1
|
Khoi CS, Lin TY, Chiang CK. Targeting Insulin Resistance, Reactive Oxygen Species, Inflammation, Programmed Cell Death, ER Stress, and Mitochondrial Dysfunction for the Therapeutic Prevention of Free Fatty Acid-Induced Vascular Endothelial Lipotoxicity. Antioxidants (Basel) 2024; 13:1486. [PMID: 39765815 PMCID: PMC11673094 DOI: 10.3390/antiox13121486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/26/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
Excessive intake of free fatty acids (FFAs), especially saturated fatty acids, can lead to atherosclerosis and increase the incidence of cardiovascular diseases. FFAs also contribute to obesity, hyperlipidemia, and nonalcoholic fatty liver disease. Palmitic acid (PA) is human plasma's most abundant saturated fatty acid. It is often used to study the toxicity caused by free fatty acids in different organs, including vascular lipotoxicity. Fatty acid overload induces endothelial dysfunction through various molecular mechanisms. Endothelial dysfunction alters vascular homeostasis by reducing vasodilation and increasing proinflammatory and prothrombotic states. It is also linked to atherosclerosis, which leads to coronary artery disease, peripheral artery disease, and stroke. In this review, we summarize the latest studies, revealing the molecular mechanism of free fatty acid-induced vascular dysfunction, targeting insulin resistance, reactive oxygen species, inflammation, programmed cell death, ER stress, and mitochondrial dysfunction. Meanwhile, this review provides new strategies and perspectives for preventing and reducing the impact of cardiovascular diseases on human health through the relevant targeting molecular mechanism.
Collapse
Affiliation(s)
- Chong-Sun Khoi
- Department of Anesthesiology, Far-Eastern Memorial Hospital, New Taipei City 220216, Taiwan;
- Graduate School of Biotechnology and Bioengineering, College of Engineering, Yuan Ze University, Taoyuan City 320315, Taiwan
| | - Tzu-Yu Lin
- Department of Anesthesiology, Far-Eastern Memorial Hospital, New Taipei City 220216, Taiwan;
- Department of Mechanical Engineering, College of Engineering, Yuan Ze University, Taoyuan City 320315, Taiwan
| | - Chih-Kang Chiang
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei City 10617, Taiwan
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei City 10617, Taiwan
- Department of Integrated Diagnostics & Therapeutics, National Taiwan University Hospital, Taipei City 100229, Taiwan
| |
Collapse
|
2
|
Wu G, Liu S, Wang Z, Wang X. Structural characteristics of neutral polysaccharides purified from coix seed and its anti-insulin resistance effects on HepG2 cells. Food Sci Nutr 2024; 12:8419-8431. [PMID: 39479660 PMCID: PMC11521644 DOI: 10.1002/fsn3.4402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 11/02/2024] Open
Abstract
Coix seed is recognized as a functional medicinal food due to its valuable biological activities, with polysaccharides being the primary active compounds. In this study, an ultrasonic-assisted enzymatic extraction technique was employed, and response surface methodology was used to optimize the yield of polysaccharides to 9.55 ± 0.26%. A novel neutral polysaccharide, CSPsN-1, was purified with a molecular weight of 7.75 kDa. CSPsN-1 was composed of arabinose, galactose, glucose, xylose, and mannose in molar ratios of 0.48: 7.92: 86.39: 2.42: 2.79. Its backbone composed of →4)-α-D-Glcp-(1→ and →3,4)-α-D-Glcp-(1→ units, with terminal residues of α-D-Glcp. In vitro experiments, CSPsN-1 enhanced glucose consumption in insulin-resistant HepG2 cells and upregulated GLUT4 expression by activating the PI3K/AKT signaling pathway. These findings suggest that CSPsN-1 holds significant promise as a functional ingredient for treating insulin resistance and related metabolic disorders.
Collapse
Affiliation(s)
- Guozhen Wu
- School of Pharmaceutical SciencesShandong University of Traditional Chinese MedicineJinanP.R. China
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test CenterQilu University of Technology (Shandong Academy of Sciences)JinanP.R. China
| | - Shuang Liu
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test CenterQilu University of Technology (Shandong Academy of Sciences)JinanP.R. China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical SciencesQilu University of Technology (Shandong Academy of Sciences)JinanP.R. China
| | - Zhenqiang Wang
- School of Pharmaceutical SciencesShandong University of Traditional Chinese MedicineJinanP.R. China
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test CenterQilu University of Technology (Shandong Academy of Sciences)JinanP.R. China
| | - Xiao Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test CenterQilu University of Technology (Shandong Academy of Sciences)JinanP.R. China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical SciencesQilu University of Technology (Shandong Academy of Sciences)JinanP.R. China
| |
Collapse
|
3
|
Xue J, Zhang Z, Sun Y, Jin D, Guo L, Li X, Zhao D, Feng X, Qi W, Zhu H. Research Progress and Molecular Mechanisms of Endothelial Cells Inflammation in Vascular-Related Diseases. J Inflamm Res 2023; 16:3593-3617. [PMID: 37641702 PMCID: PMC10460614 DOI: 10.2147/jir.s418166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/02/2023] [Indexed: 08/31/2023] Open
Abstract
Endothelial cells (ECs) are widely distributed inside the vascular network, forming a vital barrier between the bloodstream and the walls of blood vessels. These versatile cells serve myriad functions, including the regulation of vascular tension and the management of hemostasis and thrombosis. Inflammation constitutes a cascade of biological responses incited by biological, chemical, or physical stimuli. While inflammation is inherently a protective mechanism, dysregulated inflammation can precipitate a host of vascular pathologies. ECs play a critical role in the genesis and progression of vascular inflammation, which has been implicated in the etiology of numerous vascular disorders, such as atherosclerosis, cardiovascular diseases, respiratory diseases, diabetes mellitus, and sepsis. Upon activation, ECs secrete potent inflammatory mediators that elicit both innate and adaptive immune reactions, culminating in inflammation. To date, no comprehensive and nuanced account of the research progress concerning ECs and inflammation in vascular-related maladies exists. Consequently, this review endeavors to synthesize the contributions of ECs to inflammatory processes, delineate the molecular signaling pathways involved in regulation, and categorize and consolidate the various models and treatment strategies for vascular-related diseases. It is our aspiration that this review furnishes cogent experimental evidence supporting the established link between endothelial inflammation and vascular-related pathologies, offers a theoretical foundation for clinical investigations, and imparts valuable insights for the development of therapeutic agents targeting these diseases.
Collapse
Affiliation(s)
- Jiaojiao Xue
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Ziwei Zhang
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Yuting Sun
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Di Jin
- Department of Nephrology, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Liming Guo
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Xiangyan Li
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Daqing Zhao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Xiaochun Feng
- Department of Nephropathy and Rheumatology in Children, Children’s Medical Center, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Wenxiu Qi
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Haoyu Zhu
- Department of Nephropathy and Rheumatology in Children, Children’s Medical Center, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| |
Collapse
|
4
|
Vasamsetti SB, Natarajan N, Sadaf S, Florentin J, Dutta P. Regulation of cardiovascular health and disease by visceral adipose tissue-derived metabolic hormones. J Physiol 2023; 601:2099-2120. [PMID: 35661362 PMCID: PMC9722993 DOI: 10.1113/jp282728] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/04/2022] [Indexed: 11/08/2022] Open
Abstract
Visceral adipose tissue (VAT) is a metabolic organ known to regulate fat mass, and glucose and nutrient homeostasis. VAT is an active endocrine gland that synthesizes and secretes numerous bioactive mediators called 'adipocytokines/adipokines' into systemic circulation. These adipocytokines act on organs of metabolic importance like the liver and skeletal muscle. Multiple preclinical and in vitro studies showed strong evidence of the roles of adipocytokines in the regulation of metabolic disorders like diabetes, obesity and insulin resistance. Adipocytokines, such as adiponectin and omentin, are anti-inflammatory and have been shown to prevent atherogenesis by increasing nitric oxide (NO) production by the endothelium, suppressing endothelium-derived inflammation and decreasing foam cell formation. By inhibiting differentiation of vascular smooth muscle cells (VSMC) into osteoblasts, adiponectin and omentin prevent vascular calcification. On the other hand, adipocytokines like leptin and resistin induce inflammation and endothelial dysfunction that leads to vasoconstriction. By promoting VSMC migration and proliferation, extracellular matrix degradation and inflammatory polarization of macrophages, leptin and resistin increase the risk of atherosclerotic plaque vulnerability and rupture. Additionally, the plasma concentrations of these adipocytokines alter in ageing, rendering older humans vulnerable to cardiovascular disease. The disturbances in the normal physiological concentrations of these adipocytokines secreted by VAT under pathological conditions impede the normal functions of various organs and affect cardiovascular health. These adipokines could be used for both diagnostic and therapeutic purposes in cardiovascular disease.
Collapse
Affiliation(s)
- Sathish Babu Vasamsetti
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA 15213
- Pittsburgh VA Medical Center-University Drive, University Drive C, Pittsburgh, PA, USA
| | - Niranjana Natarajan
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA 15213
| | - Samreen Sadaf
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA 15213
- Pittsburgh VA Medical Center-University Drive, University Drive C, Pittsburgh, PA, USA
| | - Jonathan Florentin
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA 15213
| | - Partha Dutta
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA 15213
- Pittsburgh VA Medical Center-University Drive, University Drive C, Pittsburgh, PA, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA, 15213
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA, 15213
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
5
|
Jin R, Juventus Aweya J, Lin R, Weng W, Shang J, Wang D, Fan Y, Yang S. The bioactive peptide VLATSGPG regulates the abnormal lipid accumulation and inflammation induced by free fatty acids in HepG2 cells via the PERK signaling pathway. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023] Open
|
6
|
Huang Q, Chen S, Xiong X, Yin T, Zhang Y, Zeng G, Huang Q. Asprosin Exacerbates Endothelium Inflammation Induced by Hyperlipidemia Through Activating IKKβ-NF-κBp65 Pathway. Inflammation 2023; 46:623-638. [PMID: 36401667 DOI: 10.1007/s10753-022-01761-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 11/21/2022]
Abstract
Vascular endothelium dysfunction caused by endothelium inflammation is a trigger of numerous cardiovascular diseases. Vascular endothelium inflammation often occurs in patients with obesity. Asprosin (ASP) derived from white adipose tissue plays important roles in maintaining glucose homeostasis. However, effect of ASP on the vascular endothelium inflammation induced by hyperlipidemia and its underlying mechanism remains largely unclear. In this study, models of vascular endothelium inflammation were established to investigate the effect of ASP on the endothelium inflammation both in vivo and in vitro. Our data in vivo showed that recombinant ASP or high-fat diet (HFD) significantly increased the circulating levels of IL-6 and TNF-α and enhanced the adhesion of macrophages to endothelia characterized by the expression increase of CD68, ICAM-1, and VCAM-1 in rats. However, neutralization of ASP with an ASP specific antibody (AASP) significantly antagonized the changes induced by HFD. Similarly, our data in vitro also showed that ASP treatment elevated the expressions of IL-6, TNF-α, and ICAM-1 as well as VCAM-1. More important, our data revealed that the pro-inflammation effect of ASP was achieved by activating the IKKβ-NF-κBp65 pathway other than the oxidative stress pathway both in vivo and in vitro. In conclusion, our results demonstrate that ASP is a pro-inflammation player in the obesity-associated endothelium dysfunction. The findings would provide a novel target for the prevention and treatment of obesity-related cardiovascular diseases.
Collapse
Affiliation(s)
- Qianqian Huang
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, 461 Ba-Yi Street, Nanchang, Jiangxi, 330006, People's Republic of China
- Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Sheng Chen
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, 461 Ba-Yi Street, Nanchang, Jiangxi, 330006, People's Republic of China
- Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Xiaowei Xiong
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, 461 Ba-Yi Street, Nanchang, Jiangxi, 330006, People's Republic of China
- Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Tingting Yin
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, 461 Ba-Yi Street, Nanchang, Jiangxi, 330006, People's Republic of China
- Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Yanan Zhang
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, 461 Ba-Yi Street, Nanchang, Jiangxi, 330006, People's Republic of China
- Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Guohua Zeng
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, 461 Ba-Yi Street, Nanchang, Jiangxi, 330006, People's Republic of China.
- Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China.
| | - Qiren Huang
- Provincial Key Laboratory of Basic Pharmacology, Nanchang University, 461 Ba-Yi Street, Nanchang, Jiangxi, 330006, People's Republic of China.
- Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China.
| |
Collapse
|
7
|
Tseng SY, Chang HY, Li YH, Chao TH. Effects of Cilostazol on Angiogenesis in Diabetes through Adiponectin/Adiponectin Receptors/Sirtuin1 Signaling Pathway. Int J Mol Sci 2022; 23:14839. [PMID: 36499166 PMCID: PMC9739574 DOI: 10.3390/ijms232314839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/16/2022] [Accepted: 11/23/2022] [Indexed: 12/02/2022] Open
Abstract
Cilostazol is an antiplatelet agent with vasodilating effects that functions by increasing the intracellular concentration of cyclic adenosine monophosphate. We have previously shown that cilostazol has favorable effects on angiogenesis. However, there is no study to evaluate the effects of cilostazol on adiponectin. We investigated the effects of cilostazol on angiogenesis in diabetes in vitro and in vivo through adiponectin/adiponectin receptors (adipoRs) and the sirtuin 1 (SIRT1)/AMP-activated protein kinase (AMPK) signaling pathway. Human umbilical vein endothelial cells (HUVECs) and human aortic smooth muscle cells (HASMCs) were cocultured under high glucose (HG) conditions. Adiponectin concentrations in the supernatants were significantly increased when HASMCs were treated with cilostazol but not significantly changed when only HUVECs were treated with cilostazol. Cilostazol treatment enhanced the expression of SIRT1 and upregulated the phosphorylation of AMPK in HG-treated HUVECs. By sequential knockdown of adipoRs, SIRT1, and AMPK, our data demonstrated that cilostazol prevented apoptosis and stimulated proliferation, chemotactic motility, and capillary-like tube formation in HG-treated HUVECs through the adipoRs/SIRT1/AMPK signaling pathway. The phosphorylation of downstream signaling molecules, including acetyl-CoA carboxylase (ACC) and endothelial nitric oxide synthase (eNOS), was downregulated when HUVECs were treated with a SIRT1 inhibitor. In streptozotocin-induced diabetic mice, cilostazol treatment could improve blood flow recovery 21-28 days after inducing hindlimb ischemia as well as increase the circulating of CD34+CD45dim cells 14-21 days after operation; moreover, these effects were significantly attenuated by the knockdown of adipoR1 but not adipoR2. The expression of SIRT1 and phosphorylation of AMPK/ACC and Akt/eNOS in ischemic muscles were significantly attenuated by the gene knockdown of adipoRs. Cilostazol improves HG-induced endothelial dysfunction in vascular endothelial cells and enhances angiogenesis in diabetic mice by upregulating the expression of adiponectin/adipoRs and its SIRT1/AMPK downstream signaling pathway.
Collapse
Affiliation(s)
- Shih-Ya Tseng
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Department of Biological Science, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Hsien-Yuan Chang
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Yi-Heng Li
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Ting-Hsing Chao
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Health Management Center, National Cheng Kung University Hospital, Tainan 704, Taiwan
| |
Collapse
|
8
|
Differential effects of single fatty acids and fatty acid mixtures on the phosphoinositide 3-kinase/Akt/eNOS pathway in endothelial cells. Eur J Nutr 2022; 61:2463-2473. [PMID: 35157107 PMCID: PMC9279250 DOI: 10.1007/s00394-022-02821-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/25/2022] [Indexed: 12/30/2022]
Abstract
SCOPE Dietary fat composition is an important modulator of vascular function. Non-esterified fatty acids (NEFA) enriched in saturated fatty acids (SFA) are thought to reduce vascular reactivity by attenuating insulin signalling via vasodilator pathways (phosphoinositide 3-kinase (PI3K)/Akt/endothelial nitric oxide synthase (eNOS)) and enhancing signalling via pro-inflammatory pathways. METHODS To examine the effects of fatty acids on these pathways, human aortic endothelial cells were incubated with single fatty acids, and mixtures of these fatty acids to mimic typical NEFA composition and concentrations achieved in our previous human study. RNA was extracted to determine gene expression using real-time RT-PCR and cell lysates prepared to assess protein phosphorylation by Western blotting. RESULTS Oleic acid (OA, 100 µM) was shown to down regulate expression of the insulin receptor, PTEN and a PI3K catalytic (p110β) and regulatory (p85α) subunit compared to palmitic, linoleic and stearic acids (P < 0.04), and promote greater eNOS phosphorylation at Ser1177. Both concentration and composition of the SFA and SFA plus n-3 polyunsaturated fatty acids (PUFA) mixtures had significant effects on genes involved in the PI3K/Akt pathway. Greater up-regulation was found with 800 than 400 µM concentration (respective of concentrations in insulin resistant and normal individuals), whereas greater down-regulation was evident with SFA plus n-3 PUFA than SFA mixture alone. CONCLUSION Our findings provide novel insights into the modulation of the PI3K/Akt/eNOS pathway by single fatty acids and fatty acid mixtures. In particular, OA appears to promote signalling via this pathway, with further work required to determine the primary molecular site(s) of action.
Collapse
|
9
|
Bakr MH, Radwan E, Shaltout AS, Farrag AA, Mahmoud AR, Abd-Elhamid TH, Ali M. Chronic exposure to tramadol induces cardiac inflammation and endothelial dysfunction in mice. Sci Rep 2021; 11:18772. [PMID: 34548593 PMCID: PMC8455605 DOI: 10.1038/s41598-021-98206-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 09/06/2021] [Indexed: 11/21/2022] Open
Abstract
Tramadol is an opioid extensively used to treat moderate to severe pain; however, prolonged therapy is associated with several tissues damage. Chronic use of tramadol was linked to increased hospitalizations due to cardiovascular complications. Limited literature has described the effects of tramadol on the cardiovascular system, so we sought to investigate these actions and elucidate the underlying mechanisms. Mice received tramadol hydrochloride (40 mg/kg body weight) orally for 4 successive weeks. Oxidative stress, inflammation, and cardiac toxicity were assessed. In addition, eNOS expression was evaluated. Our results demonstrated marked histopathological alteration in heart and aortic tissues after exposure to tramadol. Tramadol upregulated the expression of oxidative stress and inflammatory markers in mice heart and aorta, whereas downregulated eNOS expression. Tramadol caused cardiac damage shown by the increase in LDH, Troponin I, and CK-MB activities in serum samples. Overall, these results highlight the risks of tramadol on the cardiovascular system.
Collapse
Affiliation(s)
- Marwa H Bakr
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt.
| | - Eman Radwan
- Department of Medical Biochemistry, Faculty of Medicine, Assiut University, Assiut, Egypt.,Department of Biochemistry, Sphinx University, Assiut, Egypt
| | - Asmaa S Shaltout
- Department of Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Alshaimaa A Farrag
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt.,Department of Anatomy, College of Medicine, Bisha University, Bisha, Kingdom of Saudi Arabia
| | - Amany Refaat Mahmoud
- Department of Human Anatomy and Embryology, Faculty of Medicine, Assiut University, Assiut, Egypt.,Department of Basic Medical Sciences, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah, Kingdom of Saudi Arabia
| | - Tarek Hamdy Abd-Elhamid
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Maha Ali
- Department of Medical Biochemistry, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
10
|
Abdolahipour R, Nowrouzi A, Khalili MB, Meysamie A, Ardalani S. Aqueous Cichorium intybus L. seed extract may protect against acute palmitate-induced impairment in cultured human umbilical vein endothelial cells by adjusting the Akt/eNOS pathway, ROS: NO ratio and ET-1 concentration. J Diabetes Metab Disord 2020; 19:1045-1059. [PMID: 33520822 PMCID: PMC7843711 DOI: 10.1007/s40200-020-00603-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/29/2020] [Indexed: 01/22/2023]
Abstract
BACKGROUND Endothelial dysfunction, which is a vascular response to oxidative stress and inflammation, involves a cascade of downstream events that lead to decreased synthesis of insulin-mediated vasodilator nitric oxide (NO) and increased production of vasoconstrictor protein endothelin-1 (ET-1). NO, and ET-1 production by endothelial cells is regulated by phosphatidylinositol 3-kinase (PI3K)-Akt-eNOS axis and mitogen-activated protein kinase (MAPK) axis of the insulin signaling pathway, respectively. METHODS After treating the human umbilical vein endothelial cells (HUVECs) with either palmitate complexed with bovine serum albumin (BSA) (abbreviated as PA) or the aqueous Cichorium intybus L. (chicory) seed extract (chicory seed extract, abbreviated as CSE) alone, and simultaneously together (PA + CSE), for 3, 12, and 24 h, we evaluated the capacity of CSE to reestablish the PA-induced imbalance between PI3K/Akt/eNOS and MAPK signaling pathways. The level of oxidative stress was determined by fluorimeter. Insulin-induced levels of NO and ET-1 were measured by Griess and ELISA methods, respectively. Western blotting was used to determine the extent of Akt and eNOS phosphorylation. RESULTS Contrary to PA that caused an increase in the reactive oxygen species (ROS) levels and attenuated NO production, CSE readjusted the NO/ROS ratio within 12 h. CSE improved the metabolic arm of the insulin signaling pathway by up-regulating the insulin-stimulated phospho-eNOS Ser1177/total eNOS and phospho-Akt Thr308/total Akt ratios and decreased ET-1 levels. CONCLUSIONS CSE ameliorated the PA-induced endothelial dysfunction not only by its anti-ROS property but also by selectively enhancing the protective arm and diminishing the injurious arm of insulin signaling pathways.
Collapse
Affiliation(s)
- Raziyeh Abdolahipour
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Azin Nowrouzi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Alipasha Meysamie
- Department of Community & Preventive Medicine, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Samin Ardalani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Mitochondrial dysfunction in the fetoplacental unit in gestational diabetes mellitus. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165948. [PMID: 32866635 DOI: 10.1016/j.bbadis.2020.165948] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022]
Abstract
Gestational diabetes mellitus (GDM) is a disease of pregnancy that is associated with d-glucose intolerance and foeto-placental vascular dysfunction. GMD causes mitochondrial dysfunction in the placental endothelium and trophoblast. Additionally, GDM is associated with reduced placental oxidative phosphorylation due to diminished activity of the mitochondrial F0F1-ATP synthase (complex V). This phenomenon may result from a higher generation of reactive superoxide anion and nitric oxide. Placental mitochondrial biogenesis and mitophagy work in concert to maintain cell homeostasis and are vital mechanisms securing the efficient generation of ATP, whose demand is higher in pregnancy, ensuring foetal growth and development. Additional factors disturbing placental ATP synthase activity in GDM include pre-gestational maternal obesity or overweight, intracellular pH, miRNAs, fatty acid oxidation, and foetal (and 'placental') sex. GDM is also associated with maternal and foetal hyperinsulinaemia, altered circulating levels of adiponectin and leptin, and the accumulation of extracellular adenosine. Here, we reviewed the potential interplay between these molecules or metabolic conditions on the mechanisms of mitochondrial dysfunction in the foeto-placental unit in GDM pregnancies.
Collapse
|
12
|
An adiponectin-S1P autocrine axis protects skeletal muscle cells from palmitate-induced cell death. Lipids Health Dis 2020; 19:156. [PMID: 32611437 PMCID: PMC7330982 DOI: 10.1186/s12944-020-01332-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/17/2020] [Indexed: 12/15/2022] Open
Abstract
Background The prevalence of type 2 diabetes, obesity and their various comorbidities have continued to rise. In skeletal muscle lipotoxicity is well known to be a contributor to the development of insulin resistance. Here it was examined if the small molecule adiponectin receptor agonist AdipoRon mimicked the effect of adiponectin to attenuate palmitate induced reactive oxygen species (ROS) production and cell death in L6 skeletal muscle cells. Methods L6 cells were treated ±0.1 mM PA, and ± AdipoRon, then assays analyzing reactive oxygen species (ROS) production and cell death, and intracellular and extracellular levels of sphingosine-1 phosphate (S1P) were conducted. To determine the mechanistic role of S1P gain (using exogenous S1P or using THI) or loss of function (using the SKI-II) were conducted. Results Using both CellROX and DCFDA assays it was found that AdipoRon reduced palmitate-induced ROS production. Image-IT DEAD, MTT and LDH assays all indicated that AdipoRon reduced palmitate-induced cell death. Palmitate significantly increased intracellular accumulation of S1P, whereas in the presence of AdipoRon there was increased release of S1P from cells to extracellular medium. It was also observed that direct addition of extracellular S1P prevented palmitate-induced ROS production and cell death, indicating that S1P is acting in an autocrine manner. Pharmacological approaches to enhance or decrease S1P levels indicated that accumulation of intracellular S1P correlated with enhanced cell death. Conclusion This data indicates that increased extracellular levels of S1P in response to adiponectin receptor activation can activate S1P receptor-mediated signaling to attenuate lipotoxic cell death. Taken together these findings represent a possible novel mechanism for the protective action of adiponectin.
Collapse
|
13
|
Abstract
BACKGROUND Adiponectin is the most abundant adipokines that plays critical roles in the maintenance of energy homeostasis as well as inflammation regulation. The half-life of adiponectin is very short and the small-molecule adiponectin receptor agonist has been synthesized recently. In the present study, the potential roles of AdipoRon, an adiponectin receptor agonist, in a mouse model of lipopolysaccharide (LPS)/D-galactosamine (D-Gal)-induced acute hepatitis was explored. METHODS BALB/c mice (n = 144, male) were divided into three sets. In set 1, 32 mice were randomized into four groups: the control group, the AdipoRon group, the LPS/D-Gal group, and the AdipoRon + LPS/D-Gal group. The mice in set 1 were sacrificed after LPS/D-Gal treatment, and the plasma samples were collected for detection of tumor necrosis factor-alpha (TNF-α). In set 2, the 32 mice were also divided into four groups similar to that of set 1. The mice were sacrificed 6 h after LPS/D-Gal injection and plasma samples and liver were collected. In set 3, 80 mice (divided into four groups, n = 20) were used for survival observation. The survival rate, plasma aminotransferases, histopathological damage were measured and compared between these four groups. RESULTS AdipoRon suppressed the elevation of plasma aminotransferases (from 2106.3 ± 781.9 to 286.8 ± 133.1 U/L for alanine aminotransferase, P < 0.01; from 566.5 ± 243.4 to 180.1 ± 153.3 U/L for aspartate aminotransferase, P < 0.01), attenuated histopathological damage and improved the survival rate (from 10% to 60%) in mice with LPS/D-Gal-induced acute hepatitis. Additionally, AdipoRon down-regulated the production of TNF-α (from 328.6 ± 121.2 to 213.4 ± 52.2 pg/mL, P < 0.01), inhibited the activation of caspase-3 (from 2.04-fold to 1.34-fold of the control), caspase-8 (from 2.03-fold to 1.31-fold of the control), and caspase-9 (from 2.14-fold to 1.43-fold of the control), and decreased the level of cleaved caspase-3 (0.28-fold to that of the LPS/D-Gal group). The number of terminal deoxynucleotidyl transferase-mediated nucleotide nick-end labeling-positive apoptotic hepatocytes in LPS/D-Gal-exposed mice also reduced. CONCLUSIONS These data indicated that LPS/D-Gal-induced acute hepatitis was effectively attenuated by the adiponectin receptor agonist AdipoRon, implying that AdipoRon might become a new reagent for treatment of acute hepatitis.
Collapse
|
14
|
Wang Z, Wu Y, Zhang S, Zhao Y, Yin X, Wang W, Ma X, Liu H. The role of NO-cGMP pathway inhibition in vascular endothelial-dependent smooth muscle relaxation disorder of AT1-AA positive rats: protective effects of adiponectin. Nitric Oxide 2019; 87:10-22. [PMID: 30831264 DOI: 10.1016/j.niox.2019.02.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/16/2019] [Accepted: 02/19/2019] [Indexed: 12/24/2022]
Abstract
Angiotensin II type 1 receptor autoantibodies (AT1-AA) cause endothelial-dependent smooth muscle relaxation disorder. It is well understood that impairment of the NO-cGMP signaling pathway is one of the mechanisms of endothelial-dependent smooth muscle relaxation disorder. However, it is still unclear whether AT1-AA induces endothelial-dependent smooth muscle relaxation disorder via the impairment of the NO-cGMP signaling pathway. In addition, adiponectin exerts vascular endothelial protection through the NO-cGMP signaling pathway. Therefore, the purpose of this investigation was to assess the mechanism of vascular endothelial-dependent smooth muscle relaxation disorder induced by AT1-AA and the role of adiponectin in attenuating this dysregulation. Serum endothelin-1 (ET-1), adiponectin and AT1-AA were detected by enzyme-linked immunosorbent assay. In preeclamptic patients, there was an increased level of AT1-AA, which was positively correlated with ET-1 and negatively correlated with adiponectin, as elevated levels of ET-1 suggested endothelial injury. AT1-AA-positive animal models were actively immunized with the second extracellular loop of the angiotensin II type 1 receptor (AT1R-ECII) for eight weeks. In thoracic aortas of AT1-AA positive rats, ET-1 was elevated, endothelium-dependent vasodilation was decreased. Paradoxically, as the upstream element of the NO-cGMP signaling pathway, NO production was not decreased but increased, and the ratio of p-VASP/VASP, an established biochemical endpoint of NO-cGMP signaling pathway, was reduced. Moreover, the levels of nitrotyrosine and gp91phox which indicate the presence of peroxynitrite (ONOO-) and superoxide anion (O2·-) were increased. Pretreatment with the ONOO- scavenger FeTMPyP or O2·-scavenger Tempol normalized vasorelaxation. Key enzymes responsible for NO synthesis were also assessed. iNOS protein expression was increased, but p-eNOS(Ser1177)/eNOS was reduced. Preincubation with the iNOS inhibitor 1400 W or eNOS agonist nebivolol restored vasorelaxation. Further experiments showed levels of p-AMPKα (Thr172)/AMPKα, which controls iNOS expression and eNOS activity, to have been reduced. Furthermore, levels of the upstream component of AMPK, adiponectin, was reduced in sera of AT1-AA positive rats and supplementation of adiponectin significantly decreased ET-1 contents, improved endothelial-dependent vasodilation, reduced NO production, elevated p-VASP/VASP, inhibited protein expression of nitrotyrosine and gp91phox, reduced iNOS overexpression, and increased eNOS phosphorylation at Ser1177 in the thoracic aorta of AT1-AA positive rats. These results established that impairment NO-cGMP pathway may aggravate the endothelial-dependent smooth muscle relaxation disorder in AT1-AA positive rats and adiponectin improved endothelial-dependent smooth muscle relaxation disorder by enhancing NO-cGMP pathway. This discovery may shed a novel light on clinical treatment of vascular diseases associated with AT1-AA.
Collapse
Affiliation(s)
- Zhiyuan Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Capital Medical University, Beijing, 100069, China
| | - Ye Wu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Capital Medical University, Beijing, 100069, China
| | - Suli Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Capital Medical University, Beijing, 100069, China
| | - Yuhui Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Capital Medical University, Beijing, 100069, China
| | - Xiaochen Yin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Capital Medical University, Beijing, 100069, China
| | - Wen Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Capital Medical University, Beijing, 100069, China
| | - Xinliang Ma
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Capital Medical University, Beijing, 100069, China; Department of Emergency Medicine, Thomas Jefferson University, Philadephia, Pennsylvania, USA.
| | - Huirong Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
15
|
Oikonomou EK, Antoniades C. Immunometabolic Regulation of Vascular Redox State: The Role of Adipose Tissue. Antioxid Redox Signal 2018; 29:313-336. [PMID: 28657335 DOI: 10.1089/ars.2017.7017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE Vascular oxidative stress plays a crucial role in atherogenesis and cardiovascular disease (CVD). Recent evidence suggests that vascular redox state is under the control of complex pathophysiological mechanisms, ranging from inflammation to obesity and insulin resistance (IR). Recent Advances: Adipose tissue (AT) is now recognized as a dynamic endocrine and paracrine organ that secretes several bioactive molecules, called adipokines. AT has recently been shown to regulate vascular redox state in both an endocrine and a paracrine manner through the secretion of adipokines, therefore providing a mechanistic link for the association between obesity, IR, inflammation, and vascular disease. Importantly, AT behaves as a sensor of cardiovascular oxidative stress, modifying its secretory profile in response to cardiovascular oxidative injury. CRITICAL ISSUES The present article presents an up-to-date review of the association between AT and vascular oxidative stress. We focus on the effects of individual adipokines on modulating reactive oxygen species production and scavenging in the vascular wall. In addition, we highlight how inflammation, obesity, and IR alter the biology and secretome of AT leading to a more pro-oxidant phenotype with a particular focus on the local regulatory mechanisms of perivascular AT driven by vascular oxidation. FUTURE DIRECTIONS The complex and dynamic biology of AT, as well as its importance in the regulation of vascular redox state, provides numerous opportunities for the development of novel, targeted treatments in the management of CVD. Therapeutic modulation of AT biology could improve vascular redox state affecting vascular disease pathogenesis. Antioxid. Redox Signal. 29, 313-336.
Collapse
Affiliation(s)
- Evangelos K Oikonomou
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford , Oxford, United Kingdom
| | - Charalambos Antoniades
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford , Oxford, United Kingdom
| |
Collapse
|
16
|
Hu Q, Zhang T, Yi L, Zhou X, Mi M. Dihydromyricetin inhibits NLRP3 inflammasome-dependent pyroptosis by activating the Nrf2 signaling pathway in vascular endothelial cells. Biofactors 2018; 44:123-136. [PMID: 29193391 DOI: 10.1002/biof.1395] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/02/2017] [Accepted: 10/19/2017] [Indexed: 01/20/2023]
Abstract
Increasing evidence demonstrates that pyroptosis, pro-inflammatory programmed cell death, is linked to atherosclerosis; however, the underlying mechanisms remain to be elucidated. Dihydromyricetin (DHM), a natural flavonoid, was reported to exert anti-oxidative and anti-inflammatory bioactivities. However, the effect of DHM on atherosclerosis-related pyroptosis has not been studied. In the present study, palmitic acid (PA) treatment led to pyroptosis in human umbilical vein endothelial cells (HUVECs), as evidenced by caspase-1 activation, LDH release, and propidium iodide-positive staining; enhanced the maturation and release of proinflammatory cytokine IL-1β and activation of the NLRP3 inflammasome; and markedly increased intracellular reactive oxygen species (ROS) and mitochondrial ROS (mtROS) levels. Moreover, NLRP3 siRNA transfection or treatment with inhibitors efficiently suppressed PA-induced pyroptosis, and pretreatment with total ROS scavenger or mtROS scavenger attenuated PA-induced NLRP3 inflammasome activation and subsequent pyroptosis. However, DHM pretreatment inhibited PA-induced pyroptotic cell death by increasing cell viability, decreasing LDH and IL-1β release, improving cell membrane integrity, and abolishing caspase-1 cleavage and subsequent IL-1β maturation. We also found that DHM pre-treatment remarkably reduced the levels of intracellular ROS and mtROS and activated the Nrf2 signaling pathway. Moreover, knockdown of Nrf2 by siRNA abrogated the inhibitory effects of DHM on ROS generation and subsequent PA-induced pyroptosis. Together, these results indicate that the Nrf2 signaling pathway plays a role, as least in part, in the DHM-mediated improvement in PA-induced pyroptosis in vascular endothelial cells, which implies the underlying medicinal value of DHM targeting immune/inflammatory-related diseases, such as atherosclerosis. © 2017 BioFactors, 44(2):123-136, 2018.
Collapse
Affiliation(s)
- Qin Hu
- Chongqing Key Laboratory of Nutrition and Food Safety, Research Center of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, 400038, People's Republic of China
| | - Ting Zhang
- Chongqing Key Laboratory of Nutrition and Food Safety, Research Center of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, 400038, People's Republic of China
| | - Long Yi
- Chongqing Key Laboratory of Nutrition and Food Safety, Research Center of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, 400038, People's Republic of China
| | - Xi Zhou
- Chongqing Key Laboratory of Nutrition and Food Safety, Research Center of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, 400038, People's Republic of China
| | - Mantian Mi
- Chongqing Key Laboratory of Nutrition and Food Safety, Research Center of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, 400038, People's Republic of China
| |
Collapse
|
17
|
Song J, Choi SM, Whitcomb DJ, Kim BC. Adiponectin controls the apoptosis and the expression of tight junction proteins in brain endothelial cells through AdipoR1 under beta amyloid toxicity. Cell Death Dis 2017; 8:e3102. [PMID: 29022894 PMCID: PMC5682657 DOI: 10.1038/cddis.2017.491] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 06/20/2017] [Accepted: 07/11/2017] [Indexed: 12/12/2022]
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disease, characterized by excessive beta amyloid (Aβ) deposition in brain, leading to blood–brain barrier (BBB) disruption. The mechanisms of BBB disruption in AD are still unclear, despite considerable research. The adipokine adiponectin is known to regulate various metabolic functions and reduce inflammation. Though adiponectin receptors have been reported in the brain, its role in the central nervous system has not been fully characterized. In the present study, we investigate whether adiponectin contributes to the tight junction integrity and cell death of brain endothelial cells under Aβ-induced toxicity conditions. We measured the expression of adiponectin receptors (AdipoR1 and AdipoR2) and the alteration of tight junction proteins in in vivo 5xFAD mouse brain. Moreover, we examined the production of reactive oxygen species (ROS) and the loss of tight junction proteins such as Claudin 5, ZO-1, and inflammatory signaling in in vitro brain endothelial cells (bEnd.3 cells) under Aβ toxicity. Our results showed that Acrp30 (a globular form of adiponectin) reduces the expression of proinflammatory cytokines and the expression of RAGE as Aβ transporters into brain. Moreover, we found that Acrp 30 attenuated the apoptosis and the tight junction disruption through AdipoR1-mediated NF-κB pathway in Aβ-exposed bEnd.3 cells. Thus, we suggest that adiponectin is an attractive therapeutic target for treating BBB breakdown in AD brain.
Collapse
Affiliation(s)
- Juhyun Song
- Department of Biomedical Sciences, Center for Creative Biomedical Scientists at Chonnam National University, Gwangju 61469, South Korea.,Department of Anatomy, Chonnam National University Medical School, Gwangju 61469, South Korea
| | - Seong-Min Choi
- Department of Neurology, Chonnam National University Medical School, Gwangju 61469, South Korea
| | - Daniel J Whitcomb
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, Faculty of Healthy Sciences, University of Bristol, Whitson Street, Bristol BS1 3NY, UK
| | - Byeong C Kim
- Department of Neurology, Chonnam National University Medical School, Gwangju 61469, South Korea
| |
Collapse
|
18
|
Li S, Li H, Yang D, Yu X, Irwin DM, Niu G, Tan H. Excessive Autophagy Activation and Increased Apoptosis Are Associated with Palmitic Acid-Induced Cardiomyocyte Insulin Resistance. J Diabetes Res 2017; 2017:2376893. [PMID: 29318158 PMCID: PMC5727752 DOI: 10.1155/2017/2376893] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/26/2017] [Accepted: 09/12/2017] [Indexed: 12/13/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) remains the major cause of death associated with diabetes. Researchers have demonstrated the importance of impaired cardiac insulin signaling in this process. Insulin resistance (IR) is an important predictor of DCM. Previous studies examining the dynamic changes in autophagy during IR have yielded inconsistent results. This study aimed to investigate the dynamic changes in autophagy and apoptosis in the rat H9c2 cardiomyocyte IR model. H9c2 cells were treated with 500 μM palmitic acid (PA) for 24 hours, resulting in the induction of IR. To examine autophagy, monodansylcadaverine staining, GFP-LC3 puncta confocal observation, and Western blot analysis of LC3I-to-LC3II conversion were used. Results of these studies showed that autophagic acid vesicles increased in numbers during the first 24 hours and then decreased by 36 hours after PA treatment. Western blot analysis showed that treatment of H9c2 cells with 500 μM PA for 24 hours decreased the expression of Atg12-Atg5, Atg16L1, Atg3, and PI3Kp85. Annexin V/PI flow cytometry revealed that PA exposure for 24 hours increased the rate of apoptosis. Together, this study demonstrates that PA induces IR in H9c2 cells and that this process is accompanied by excessive activation of autophagy and increases in apoptosis.
Collapse
Affiliation(s)
- Shanxin Li
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, China
| | - Hui Li
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, China
| | - Di Yang
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, China
| | - Xiuyan Yu
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, China
| | - David M. Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada M5S 1A8
| | - Gang Niu
- Beijing N&N Genetech Company, Beijing 100082, China
| | - Huanran Tan
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, China
| |
Collapse
|
19
|
Liu W, Chu G, Chang N, Ma X, Jiang M, Bai G. Phillygenin attenuates inflammatory responses and influences glucose metabolic parameters by inhibiting Akt activity. RSC Adv 2017. [DOI: 10.1039/c7ra06302d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Phillygenin targets an allosteric inhibit pocket on Akt; alleviates inflammatory-associated downstream signal transduction factors and influences glucose metabolic parameters.
Collapse
Affiliation(s)
- Wenjuan Liu
- Tianjin University of Traditional Chinese Medicine
- Tianjin
- People's Republic of China
| | - Guangcui Chu
- Tianjin University of Traditional Chinese Medicine
- Tianjin
- People's Republic of China
| | - Nianwei Chang
- Tianjin University of Traditional Chinese Medicine
- Tianjin
- People's Republic of China
| | - Xiaoyao Ma
- State Key Laboratory of Medicinal Chemical Biology
- College of Pharmacy
- Tianjin Key Laboratory of Molecular Drug Research
- Nankai University
- Tianjin 300353
| | - Min Jiang
- State Key Laboratory of Medicinal Chemical Biology
- College of Pharmacy
- Tianjin Key Laboratory of Molecular Drug Research
- Nankai University
- Tianjin 300353
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology
- College of Pharmacy
- Tianjin Key Laboratory of Molecular Drug Research
- Nankai University
- Tianjin 300353
| |
Collapse
|