilin University, Changchun 130041, China
| | - Taiwei Wang
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun 130021, China
| | - Mengmeng Chen
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun 130021, China
| | - Zeyu Wang
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun 130021, China
| | - Jiang Yi
- Department of Rehabilitation, The Second Hospital of Jilin University, Changchun 130041, China.
| | - Lijing Zhao
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun 130021, China.
| |
Collapse
|
5
|
Maia S, Girgis B, Nunes GF, Reis-Mendes A, Bovolini A, Duarte JA. Splenic morphologic changes induced by a strenuous and exhaustive training program in Wistar rats. J Sports Med Phys Fitness 2022; 62:873-882. [PMID: 34028237 DOI: 10.23736/s0022-4707.21.12251-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Excessively intense physical training can compromise the functionality of the immune system and contribute to the appearance of symptoms associated with overtraining syndrome (OTS). The aim of this study was to analyze the splenic morphological changes in Wistar rats submitted to demanding training. METHODS The animals were randomly assigned to 2 groups; control group (CG) and exercise group (EG), animals in the EG group were sacrificed after 1 (EG1) and 3 weeks (EG3) of training. The animals were stimulated to run on the treadmill (-20 °; from 25 m/min, with a progressive increase of 1.25 m/minute at each session; 1 hour/day) 6 days/week. Body weight, food intake, appearance of hair, behavior and ability of animals to perform the imposed work were assessed during the protocol. The spleen was collected for histological analysis and immunohistochemical identification of CD4+ T lymphocytes and CD8+ T cells and NF-kB transcription factor. RESULTS The protocol did not induce OTS, however, decreases were observed in areas of white pulp in EG3 in relation to the other groups. The training induced a decrease in splenic CD4+ T cells with an increase in CD8+ T cells. The training increased the expression of NF-κB P65 compared to sedentary animals. CONCLUSIONS Even without manifestation of OTS, strenuous physical training, alter the histological and immunological structures of the spleen, suggesting in part a compromise in the functionality of the immune system.
Collapse
Affiliation(s)
- Sara Maia
- CIAFEL, Laboratory of Biochemistry and Experimental Morphology, Faculty of Sport, University of Porto, Porto, Portugal -
| | - Beshoy Girgis
- CIAFEL, Laboratory of Biochemistry and Experimental Morphology, Faculty of Sport, University of Porto, Porto, Portugal
| | - Grace F Nunes
- CIAFEL, Laboratory of Biochemistry and Experimental Morphology, Faculty of Sport, University of Porto, Porto, Portugal
| | - Ana Reis-Mendes
- UCIBIO, REQUIMTE Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Antonio Bovolini
- CIAFEL, Laboratory of Biochemistry and Experimental Morphology, Faculty of Sport, University of Porto, Porto, Portugal
| | - José A Duarte
- CIAFEL, Laboratory of Biochemistry and Experimental Morphology, Faculty of Sport, University of Porto, Porto, Portugal
| |
Collapse
|
6
|
de Souza RF, Augusto RL, de Moraes SRA, de Souza FB, Gonçalves LVDP, Pereira DD, Moreno GMM, de Souza FMA, Andrade-da-Costa BLDS. Ultra-Endurance Associated With Moderate Exercise in Rats Induces Cerebellar Oxidative Stress and Impairs Reactive GFAP Isoform Profile. Front Mol Neurosci 2020; 13:157. [PMID: 32982688 PMCID: PMC7492828 DOI: 10.3389/fnmol.2020.00157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 07/29/2020] [Indexed: 12/11/2022] Open
Abstract
Ultra-endurance (UE) race has been associated with brain metabolic changes, but it is still unknown which regions are vulnerable. This study investigated whether high-volume training in rodents, even under moderate intensity, can induce cerebellar oxidative and inflammatory status. Forty-five adult rats were divided into six groups according to a training period, followed or not by an exhaustion test (ET) that simulated UE: control (C), control + ET (C-ET), moderate-volume (MV) training and MV-ET, high-volume training (HV) and HV-ET. The training period was 30 (MV) and 90 (HV) min/day, 5 times/week for 3 months as a continuous running on a treadmill at a maximum velocity of 12 m/min. After 24 h, the ET was performed at 50% maximum velocities up to the animals refused to run, and then serum lactate levels were evaluated. Serum and cerebellar homogenates were obtained 24 h after ET. Serum creatine kinase (CK), lactate dehydrogenase (LDH), and corticosterone levels were assessed. Lipid peroxidation (LP), nitric oxide (NO), Interleukin 1β (IL-1β), and GFAP proteins, reduced and oxidized glutathione (GSH and GSSG) levels, superoxide dismutase (SOD) and catalase (CAT) activities were quantified in the cerebellum. Serum lactate concentrations were lower in MV-ET (∼20%) and HV-ET (∼40%) compared to the C-ET group. CK and corticosterone levels were increased more than ∼ twofold by HV training compared to control. ET increased CK levels in MV-ET vs. MV group (P = 0.026). HV induced higher LP levels (∼40%), but an additive effect of ET was only seen in the MV-ET group (P = 0.02). SOD activity was higher in all trained groups vs. C and C-ET (P < 0.05). CAT activity, however, was intensified only in the MV group (P < 0.02). The 50 kDa GFAP levels were enhanced in C-ET and MV-ET vs. respective controls, while 42 kDa (∼40%) and 39 kDa (∼26%) isoform levels were reduced. In the HV-ET group, the 50 KDa isoform amount was reduced ∼40-60% compared to the other groups and the 39 KDa isoform, increased sevenfold. LDH levels, GSH/GSSG ratio, and NO production were not modified. ET elevated IL-1β levels in the CT and MV groups. Data shows that cerebellar resilience to oxidative damage may be maintained under moderate-volume training, but it is reduced by UE running. High-volume training per se provoked systemic metabolic changes, cerebellar lipid peroxidation, and unbalanced enzymatic antioxidant resource. UE after high-volume training modified the GFAP isoform profile suggesting impaired astrocyte reactivity in the cerebellum.
Collapse
Affiliation(s)
- Raphael Fabricio de Souza
- Laboratory of Neurophysiology, Department of Physiology and Pharmacology, Center of Biosciences, Federal University of Pernambuco, Recife, Brazil
- Postgraduate Program in Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife, Brazil
- Department of Physical Education, Federal University of Sergipe, São Cristovão, Brazil
- Group of Studies and Research of Performance, Sport, Health and Paralympic Sports – GEPEPS, Federal University of Sergipe, São Cristovão, Brazil
| | - Ricielle Lopes Augusto
- Laboratory of Neurophysiology, Department of Physiology and Pharmacology, Center of Biosciences, Federal University of Pernambuco, Recife, Brazil
| | - Silvia Regina Arruda de Moraes
- Laboratory of Neuromuscular Plasticity, Department of Anatomy, Center of Biosciences, Federal University of Pernambuco, Recife, Brazil
| | - Fabio Borges de Souza
- Laboratory of Neurophysiology, Department of Physiology and Pharmacology, Center of Biosciences, Federal University of Pernambuco, Recife, Brazil
| | - Lílian Vanessa da Penha Gonçalves
- Laboratory of Neurophysiology, Department of Physiology and Pharmacology, Center of Biosciences, Federal University of Pernambuco, Recife, Brazil
| | - Danielle Dutra Pereira
- Laboratory of Neurophysiology, Department of Physiology and Pharmacology, Center of Biosciences, Federal University of Pernambuco, Recife, Brazil
| | - Gisele Machado Magalhães Moreno
- Laboratory of Neurophysiology, Department of Physiology and Pharmacology, Center of Biosciences, Federal University of Pernambuco, Recife, Brazil
| | - Fernanda Maria Araujo de Souza
- Laboratory of Neuropharmacology and Integrative Physiology, Center of Biosciences, Federal University of Alagoas, Maceió, Brazil
| | - Belmira Lara da Silveira Andrade-da-Costa
- Laboratory of Neurophysiology, Department of Physiology and Pharmacology, Center of Biosciences, Federal University of Pernambuco, Recife, Brazil
- Postgraduate Program in Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife, Brazil
| |
Collapse
|
7
|
Yu Q, Xia Z, Liong EC, Tipoe GL. Chronic aerobic exercise improves insulin sensitivity and modulates Nrf2 and NF‑κB/IκBα pathways in the skeletal muscle of rats fed with a high fat diet. Mol Med Rep 2019; 20:4963-4972. [PMID: 31702809 PMCID: PMC6854540 DOI: 10.3892/mmr.2019.10787] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 08/12/2019] [Indexed: 12/22/2022] Open
Abstract
The present study aimed to investigate the molecular mechanisms of the ameliorative effects of chronic aerobic exercise on non-alcoholic steatohepatitis (NASH) in rat skeletal muscle. Female Sprague-Dawley rats (n=6–9 per group) were divided into four groups: i) Rats fed with normal chow; ii) exercise rats fed with normal chow + exercise (run on a rotarod for 30 min per day from 9–12 weeks); iii) rats fed with a high-fat diet (HFD); iv) rats fed with an HFD + exercise. All HFD rats were fed with an HFD consisting of 30% fat from fish oil throughout the study for 12 weeks. Exercise decreased the levels of hepatic lipogenic markers carbohydrate-responsive element-binding protein, fat-specific protein 27 and liver X receptor and improved systemic glucose and insulin intolerance in the NASH animal model. The beneficial effects may have been mediated partly via the tripartite motif-containing family protein 72 (TRIM72)/PI3K/Akt/mTOR pathway, accompanied with an upregulation of glucose transporter 4 in the skeletal muscle. The exercise regimen activated the master regulator of antioxidant enzymes, nuclear factor erythroid 2-related factor 2, with upregulation of superoxide dismutase [Cu-Zn] expression and a corresponding decrease in kelch-like ECH-associated protein 1 expression, but failed to decrease the levels of the oxidative marker malondialdehyde in the HFD rat skeletal muscle. Chronic exercise decreased the expression of the inflammation marker NF-κB, followed by a decrease in interleukin-6 and tumor necrosis factor-α levels, as verified by a corresponding increase in the level of NF-κB inhibitor α expression. Exercise may exert its beneficial effects by improving muscle insulin sensitivity via the TRIM72/PI3K/Akt/mTOR pathway, contributing to the improvement of systemic insulin intolerance, and finally leading to decreased hepatic lipogenesis during NASH. The attenuation of insulin resistance by exercise may be partly achieved through a decrease in the level of inflammation and an increased antioxidant response.
Collapse
Affiliation(s)
- Qian Yu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, P.R. China
| | - Zhengyun Xia
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, P.R. China
| | - Emily Chiu Liong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, P.R. China
| | - George Lim Tipoe
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, P.R. China
| |
Collapse
|
8
|
Eccentric exercise results in a prolonged increase in interleukin-6 and tumor necrosis factor-α levels in rat skeletal muscle. J Muscle Res Cell Motil 2019; 40:379-387. [PMID: 31520264 DOI: 10.1007/s10974-019-09554-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 09/06/2019] [Indexed: 12/20/2022]
Abstract
Interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) are well-known cytokines with pro-inflammatory capabilities, and have been shown to be involved in adaptation to exercise as multifaceted myokines. However, the precise role of IL-6 and TNF-α during exercise-induced skeletal muscle injury and subsequent repair processes is not fully understood. In this study, IL-6 and TNF-α were examined in soleus muscles at the gene and protein levels using in situ hybridization and immunohistochemical staining, respectively, and serum levels of IL-6 and TNF-α were determined before and after a 90-min downhill running session in rats. There were no changes in serum levels of IL-6 and TNF-α after exercise, but IL-6 and TNF-α mRNA increased and maintained high expression in muscles for 1-2 weeks after exercise. IL-6 and TNF-a mRNAs were identified in both the cytoplasm and the nuclei of myocytes, as well as in invading inflammatory cells. IL-6 and TNF-α protein mainly distributed in cytoplasm unevenly and had a prolonged expression until 2 weeks after eccentric exercise. Our results demonstrate that there is increased IL-6 and TNF-α expression in skeletal muscle that is induced by eccentric exercise and that the high expression of IL-6 and TNF-α in the long-term phase after eccentric exercise may be more involved in the subsequent recovery of damaged muscle.
Collapse
|
9
|
Vasconcelos AB, Nampo FK, Molina JC, Silva MB, Oliveira AS, de Angelis TR, Hasuda AL, Camargo EA, Ramos SP. Modulation of exercise-induced muscular damage and hyperalgesia by different 630 nm doses of light-emitting diode therapy (LEDT) in rats. Lasers Med Sci 2018; 34:749-758. [PMID: 30328526 DOI: 10.1007/s10103-018-2655-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 09/30/2018] [Indexed: 11/29/2022]
Abstract
We compared the acute effects of different doses of 630 nm light-emitting diode therapy (LEDT) on skeletal muscle inflammation and hyperalgesia in rats submitted to exercise-induced muscle damage (EIMD). Wistar rats were divided into five experimental groups (n = 5-8/group): sedentary control (CON); exercise + passive recovery (PR); and exercise + LEDT (1.2 J/cm2, 1.8 J; 4.2 J/cm2, 6.3 J; 10.0 J/cm2, 15 J). After 100 min of swimming, the rats in the LEDT groups were exposed to phototherapy on the triceps surae muscle. For mechanical hyperalgesia evaluation, paw withdrawal threshold was assessed before and 24 h after swimming. Immediately after hyperalgesia tests, blood samples were collected to analyze creatine kinase (CK) activity and the soleus muscle was removed for histological and tumor necrosis factor (TNF)-α immunohistological analyses. In all LEDT groups, plasma CK activity was reduced to levels similar to those measured in the CON group. Paw withdrawal threshold decreased in the PR group (- 11.9 ± 1.9 g) when compared to the CON group (2.2 ± 1.5 g; p < 0.01) and it was attenuated in the group LEDT 4.2 J/cm2 (- 3.3 ± 2.4 g, p < 0.05). Less leukocyte infiltration and edema and fewer necrotic areas were found in histological sections of soleus muscle in LEDT (4.2 J/cm2) and LEDT (10.0 J/cm2) groups compared to the PR group. Also, LEDT (4.2 J/cm2) and LEDT (10.0 J/cm2) groups showed less immunostaining for TNF-α in macrophages or areas with necrosis of muscle fibers compared to the PR group. LEDT (4.2 J/cm2, 6.3 J)-reduced muscle inflammation and nociception in animals submitted to EIMD.
Collapse
Affiliation(s)
- Alan B Vasconcelos
- Department of Physiology, Federal University of Sergipe, Marechal Rondon Av., São Cristóvão, SE, CEP 49100-000, Brazil
| | - Fernando K Nampo
- Latin American Institute of Life and Natural Sciences, Federal University of Latin American Integration, Foz do Iguaçu, PR, Brazil
| | - Júlio C Molina
- Department of Histology, State University of Londrina, Londrina, PR, Brazil
| | - Miriam B Silva
- Department of Physiology, Federal University of Sergipe, Marechal Rondon Av., São Cristóvão, SE, CEP 49100-000, Brazil
| | - Alan S Oliveira
- Department of Physiology, Federal University of Sergipe, Marechal Rondon Av., São Cristóvão, SE, CEP 49100-000, Brazil
| | | | - Amanda L Hasuda
- Department of Histology, State University of Londrina, Londrina, PR, Brazil
| | - Enilton A Camargo
- Department of Physiology, Federal University of Sergipe, Marechal Rondon Av., São Cristóvão, SE, CEP 49100-000, Brazil.
| | - Solange P Ramos
- Department of Histology, State University of Londrina, Londrina, PR, Brazil
| |
Collapse
|
10
|
Influence of Creatine Supplementation on Apoptosis Markers After Downhill Running in Middle-Aged Men: A Crossover Randomized, Double-Blind, and Placebo-Controlled Study. Am J Phys Med Rehabil 2018; 97:825-831. [PMID: 29863586 DOI: 10.1097/phm.0000000000000977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVE Strenuous exercise can induce apoptosis in a variety of tissues. We investigated the effects of creatine loading on apoptosis markers after downhill running. DESIGN Twenty-two middle-aged men were randomly assigned to either a creatine or a placebo group. Crossover design, double-blind controlled supplementation was performed using 20 g/d(-1) of creatine or maltodextrin for 7 days. Downhill running (12% incline) at 70% of heart rate maximum for 40 mins was performed on the eighth day. Blood samples were taken on the day before supplementation, after supplementation and after running. RESULTS There were no significant changes in the caspase-3, caspase-9, p53, Bax, and IGF-1 concentrations from presupplementation to postsupplementation in both groups of creatine and placebo (P > 0.05). There were significant increases (P < 0.05) in serum caspase-3, caspase-9, p53, and Bax after running in the placebo group. These markers were not noticeably changed in the creatine group (P > 0.05). Bcl-2 was unchanged in the placebo group but substantially increased (P < 0.05) in the creatine group. No significant changes were observed in IGF-1 concentration after running comparing to prerunning in both groups (P > 0.05). Lactate levels increased similarly in both groups (P < 0.05). CONCLUSIONS The findings indicate that creatine supplementation could prevent exercise-induced apoptotic markers.
Collapse
|
11
|
da Rocha AL, Pereira BC, Teixeira GR, Pinto AP, Frantz FG, Elias LLK, Lira FS, Pauli JR, Cintra DE, Ropelle ER, de Moura LP, Mekary RA, de Freitas EC, da Silva ASR. Treadmill Slope Modulates Inflammation, Fiber Type Composition, Androgen, and Glucocorticoid Receptors in the Skeletal Muscle of Overtrained Mice. Front Immunol 2017; 8:1378. [PMID: 29163473 PMCID: PMC5669301 DOI: 10.3389/fimmu.2017.01378] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 10/06/2017] [Indexed: 12/16/2022] Open
Abstract
Overtraining (OT) may be defined as an imbalance between excessive training and adequate recovery period. Recently, a downhill running-based overtraining (OTR/down) protocol induced the nonfunctional overreaching state, which is defined as a performance decrement that may be associated with psychological and hormonal disruptions and promoted intramuscular and systemic inflammation. To discriminate the eccentric contraction effects on interleukin 1beta (IL-1β), IL-6, IL-10, IL-15, and SOCS-3, we compared the release of these cytokines in OTR/down with other two OT protocols with the same external load (i.e., the product between training intensity and volume), but performed in uphill (OTR/up) and without inclination (OTR). Also, we evaluated the effects of these OT models on the muscle morphology and fiber type composition, serum levels of fatigue markers and corticosterone, as well as androgen receptor (AR) and glucocorticoid receptor (GR) expressions. For extensor digitorum longus (EDL), OTR/down and OTR groups increased the cytokines and exhibited micro-injuries with polymorphonuclear infiltration. While OTR/down group increased the cytokines in soleus muscle, OTR/up group only increased IL-6. All OT groups presented micro-injuries with polymorphonuclear infiltration. In serum, while OTR/down and OTR/up protocols increased IL-1β, IL-6, and tumor necrosis factor alpha, OTR group increased IL-1β, IL-6, IL-15, and corticosterone. The type II fibers in EDL and soleus, total and phosphorylated AR levels in soleus, and total GR levels in EDL and soleus were differentially modulated by the OT protocols. In summary, the proinflammatory cytokines were more sensitive for OTR/down than for OTR/up and OTR. Also, the specific treadmill inclination of each OT model influenced most of the other evaluated parameters.
Collapse
Affiliation(s)
- Alisson L da Rocha
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Bruno C Pereira
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Giovana R Teixeira
- Department of Physical Education, State University of São Paulo (UNESP), Presidente Prudente, Brazil
| | - Ana P Pinto
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Fabiani G Frantz
- Department of Clinical, Toxicological, and Bromatological Analysis, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Lucila L K Elias
- Department of Physiology, Ribeirao Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Fábio S Lira
- Department of Physical Education, State University of São Paulo (UNESP), Presidente Prudente, Brazil
| | - José R Pauli
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Dennys E Cintra
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Eduardo R Ropelle
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Leandro P de Moura
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Rania A Mekary
- Department of Pharmaceutical Business and Administrative Sciences, MCPHS University, Boston, MA, United States.,Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Ellen C de Freitas
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Adelino S R da Silva
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil.,School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
| |
Collapse
|
12
|
Tuttle JA, Chrismas BCR, Gibson OR, Barrington JH, Hughes DC, Castle PC, Metcalfe AJ, Midgley AW, Pearce O, Kabir C, Rayanmarakar F, Al-Ali S, Lewis MP, Taylor L. The Hsp72 and Hsp90α mRNA Responses to Hot Downhill Running Are Reduced Following a Prior Bout of Hot Downhill Running, and Occur Concurrently within Leukocytes and the Vastus Lateralis. Front Physiol 2017; 8:473. [PMID: 28747888 PMCID: PMC5506191 DOI: 10.3389/fphys.2017.00473] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/21/2017] [Indexed: 12/14/2022] Open
Abstract
The leukocyte heat shock response (HSR) is used to determine individual's thermotolerance. The HSR and thermotolerance are enhanced following interventions such as preconditioning and/or acclimation/acclimatization. However, it is unclear whether the leukocyte HSR is an appropriate surrogate for the HSR in other tissues implicated within the pathophysiology of exertional heat illnesses (e.g., skeletal muscle), and whether an acute preconditioning strategy (e.g., downhill running) can improve subsequent thermotolerance. Physically active, non-heat acclimated participants were split into two groups to investigate the benefits of hot downhill running as preconditioning strategy. A hot preconditioning group (HPC; n = 6) completed two trials (HPC1HOTDOWN and HPC2HOTDOWN) of 30 min running at lactate threshold (LT) on -10% gradient in 30°C and 50% relative humidity (RH) separated by 7 d. A temperate preconditioning group (TPC; n = 5) completed 30 min running at LT on a -1% gradient in 20°C and 50% (TPC1TEMPFLAT) and 7 d later completed 30 min running at LT on -10% gradient in 30°C and 50% RH (TPC2HOTDOWN). Venous blood samples and muscle biopsies (vastus lateralis; VL) were obtained before, immediately after, 3, 24, and 48 h after each trial. Leukocyte and VL Hsp72, Hsp90α, and Grp78 mRNA relative expression was determined via RT-QPCR. Attenuated leukocyte and VL Hsp72 (2.8 to 1.8 fold and 5.9 to 2.4 fold; p < 0.05) and Hsp90α mRNA (2.9 to 2.4 fold and 5.2 to 2.4 fold; p < 0.05) responses accompanied reductions (p < 0.05) in physiological strain [exercising rectal temperature (-0.3°C) and perceived muscle soreness (~ -14%)] during HPC2HOTDOWN compared to HPC1HOTDOWN (i.e., a preconditioning effect). Both VL and leukocyte Hsp72 and Hsp90α mRNA increased (p < 0.05) simultaneously following downhill runs and demonstrated a strong relationship (p < 0.01) of similar magnitudes with one another. Hot downhill running is an effective preconditioning strategy which ameliorates physiological strain, soreness and Hsp72 and Hsp90α mRNA responses to a subsequent bout. Leukocyte and VL analyses are appropriate tissues to infer the extent to which the HSR has been augmented.
Collapse
Affiliation(s)
- James A Tuttle
- Muscle Cellular and Molecular Physiology Research Group, Department of Sport Science and Physical Activity, Institute of Sport and Physical Activity Research, University of BedfordshireBedford, United Kingdom
| | - Bryna C R Chrismas
- Sport Science Program, College of Arts and Sciences, Qatar UniversityDoha, Qatar
| | - Oliver R Gibson
- Centre for Human Performance, Exercise and Rehabilitation, Division of Sport, Health and Exercise Sciences, Department of Life Sciences, Brunel University LondonLondon, United Kingdom
| | - James H Barrington
- Muscle Cellular and Molecular Physiology Research Group, Department of Sport Science and Physical Activity, Institute of Sport and Physical Activity Research, University of BedfordshireBedford, United Kingdom
| | - David C Hughes
- Department of Neurobiology, Physiology and Behavior, University of California, DavisDavis, CA, United States
| | - Paul C Castle
- Muscle Cellular and Molecular Physiology Research Group, Department of Sport Science and Physical Activity, Institute of Sport and Physical Activity Research, University of BedfordshireBedford, United Kingdom
| | - Alan J Metcalfe
- Muscle Cellular and Molecular Physiology Research Group, Department of Sport Science and Physical Activity, Institute of Sport and Physical Activity Research, University of BedfordshireBedford, United Kingdom.,School of Exercise and Health Sciences, Edith Cowan UniversityPerth, WA, Australia
| | - Adrian W Midgley
- Department of Sport and Physical Activity, Edgehill UniversityOrmskirk, United Kingdom
| | - Oliver Pearce
- Milton Keynes University HospitalMilton Keynes, United Kingdom
| | - Chindu Kabir
- Milton Keynes University HospitalMilton Keynes, United Kingdom
| | | | - Sami Al-Ali
- Milton Keynes University HospitalMilton Keynes, United Kingdom
| | - Mark P Lewis
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough UniversityLoughborough, United Kingdom.,School of Sport, Exercise and Health Sciences, Loughborough UniversityLoughborough, United Kingdom
| | - Lee Taylor
- School of Sport, Exercise and Health Sciences, Loughborough UniversityLoughborough, United Kingdom.,ASPETAR, Qatar Orthopedic and Sports Medicine HospitalDoha, Qatar
| |
Collapse
|
13
|
Tunc-Ata M, Turgut G, Mergen-Dalyanoglu M, Turgut S. Examination of levels pentraxin-3, interleukin-6, and C-reactive protein in rat model acute and chronic exercise. J Exerc Rehabil 2017; 13:279-283. [PMID: 28702438 PMCID: PMC5498083 DOI: 10.12965/jer.1734920.490] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 06/10/2017] [Indexed: 01/21/2023] Open
Abstract
Different types of exercise occurs damage at the cellular level in the muscles. Muscle damage caused by exercise is determined creatine kinase, myoglobin, and increase in levels of acute phase protein and interleukin in blood. The purpose of this study was investigated the levels of pentraxin-3 (PTX-3), interleukin-6 (IL-6), and C-reactive protein (CRP) following acute and chronic exercising in rats. Twenty-six Wistar Albino male rats were divided in to three groups. A treadmill exercise was performed 3 days/week, 10 min/day for 1 week in acute groups. In chronic group, exercise performed 7 days/week, 60 min/day for 4 weeks. At the end of the experiment, plasma PTX-3, IL-6, and CRP levels were measured. In current study, the PTX-3, IL-6, and CRP levels not observed statistically significant difference among control, acute, and chronic groups. The levels IL-6 and CRP were not significantly different between acute and chronic exercise groups (P>0.05). However, the level of PTX-3 was found to be higher in the chronic group compared to the acute group (P<0.05). The PTX-3 level increase on chronic exercise-induced muscle damage. Accorting to our results, we think that PTX-3 may have a protect role on muscle damage during chronic exercises.
Collapse
Affiliation(s)
- Melek Tunc-Ata
- Department of Physiology, Health Science, Pamukkale University, Denizli, Turkey
| | - Gunfer Turgut
- Department of Physiology, Health Science, Pamukkale University, Denizli, Turkey
| | | | - Sebahat Turgut
- Department of Physiology, Health Science, Pamukkale University, Denizli, Turkey
| |
Collapse
|
14
|
Minari ALA, Oyama LM, dos Santos RVT. The Secretory Leukocyte Protease Inhibitor mRNA expression is involved with inflammatory control after downhill exercise in the triceps brachii intermediary head in Wistar rats. J Muscle Res Cell Motil 2017; 38:231-239. [DOI: 10.1007/s10974-017-9475-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 06/27/2017] [Indexed: 01/07/2023]
|
15
|
Morici G, Frinchi M, Pitruzzella A, Di Liberto V, Barone R, Pace A, Di Felice V, Belluardo N, Cappello F, Mudò G, Bonsignore MR. Mild Aerobic Exercise Training Hardly Affects the Diaphragm of mdx Mice. J Cell Physiol 2017; 232:2044-2052. [PMID: 27576008 DOI: 10.1002/jcp.25573] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/29/2016] [Indexed: 12/22/2022]
Abstract
In the mdx mice model of Duchenne Muscular Dystrophy (DMD), mild endurance exercise training positively affected limb skeletal muscles, whereas few and controversial data exist on the effects of training on the diaphragm. The diaphragm was examined in mdx (C57BL/10ScSn-Dmdmdx) and wild-type (WT, C57BL/10ScSc) mice under sedentary conditions (mdx-SD, WT-SD) and during mild exercise training (mdx-EX, WT-EX). At baseline, and after 30 and 45 days (training: 5 d/wk for 6 weeks), diaphragm muscle morphology and Cx39 protein were assessed. In addition, tissue levels of the chaperonins Hsp60 and Hsp70 and the p65 subunit of nuclear factor-kB (NF-kB) were measured in diaphragm, gastrocnemius, and quadriceps in each experimental group at all time points. Although morphological analysis showed unchanged total area of necrosis/regeneration in the diaphragm after training, there was a trend for larger areas of regeneration than necrosis in the diaphragm of mdx-EX compared to mdx-SD mice. However, the levels of Cx39, a protein associated with active regeneration in damaged muscle, were similar in the diaphragm of mdx-EX and mdx-SD mice. Hsp60 significantly decreased at 45 days in the diaphragm, but not in limb muscles, in both trained and sedentary mdx compared to WT mice. In limb muscles, but not in the diaphragm, Hsp70 and NF-kB p65 levels were increased in mdx mice irrespective of training at 30 and 45 days. Therefore, the diaphragm of mdx mice showed little inflammatory and stress responses over time, and appeared hardly affected by mild endurance training. J. Cell. Physiol. 232: 2044-2052, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Giuseppe Morici
- Dipartimento di Biomedicina Sperimentale e Neuroscienze Cliniche (BioNeC), University of Palermo, Palermo, Italy.,Istituto di Biomedicina e Immunologia Molecolare (IBIM), Consiglio Nazionale Delle Ricerche (CNR), Palermo, Italy
| | - Monica Frinchi
- Dipartimento di Biomedicina Sperimentale e Neuroscienze Cliniche (BioNeC), University of Palermo, Palermo, Italy
| | - Alessandro Pitruzzella
- Dipartimento di Biomedicina Sperimentale e Neuroscienze Cliniche (BioNeC), University of Palermo, Palermo, Italy.,Istituto Euro-Mediterraneo di Scienza e Tecnologia, Palermo, Italy
| | - Valentina Di Liberto
- Dipartimento di Biomedicina Sperimentale e Neuroscienze Cliniche (BioNeC), University of Palermo, Palermo, Italy
| | - Rosario Barone
- Dipartimento di Biomedicina Sperimentale e Neuroscienze Cliniche (BioNeC), University of Palermo, Palermo, Italy.,Istituto Euro-Mediterraneo di Scienza e Tecnologia, Palermo, Italy
| | - Andrea Pace
- Istituto Euro-Mediterraneo di Scienza e Tecnologia, Palermo, Italy.,Dipartimento di Scienze e Tecnologie Molecolari e Biomolecolari (STEMBIO)-University of Palermo, Palermo, Italy
| | - Valentina Di Felice
- Dipartimento di Biomedicina Sperimentale e Neuroscienze Cliniche (BioNeC), University of Palermo, Palermo, Italy.,Istituto Euro-Mediterraneo di Scienza e Tecnologia, Palermo, Italy
| | - Natale Belluardo
- Dipartimento di Biomedicina Sperimentale e Neuroscienze Cliniche (BioNeC), University of Palermo, Palermo, Italy
| | - Francesco Cappello
- Dipartimento di Biomedicina Sperimentale e Neuroscienze Cliniche (BioNeC), University of Palermo, Palermo, Italy.,Istituto Euro-Mediterraneo di Scienza e Tecnologia, Palermo, Italy
| | - Giuseppa Mudò
- Dipartimento di Biomedicina Sperimentale e Neuroscienze Cliniche (BioNeC), University of Palermo, Palermo, Italy
| | - Maria R Bonsignore
- Istituto di Biomedicina e Immunologia Molecolare (IBIM), Consiglio Nazionale Delle Ricerche (CNR), Palermo, Italy.,Dipartimento Biomedico di Medicina Interna e Specialistica (DiBiMIS), University of Palermo, Palermo, Italy
| |
Collapse
|
16
|
Pattamaprapanont P, Muanprasat C, Soodvilai S, Srimaroeng C, Chatsudthipong V. Effect of Exercise Training on Signaling of Interleukin-6 in Skeletal Muscles of Type 2 Diabetic Rats. Rev Diabet Stud 2016; 13:197-206. [PMID: 28012283 DOI: 10.1900/rds.2016.13.197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
OBJECTIVES Diabetes and exercise training have been shown to involve interleukin 6 (IL-6) signaling in muscle. However, the relationship between the actions of these two stimuli on muscle IL-6 and their downstream components is still unknown. Thus, the effect of endurance training on the key components of muscle IL-6 signaling transduction was investigated in a rat model of type 2 diabetes. METHODS Diabetes was induced by streptozotocin (STZ) in male Wistar rats fed a high-fat diet, with normal rats acting as controls. The animals were left to conduct their normal activities or assigned to endurance training in a treadmill. At the end of 8 weeks, blood biochemical profiles, exercise performance, muscle oxidative capacity, glucose transporter 4 (GLUT4) protein distribution, and expressions of IL-6 and its downstream proteins were determined. RESULTS Blood biochemical profiles of the diabetic rats were altered compared to normal rats, whereas endurance training improved blood chemistry and exercise performance. It also increased muscle oxidative capacity, and promoted GLUT4 subcellular localization to the membrane in muscles. Furthermore, protein expression of IL-6 receptor (IL-6Rα) was increased in both normal and diabetic rats after endurance training, but no significant changes in IL-6, phosphorylated signal transducer and activator of transcription 3 (p-STAT3), or suppressor of cytokine signaling 3 (SOC3) were observed in muscles of normal and diabetic rats. CONCLUSIONS IL-6 signaling pathway mediating muscle response to endurance training was conserved in type 2 diabetes. There was no link between training-induced IL-6 downstream targets in skeletal muscles and IL-6-induced type 2 diabetes.
Collapse
Affiliation(s)
- Pattarawan Pattamaprapanont
- Department of Physiology, Faculty of Science, Mahidol University, Rama 6 Rd, Rajathevi, Bangkok, 10400, Thailand
| | - Chatchai Muanprasat
- Department of Physiology, Faculty of Science, Mahidol University, Rama 6 Rd, Rajathevi, Bangkok, 10400, Thailand
| | - Sunhapas Soodvilai
- Department of Physiology, Faculty of Science, Mahidol University, Rama 6 Rd, Rajathevi, Bangkok, 10400, Thailand
| | - Chutima Srimaroeng
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Varanuj Chatsudthipong
- Department of Physiology, Faculty of Science, Mahidol University, Rama 6 Rd, Rajathevi, Bangkok, 10400, Thailand
| |
Collapse
|
17
|
Evidence of a Redox-Dependent Regulation of Immune Responses to Exercise-Induced Inflammation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:2840643. [PMID: 27974950 PMCID: PMC5126438 DOI: 10.1155/2016/2840643] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 09/21/2016] [Indexed: 12/16/2022]
Abstract
We used thiol-based antioxidant supplementation (n-acetylcysteine, NAC) to determine whether immune mobilisation following skeletal muscle microtrauma induced by exercise is redox-sensitive in healthy humans. According to a two-trial, double-blind, crossover, repeated measures design, 10 young men received either placebo or NAC (20 mg/kg/day) immediately after a muscle-damaging exercise protocol (300 eccentric contractions) and for eight consecutive days. Blood sampling and performance assessments were performed before exercise, after exercise, and daily throughout recovery. NAC reduced the decline of reduced glutathione in erythrocytes and the increase of plasma protein carbonyls, serum TAC and erythrocyte oxidized glutathione, and TBARS and catalase activity during recovery thereby altering postexercise redox status. The rise of muscle damage and inflammatory markers (muscle strength, creatine kinase activity, CRP, proinflammatory cytokines, and adhesion molecules) was less pronounced in NAC during the first phase of recovery. The rise of leukocyte and neutrophil count was decreased by NAC after exercise. Results on immune cell subpopulations obtained by flow cytometry indicated that NAC ingestion reduced the exercise-induced rise of total macrophages, HLA+ macrophages, and 11B+ macrophages and abolished the exercise-induced upregulation of B lymphocytes. Natural killer cells declined only in PLA immediately after exercise. These results indicate that thiol-based antioxidant supplementation blunts immune cell mobilisation in response to exercise-induced inflammation suggesting that leukocyte mobilization may be under redox-dependent regulation.
Collapse
|
18
|
Rizo-Roca D, Ríos-Kristjánsson JG, Núñez-Espinosa C, Santos-Alves E, Gonçalves IO, Magalhães J, Ascensão A, Pagès T, Viscor G, Torrella JR. Intermittent hypobaric hypoxia combined with aerobic exercise improves muscle morphofunctional recovery after eccentric exercise to exhaustion in trained rats. J Appl Physiol (1985) 2016; 122:580-592. [PMID: 27765844 DOI: 10.1152/japplphysiol.00501.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 09/27/2016] [Accepted: 10/13/2016] [Indexed: 01/07/2023] Open
Abstract
Unaccustomed eccentric exercise leads to muscle morphological and functional alterations, including microvasculature damage, the repair of which is modulated by hypoxia. We present the effects of intermittent hypobaric hypoxia and exercise on recovery from eccentric exercise-induced muscle damage (EEIMD). Soleus muscles from trained rats were excised before (CTRL) and 1, 3, 7, and 14 days after a double session of EEIMD protocol. A recovery treatment consisting of one of the following protocols was applied 1 day after the EEIMD: passive normobaric recovery (PNR), a 4-h daily exposure to passive hypobaric hypoxia at 4,000 m (PHR), or hypobaric hypoxia exposure followed by aerobic exercise (AHR). EEIMD produced an increase in the percentage of abnormal fibers compared with CTRL, and it affected the microvasculature by decreasing capillary density (CD, capillaries per mm2) and the capillary-to-fiber ratio (CF). After 14 days, AHR exhibited CD and CF values similar to those of CTRL animals (789 and 3.30 vs. 746 and 3.06) and significantly higher than PNR (575 and 2.62) and PHR (630 and 2.92). Furthermore, VEGF expression showed a significant 43% increase in AHR when compared with PNR. Moreover, after 14 days, the muscle fibers in AHR had a more oxidative phenotype than the other groups, with significantly smaller cross-sectional areas (AHR, 3,745; PNR, 4,502; and PHR, 4,790 µm2), higher citrate synthase activity (AHR, 14.8; PNR, 13.1; and PHR, 12 µmol·min-1·mg-1) and a significant 27% increment in PGC-1α levels compared with PNR. Our data show that hypoxia combined with exercise attenuates or reverses the morphofunctional alterations induced by EEIMD.NEW & NOTEWORTHY Our study provides new insights into the use of intermittent hypobaric hypoxia combined with exercise as a strategy to recover muscle damage induced by eccentric exercise. We analyzed the effects of hypobaric exposure combined with aerobic exercise on histopathological features of muscle damage, fiber morphofunctionality, capillarization, angiogenesis, and the oxidative capacity of damaged soleus muscle. Most of these parameters were improved after a 2-wk protocol of intermittent hypobaric hypoxia combined with aerobic exercise.
Collapse
Affiliation(s)
- D Rizo-Roca
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; and
| | - J G Ríos-Kristjánsson
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; and
| | - C Núñez-Espinosa
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; and
| | - E Santos-Alves
- Research Center in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal
| | - I O Gonçalves
- Research Center in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal
| | - J Magalhães
- Research Center in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal
| | - A Ascensão
- Research Center in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal
| | - T Pagès
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; and
| | - G Viscor
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; and
| | - J R Torrella
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; and
| |
Collapse
|
19
|
Curzi D, Sartini S, Guescini M, Lattanzi D, Di Palma M, Ambrogini P, Savelli D, Stocchi V, Cuppini R, Falcieri E. Effect of Different Exercise Intensities on the Myotendinous Junction Plasticity. PLoS One 2016; 11:e0158059. [PMID: 27337061 PMCID: PMC4918954 DOI: 10.1371/journal.pone.0158059] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 06/09/2016] [Indexed: 12/20/2022] Open
Abstract
Myotendinous junctions (MTJs) are anatomical regions specialized in transmission of contractile strength from muscle to tendon and, for this reason, a common site where acute injuries occur during sport activities. In this work we investigated the influence of exercise intensity on MTJ plasticity, as well as on the expression of insulin-like growth factor 1 (IGF-1) and transforming growth factor beta (TGF-β) and their receptors in muscle and tendon. Three groups of rats were analyzed: control (CTRL), slow-runner (RUN-S) and fast-runner (RUN-F) trained using a treadmill. Ultrastructural and morphometric analyses of distal MTJs from extensor digitorum longus muscles have been performed. Contractile strength and hypertrophy were investigated by using in vivo tension recordings and muscle cross-sectional area (CSA) analysis, respectively. mRNA levels of PGC-1α, vinculin, IGF-1Ea and TGF-β have been quantified in muscle belly, while IGF-1Ea, TGF-β and their receptors in tendon. Morphometry revealed an increased MTJ complexity and interaction surface between tissues in trained rats according to training intensity. CSA analysis excluded hypertrophy among groups, while muscle strength was found significantly enhanced in exercised rats in comparison to controls. In muscle tissue, we highlighted an increased mRNA expression of PGC-1α and vinculin in both trained conditions and of TGF-β in RUN-F. In tendon, we mainly noted an enhancement of TGF-β mRNA expression only in RUN-F group and a raise of Betaglycan tendon receptor mRNA levels proportional to exercise intensity. In conclusion, MTJ plasticity appears to be related to exercise intensity and molecular analysis suggests a major role played by TGF-β.
Collapse
Affiliation(s)
- Davide Curzi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
- * E-mail:
| | - Stefano Sartini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Michele Guescini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Davide Lattanzi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Michael Di Palma
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Patrizia Ambrogini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - David Savelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Vilberto Stocchi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Riccardo Cuppini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Elisabetta Falcieri
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| |
Collapse
|
20
|
Involvement of IL-1 in the Maintenance of Masseter Muscle Activity and Glucose Homeostasis. PLoS One 2015; 10:e0143635. [PMID: 26599867 PMCID: PMC4658060 DOI: 10.1371/journal.pone.0143635] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/06/2015] [Indexed: 11/19/2022] Open
Abstract
Physical exercise reportedly stimulates IL-1 production within working skeletal muscles, but its physiological significance remains unknown due to the existence of two distinct IL-1 isoforms, IL-1α and IL-1β. The regulatory complexities of these two isoforms, in terms of which cells in muscles produce them and their distinct/redundant biological actions, have yet to be elucidated. Taking advantage of our masticatory behavior (Restrained/Gnawing) model, we herein show that IL-1α/1β-double-knockout (IL-1-KO) mice exhibit compromised masseter muscle (MM) activity which is at least partially attributable to abnormalities of glucose handling (rapid glycogen depletion along with impaired glucose uptake) and dysfunction of IL-6 upregulation in working MMs. In wild-type mice, masticatory behavior clearly increased IL-1β mRNA expression but no incremental protein abundance was detectable in whole MM homogenates, whereas immunohistochemical staining analysis revealed that both IL-1α- and IL-1β-immunopositive cells were recruited around blood vessels in the perimysium of MMs after masticatory behavior. In addition to the aforementioned phenotype of IL-1-KO mice, we found the IL-6 mRNA and protein levels in MMs after masticatory behavior to be significantly lower in IL-1-KO than in WT. Thus, our findings confirm that the locally-increased IL-1 elicited by masticatory behavior, although present small in amounts, contributes to supporting MM activity by maintaining normal glucose homeostasis in these muscles. Our data also underscore the importance of IL-1-mediated local interplay between autocrine myokines including IL-6 and paracrine cytokines in active skeletal muscles. This interplay is directly involved in MM performance and fatigability, perhaps mediated through maintaining muscular glucose homeostasis.
Collapse
|
21
|
Rizo-Roca D, Ríos-Kristjánsson JG, Núñez-Espinosa C, Ascensão A, Magalhães J, Torrella JR, Pagès T, Viscor G. A semiquantitative scoring tool to evaluate eccentric exercise-induced muscle damage in trained rats. Eur J Histochem 2015; 59:2544. [PMID: 26708179 PMCID: PMC4698611 DOI: 10.4081/ejh.2015.2544] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 09/16/2015] [Accepted: 10/01/2015] [Indexed: 11/23/2022] Open
Abstract
Unaccustomed eccentric exercise is a well-documented cause of exercise-induced muscle damage. However, in trained subjects muscle injury involves only light or moderate tissue damage. Since trained rats are widely used as a model for skeletal muscle injury, here we propose a semiquantitative scoring tool to evaluate muscle damage in trained rats. Twenty male Sprague-Dawley rats were trained for two weeks following a two-week preconditioning period, and randomly divided into two groups: control rats (CTL; n=5) and rats with eccentric exercise-induced muscle damage (INJ; n=15). Injured rats were sacrificed at three time points: 1, 3 and 7 days post injury (n=5 each). Transverse sections from the right soleus were cut (10 µm) and stained with haematoxylin-eosin. Samples were evaluated by two groups of observers (four researchers experienced in skeletal muscle histopathology and four inexperienced) using the proposed tool, which consisted of six items organised in three domains: abnormal fibre morphology, necrotic/(re) degenerating fibres (muscle fibre domain), endomysial and perimysial infiltration (inflammatory state domain) and endomysium and perimysium distension (interstitial compartment domain). We observed the expected time course in the six evaluated items. Furthermore, agreement among observers was evaluated by measuring the Intraclass Correlation Coefficient (ICC). Within the experienced group, items from the muscle fibre and interstitial compartment domains showed good agreement and the two items from the infiltration compartment domain showed excellent agreement. In conclusion, the proposed tool allowed quick and correct evaluation of light to moderate muscle damage in trained rats with good agreement between observers.
Collapse
|