1
|
Zhang X, Xu X, Chen J, Wang G, Li Q, Li M, Lu J. Identification of HHT-9041P1: A novel potent and selective JAK1 inhibitor in a rat model of rheumatoid arthritis. Int Immunopharmacol 2023; 125:111086. [PMID: 37883818 DOI: 10.1016/j.intimp.2023.111086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/12/2023] [Accepted: 10/15/2023] [Indexed: 10/28/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic systemic disease associated with long-term disability and premature mortality. If left untreated, it can seriously affect patients' quality of life. The JAK-STAT signal transduction process is known to affect the occurrence and development of RA, and small molecule JAK inhibitors, such as tofacitinib, have been identified as treatments for RA. However, tofacitinib is a non-selective JAK inhibitor that was found to be associated with dose-limiting tolerability and safety issues, such as anemia in phase 2 dose-ranging studies. Therefore, we developed a selective JAK1 inhibitor, HHT-9041P1, to overcome target-related adverse reactions. We used enzyme and cytokine potency assays in vitro as well as the collagen-induced arthritis (CIA) model in vivo to explore the efficacy and mechanism. In vitro, HHT-9041P1 was diluted (0.017 nM-1 mM) in DMSO) and mixed with JAK1, JAK2, JAK3 or TYK2 kinases for use in the respective assays for inhibitory activity and selectivity evaluation. Fresh human PBMCs were activated and incubated with 100 ng/mL cytokine IL-6 or 20 ng/mL GM-CSF for use in the investigation of the immune mechanism. In vivo, HHT-9041P1 (1 mg/kg, 3 mg/kg and 10 mg/kg) was administered by oral gavage twice daily to CIA model Lewis rats from Day 8 to Day 29 for paw swelling and arthritis score evaluation. At the end of the experiment, the rats were sacrificed before collection of the hind ankle joint, spleen and blood for analysis of inflammation, arthritis phenotypes, inflammatory cytokine expression and Th1 cell proportions. As expected, HHT-9041P1 showed 10-fold greater selectivity for JAK1 over JAK2, and 23-fold greater selectivity over JAK3 in cellular assays. The high selectivity of HHT-9041P1 was also validated by in vivo safety studies. HHT-9041P1 demonstrated significant efficacy in a rat model of collagen-induced arthritis (CIA) and was associated with reduced helper T Cell 1 (Th1) cell differentiation. HHT-9041P1 also exhibited excellent pharmacokinetics properties. Thus, HHT-9041P1 was identified as a candidate for clinical development with many options for the treatment of RA.
Collapse
Affiliation(s)
- Xiaojuan Zhang
- Department of Pharmacoanalysis, School of Pharmacy, Fudan University, Shanghai, China; Member of Zhejiang Huahai Pharmaceutical, Shanghai, China
| | - Xin Xu
- Member of Zhejiang Huahai Pharmaceutical, Shanghai, China
| | - Jia Chen
- Member of Zhejiang Huahai Pharmaceutical, Shanghai, China
| | - Guan Wang
- Member of Zhejiang Huahai Pharmaceutical, Shanghai, China
| | - Qiang Li
- Member of Zhejiang Huahai Pharmaceutical, Shanghai, China
| | - Min Li
- Member of Zhejiang Huahai Pharmaceutical, Shanghai, China.
| | - Jianzhong Lu
- Department of Pharmacoanalysis, School of Pharmacy, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Yang V, Kragstrup TW, McMaster C, Reid P, Singh N, Haysen SR, Robinson PC, Liew DFL. Managing Cardiovascular and Cancer Risk Associated with JAK Inhibitors. Drug Saf 2023; 46:1049-1071. [PMID: 37490213 PMCID: PMC10632271 DOI: 10.1007/s40264-023-01333-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2023] [Indexed: 07/26/2023]
Abstract
Janus kinase inhibitors (JAKi) have enormous appeal as immune-modulating therapies across many chronic inflammatory diseases, but recently this promise has been overshadowed by questions regarding associated cardiovascular and cancer risk emerging from the ORAL Surveillance phase 3b/4 post-marketing requirement randomized controlled trial. In that study of patients with rheumatoid arthritis with existing cardiovascular risk, tofacitinib, the first JAKi registered for chronic inflammatory disease, failed to meet non-inferiority thresholds when compared with tumor necrosis factor inhibitors for both incident major adverse cardiovascular events and incident cancer. While this result was unexpected by many, subsequently published observational data have also supported this finding. Notably, however, such a risk has largely not yet been demonstrated in patients outside the specific clinical situation examined in the trial, even in the face of many studies examining this. Nevertheless, this signal has practically re-aligned approaches to both tofacitinib and other JAKi to varying extents, in other patient populations and contexts: within rheumatoid arthritis, but also in psoriatic arthritis, axial spondyloarthritis, inflammatory bowel disease, atopic dermatitis, and beyond. Application to individual patients can be more challenging but remains important to harness the substantive potential of JAKi to the maximum extent safely possible. This review not only explores the evolution of the regulatory response to the signal, its informing data, biological plausibility, and its impact on guidelines, but also the many factors that clinicians must consider in navigating cardiovascular and cancer risk for their patients considering JAKi as immune-modulating therapy.
Collapse
Affiliation(s)
- Victor Yang
- Department of Rheumatology, Level 1, North Wing, Heidelberg Repatriation Hospital, Austin Health, 300 Waterdale Road, PO Box 5444, Heidelberg West, VIC, 3081, Australia
| | - Tue W Kragstrup
- Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Sector for Rheumatology, Diagnostic Center, Silkeborg Regional Hospital, Silkeborg, Denmark
| | - Christopher McMaster
- Department of Rheumatology, Level 1, North Wing, Heidelberg Repatriation Hospital, Austin Health, 300 Waterdale Road, PO Box 5444, Heidelberg West, VIC, 3081, Australia
- Department of Clinical Pharmacology and Therapeutics, Austin Health, Melbourne, VIC, Australia
- Centre for Digital Transformation of Health, University of Melbourne, Melbourne, VIC, Australia
| | - Pankti Reid
- Division of Rheumatology and Committee on Clinical Pharmacology and Pharmacogenomics, Department of Medicine, University of Chicago Biological Sciences Division, Chicago, IL, USA
| | - Namrata Singh
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Stine R Haysen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Philip C Robinson
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
- Royal Brisbane and Women's Hospital, Metro North Hospital and Health Service, Herston, QLD, Australia
| | - David F L Liew
- Department of Rheumatology, Level 1, North Wing, Heidelberg Repatriation Hospital, Austin Health, 300 Waterdale Road, PO Box 5444, Heidelberg West, VIC, 3081, Australia.
- Department of Clinical Pharmacology and Therapeutics, Austin Health, Melbourne, VIC, Australia.
- Department of Medicine, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
3
|
Smedley W, Patra A. JAK3 Inhibition Regulates Stemness and Thereby Controls Glioblastoma Pathogenesis. Cells 2023; 12:2547. [PMID: 37947625 PMCID: PMC10649349 DOI: 10.3390/cells12212547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most deadly brain tumor, effective treatment options for which still remain elusive. The current treatment procedure of maximal resection followed by chemotherapy has proved to be grossly insufficient to prevent disease progression and death. Despite best efforts, the maximum survival post-diagnosis is a mere 1.5 years. Therefore, there is a huge unmet clinical need to find effective therapeutic procedures to prevent the pathogenesis and relapse of GBM. Small-molecule inhibitors of signaling pathways are an attractive option to prevent various types of tumors. However, no effective small-molecule inhibitors have been successful against GBM in clinical trials. Various signaling pathways are altered and an array of signaling molecules, transcription factors (TFs), and epigenetic modifying factors have been implicated in the pathogenesis of GBM. JAK-STAT pathway alteration is an important contributor to GBM pathogenesis and relapse. Many small-molecule inhibitors of JAKs, or STAT TFs, especially JAK2 and STAT3, have been assessed for their anti-tumor activity in GBM. However, no definitive success so far has been achieved. Herein, by using two small-molecule inhibitors of JAK3, we show that they are quite effective in inhibiting GBM cell proliferation and neurosphere formation, downregulating their stemness character, and inducing differentiation into neuronal origin cells. The effect of a single treatment with the drugs, both in a serum-containing differentiation medium and in a proliferation medium containing EGF and FGF, was really strong in limiting GBM cell growth, suggesting a potential therapeutic application for these JAK inhibitors in GBM therapy.
Collapse
Affiliation(s)
- William Smedley
- Peninsula Medical School, University of Plymouth, Plymouth PL6 8BU, UK;
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AX, UK
| | - Amiya Patra
- Peninsula Medical School, University of Plymouth, Plymouth PL6 8BU, UK;
| |
Collapse
|
4
|
Chetverina D, Vorobyeva NE, Gyorffy B, Shtil AA, Erokhin M. Analyses of Genes Critical to Tumor Survival Reveal Potential 'Supertargets': Focus on Transcription. Cancers (Basel) 2023; 15:cancers15113042. [PMID: 37297004 DOI: 10.3390/cancers15113042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
The identification of mechanisms that underlie the biology of individual tumors is aimed at the development of personalized treatment strategies. Herein, we performed a comprehensive search of genes (termed Supertargets) vital for tumors of particular tissue origin. In so doing, we used the DepMap database portal that encompasses a broad panel of cell lines with individual genes knocked out by CRISPR/Cas9 technology. For each of the 27 tumor types, we revealed the top five genes whose deletion was lethal in the particular case, indicating both known and unknown Supertargets. Most importantly, the majority of Supertargets (41%) were represented by DNA-binding transcription factors. RNAseq data analysis demonstrated that a subset of Supertargets was deregulated in clinical tumor samples but not in the respective non-malignant tissues. These results point to transcriptional mechanisms as key regulators of cell survival in specific tumors. Targeted inactivation of these factors emerges as a straightforward approach to optimize therapeutic regimens.
Collapse
Affiliation(s)
- Darya Chetverina
- Group of Epigenetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Nadezhda E Vorobyeva
- Group of Dynamics of Transcriptional Complexes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Balazs Gyorffy
- Departments of Bioinformatics and Pediatrics, Semmelweis University, H-1094 Budapest, Hungary
- Cancer Biomarker Research Group, Research Centre for Natural Sciences, Institute of Enzymology, H-1117 Budapest, Hungary
| | - Alexander A Shtil
- Blokhin National Medical Research Center of Oncology, 24 Kashirskoye Shosse, Moscow 115522, Russia
| | - Maksim Erokhin
- Group of Chromatin Biology, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| |
Collapse
|
5
|
Andreescu M. Risk of Infections Secondary to the Use of Targeted Therapies in Hematological Malignancies. Life (Basel) 2023; 13:1272. [PMID: 37374055 DOI: 10.3390/life13061272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/24/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
Concurrent infections in hematological malignancies (HM) are major contributors to adverse clinical outcomes, including prolonged hospitalization and reduced life expectancy. Individuals diagnosed with HM are particularly susceptible to infectious pathogens due to immunosuppression, which can either be inherent to the hematological disorder or induced by specific therapeutic strategies. Over the years, the treatment paradigm for HM has witnessed a tremendous shift, from broad-spectrum treatment approaches to more specific targeted therapies. At present, the therapeutic landscape of HM is constantly evolving due to the advent of novel targeted therapies and the enhanced utilization of these agents for treatment purposes. By initiating unique molecular pathways, these agents hinder the proliferation of malignant cells, consequently affecting innate and adaptive immunity, which increases the risk of infectious complications. Due to the complexity of novel targeted therapies and their associated risks of infection, it often becomes a daunting task for physicians to maintain updated knowledge in their clinical practice. The situation is further aggravated by the fact that most of the initial clinical trials on targeted therapies provide inadequate information to determine the associated risk of infection. In such a scenario, a cumulative body of evidence is paramount in guiding clinicians regarding the infectious complications that can arise following targeted therapies. In this review, I summarize the recent knowledge on infectious complications arising in the context of targeted therapies for HM.
Collapse
Affiliation(s)
- Mihaela Andreescu
- Department of Clinical Sciences, Hematology, Faculty of Medicine, Titu Maiorescu University of Bucharest, 040051 Bucharest, Romania
- Department of Hematology, Colentina Clinical Hospital, 020125 Bucharest, Romania
| |
Collapse
|
6
|
Sanachai K, Mahalapbutr P, Tabtimmai L, Seetaha S, Kaekratoke N, Chamni S, Azam SS, Choowongkomon K, Rungrotmongkol T. In Silico and In Vitro Study of Janus Kinases Inhibitors from Naphthoquinones. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020597. [PMID: 36677654 PMCID: PMC9866339 DOI: 10.3390/molecules28020597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023]
Abstract
Janus kinases (JAKs) are involved in numerous cellular signaling processes related to immune cell functions. JAK2 and JAK3 are associated with the pathogenesis of leukemia and common lymphoid-derived illnesses. JAK2/3 inhibitors could reduce the risk of various diseases by targeting this pathway. Herein, the naphthoquinones were experimentally and theoretically investigated to identify novel JAK2/3 inhibitors. Napabucasin and 2'-methyl napabucasin exhibited potent cell growth inhibition in TF1 (IC50 = 9.57 and 18.10 μM) and HEL (IC50 = 3.31 and 6.65 μM) erythroleukemia cell lines, and they significantly inhibited JAK2/3 kinase activity (in a nanomolar range) better than the known JAK inhibitor, tofacitinib. Flow cytometric analysis revealed that these two compounds induced apoptosis in TF1 cells in a time and dose-dependent manner. From the molecular dynamics study, both compounds formed hydrogen bonds with Y931 and L932 residues and hydrophobically contacted with the conserved hinge region, G loop, and catalytic loop of the JAK2. Our obtained results suggested that napabucasin and its methylated analog were potential candidates for further development of novel anticancer drug targeting JAKs.
Collapse
Affiliation(s)
- Kamonpan Sanachai
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Panupong Mahalapbutr
- Department of Biochemistry, Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Lueacha Tabtimmai
- Department of Biotechnology, Faculty of Applied Science, King Mongkut’s University of Technology of North Bangkok, Bangkok 10800, Thailand
| | - Supaphorn Seetaha
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Nantawat Kaekratoke
- Department of Materials Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Supakarn Chamni
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Natural products and Nanoparticles Research Unit (NP2), Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Syed Sikander Azam
- Computational Biology Lab, National Center for Bioinformatics, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Correspondence: (K.C.); (T.R.); Tel.: +66-2-218-5426 (T.R.)
| | - Thanyada Rungrotmongkol
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: (K.C.); (T.R.); Tel.: +66-2-218-5426 (T.R.)
| |
Collapse
|
7
|
Identification of phenocopies improves prediction of targeted therapy response over DNA mutations alone. NPJ Genom Med 2022; 7:58. [PMID: 36253482 PMCID: PMC9576758 DOI: 10.1038/s41525-022-00328-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/29/2022] [Indexed: 11/09/2022] Open
Abstract
DNA mutations in specific genes can confer preferential benefit from drugs targeting those genes. However, other molecular perturbations can “phenocopy” pathogenic mutations, but would not be identified using standard clinical sequencing, leading to missed opportunities for other patients to benefit from targeted treatments. We hypothesized that RNA phenocopy signatures of key cancer driver gene mutations could improve our ability to predict response to targeted therapies, despite not being directly trained on drug response. To test this, we built gene expression signatures in tissue samples for specific mutations and found that phenocopy signatures broadly increased accuracy of drug response predictions in-vitro compared to DNA mutation alone, and identified additional cancer cell lines that respond well with a positive/negative predictive value on par or better than DNA mutations. We further validated our results across four clinical cohorts. Our results suggest that routine RNA sequencing of tumors to identify phenocopies in addition to standard targeted DNA sequencing would improve our ability to accurately select patients for targeted therapies in the clinic.
Collapse
|
8
|
Downes CEJ, McClure BJ, McDougal DP, Heatley SL, Bruning JB, Thomas D, Yeung DT, White DL. JAK2 Alterations in Acute Lymphoblastic Leukemia: Molecular Insights for Superior Precision Medicine Strategies. Front Cell Dev Biol 2022; 10:942053. [PMID: 35903543 PMCID: PMC9315936 DOI: 10.3389/fcell.2022.942053] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common pediatric cancer, arising from immature lymphocytes that show uncontrolled proliferation and arrested differentiation. Genomic alterations affecting Janus kinase 2 (JAK2) correlate with some of the poorest outcomes within the Philadelphia-like subtype of ALL. Given the success of kinase inhibitors in the treatment of chronic myeloid leukemia, the discovery of activating JAK2 point mutations and JAK2 fusion genes in ALL, was a breakthrough for potential targeted therapies. However, the molecular mechanisms by which these alterations activate JAK2 and promote downstream signaling is poorly understood. Furthermore, as clinical data regarding the limitations of approved JAK inhibitors in myeloproliferative disorders matures, there is a growing awareness of the need for alternative precision medicine approaches for specific JAK2 lesions. This review focuses on the molecular mechanisms behind ALL-associated JAK2 mutations and JAK2 fusion genes, known and potential causes of JAK-inhibitor resistance, and how JAK2 alterations could be targeted using alternative and novel rationally designed therapies to guide precision medicine approaches for these high-risk subtypes of ALL.
Collapse
Affiliation(s)
- Charlotte EJ. Downes
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Barbara J. McClure
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Daniel P. McDougal
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, SA, Australia
- Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, SA, Australia
| | - Susan L. Heatley
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Australian and New Zealand Children’s Oncology Group (ANZCHOG), Clayton, VIC, Australia
| | - John B. Bruning
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, SA, Australia
- Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, SA, Australia
| | - Daniel Thomas
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - David T. Yeung
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Department of Haematology, Royal Adelaide Hospital and SA Pathology, Adelaide, SA, Australia
| | - Deborah L. White
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Australian and New Zealand Children’s Oncology Group (ANZCHOG), Clayton, VIC, Australia
| |
Collapse
|
9
|
Shah K, Kazi JU. Phosphorylation-Dependent Regulation of WNT/Beta-Catenin Signaling. Front Oncol 2022; 12:858782. [PMID: 35359365 PMCID: PMC8964056 DOI: 10.3389/fonc.2022.858782] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/16/2022] [Indexed: 01/11/2023] Open
Abstract
WNT/β-catenin signaling is a highly complex pathway that plays diverse roles in various cellular processes. While WNT ligands usually signal through their dedicated Frizzled receptors, the decision to signal in a β-catenin-dependent or -independent manner rests upon the type of co-receptors used. Canonical WNT signaling is β-catenin-dependent, whereas non-canonical WNT signaling is β-catenin-independent according to the classical definition. This still holds true, albeit with some added complexity, as both the pathways seem to cross-talk with intertwined networks that involve the use of different ligands, receptors, and co-receptors. β-catenin can be directly phosphorylated by various kinases governing its participation in either canonical or non-canonical pathways. Moreover, the co-activators that associate with β-catenin determine the output of the pathway in terms of induction of genes promoting proliferation or differentiation. In this review, we provide an overview of how protein phosphorylation controls WNT/β-catenin signaling, particularly in human cancer.
Collapse
Affiliation(s)
- Kinjal Shah
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Julhash U. Kazi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
- *Correspondence: Julhash U. Kazi,
| |
Collapse
|
10
|
Martínez-Pérez C, Kay C, Meehan J, Gray M, Dixon JM, Turnbull AK. The IL6-like Cytokine Family: Role and Biomarker Potential in Breast Cancer. J Pers Med 2021; 11:1073. [PMID: 34834425 PMCID: PMC8624266 DOI: 10.3390/jpm11111073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 02/07/2023] Open
Abstract
IL6-like cytokines are a family of regulators with a complex, pleiotropic role in both the healthy organism, where they regulate immunity and homeostasis, and in different diseases, including cancer. Here we summarise how these cytokines exert their effect through the shared signal transducer IL6ST (gp130) and we review the extensive evidence on the role that different members of this family play in breast cancer. Additionally, we discuss how the different cytokines, their related receptors and downstream effectors, as well as specific polymorphisms in these molecules, can serve as predictive or prognostic biomarkers with the potential for clinical application in breast cancer. Lastly, we also discuss how our increasing understanding of this complex signalling axis presents promising opportunities for the development or repurposing of therapeutic strategies against cancer and, specifically, breast neoplasms.
Collapse
Affiliation(s)
- Carlos Martínez-Pérez
- Breast Cancer Now Edinburgh Research Team, MRC Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, UK; (C.K.); (J.M.D.); (A.K.T.)
- Translational Oncology Research Group, MRC Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh EH8 9YL, UK; (J.M.); (M.G.)
| | - Charlene Kay
- Breast Cancer Now Edinburgh Research Team, MRC Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, UK; (C.K.); (J.M.D.); (A.K.T.)
- Translational Oncology Research Group, MRC Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh EH8 9YL, UK; (J.M.); (M.G.)
| | - James Meehan
- Translational Oncology Research Group, MRC Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh EH8 9YL, UK; (J.M.); (M.G.)
| | - Mark Gray
- Translational Oncology Research Group, MRC Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh EH8 9YL, UK; (J.M.); (M.G.)
| | - J. Michael Dixon
- Breast Cancer Now Edinburgh Research Team, MRC Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, UK; (C.K.); (J.M.D.); (A.K.T.)
| | - Arran K. Turnbull
- Breast Cancer Now Edinburgh Research Team, MRC Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, UK; (C.K.); (J.M.D.); (A.K.T.)
- Translational Oncology Research Group, MRC Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh EH8 9YL, UK; (J.M.); (M.G.)
| |
Collapse
|
11
|
Downes CEJ, McClure BJ, Bruning JB, Page E, Breen J, Rehn J, Yeung DT, White DL. Acquired JAK2 mutations confer resistance to JAK inhibitors in cell models of acute lymphoblastic leukemia. NPJ Precis Oncol 2021; 5:75. [PMID: 34376782 PMCID: PMC8355279 DOI: 10.1038/s41698-021-00215-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/20/2021] [Indexed: 11/24/2022] Open
Abstract
Ruxolitinib (rux) Phase II clinical trials are underway for the treatment of high-risk JAK2-rearranged (JAK2r) B-cell acute lymphoblastic leukemia (B-ALL). Treatment resistance to targeted inhibitors in other settings is common; elucidating potential mechanisms of rux resistance in JAK2r B-ALL will enable development of therapeutic strategies to overcome or avert resistance. We generated a murine pro-B cell model of ATF7IP-JAK2 with acquired resistance to multiple type-I JAK inhibitors. Resistance was associated with mutations within the JAK2 ATP/rux binding site, including a JAK2 p.G993A mutation. Using in vitro models of JAK2r B-ALL, JAK2 p.G993A conferred resistance to six type-I JAK inhibitors and the type-II JAK inhibitor, CHZ-868. Using computational modeling, we postulate that JAK2 p.G993A enabled JAK2 activation in the presence of drug binding through a unique resistance mechanism that modulates the mobility of the conserved JAK2 activation loop. This study highlights the importance of monitoring mutation emergence and may inform future drug design and the development of therapeutic strategies for this high-risk patient cohort.
Collapse
Affiliation(s)
- Charlotte E J Downes
- Cancer Program, Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Barbara J McClure
- Cancer Program, Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - John B Bruning
- Institute of Photonics and Advanced Sensing, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Elyse Page
- Cancer Program, Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - James Breen
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Computational and Systems Biology Program, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Jacqueline Rehn
- Cancer Program, Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - David T Yeung
- Cancer Program, Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Department of Haematology, Royal Adelaide Hospital and SA Pathology, Adelaide, SA, Australia
| | - Deborah L White
- Cancer Program, Precision Medicine Theme, South Australian Health & Medical Research Institute (SAHMRI), Adelaide, SA, Australia.
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia.
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia.
- Australian Genomics Health Alliance (AGHA), The Murdoch Children's Research Institute, Parkville, VIC, Australia.
- Australian and New Zealand Children's Oncology Group (ANZCHOG), Clayton, VIC, Australia.
| |
Collapse
|
12
|
Dettorre GM, Patel M, Gennari A, Pentheroudakis G, Romano E, Cortellini A, Pinato DJ. The systemic pro-inflammatory response: targeting the dangerous liaison between COVID-19 and cancer. ESMO Open 2021; 6:100123. [PMID: 33932622 PMCID: PMC8026271 DOI: 10.1016/j.esmoop.2021.100123] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 02/06/2023] Open
Abstract
Inflammation is an established driver of severe SARS-CoV-2 infection and a mechanism linked to the increased susceptibility to fatal COVID-19 demonstrated by patients with cancer. As patients with cancer exhibit a higher level of inflammation compared with the general patient population, patients with cancer and COVID-19 may uniquely benefit from strategies targeted at overcoming the unrestrained pro-inflammatory response. Targeted and non-targeted anti-inflammatory therapies may prevent end-organ damage in SARS-CoV-2-infected patients with cancer and decrease mortality. Here, we review the clinical role of selective inhibition of pro-inflammatory interleukins, tyrosine kinase modulation, anti-tumor necrosis factor agents, and other non-targeted approaches including corticosteroids in their roles as disease-modulating agents in patients with COVID-19 and cancer. Investigation of these therapeutics in this highly vulnerable patient group is posited to facilitate the development of tailored therapeutics for this patient population, aiding the transition of systemic inflammation from a prognostic domain to a source of therapeutic targets.
Collapse
Affiliation(s)
- G M Dettorre
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, UK
| | - M Patel
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, UK
| | - A Gennari
- Division of Oncology, Department of Translational Medicine, University of Piemonte Orientale and Maggiore della Carità Hospital, Novara, Italy
| | - G Pentheroudakis
- Department of Medical Oncology, University of Ioannina, Ioannina, Greece; Chief Medical Officer, European Society for Medical Oncology, Lugano, Switzerland
| | - E Romano
- Department of Medical Oncology, Center for Cancer Immunotherapy, Institut Curie, Paris, France
| | - A Cortellini
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, UK; Department of Biotechnology and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
| | - D J Pinato
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, UK; Division of Oncology, Department of Translational Medicine, University of Piemonte Orientale and Maggiore della Carità Hospital, Novara, Italy.
| |
Collapse
|
13
|
Untwining Anti-Tumor and Immunosuppressive Effects of JAK Inhibitors-A Strategy for Hematological Malignancies? Cancers (Basel) 2021; 13:cancers13112611. [PMID: 34073410 PMCID: PMC8197909 DOI: 10.3390/cancers13112611] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/18/2021] [Accepted: 05/22/2021] [Indexed: 01/02/2023] Open
Abstract
Simple Summary The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway is aberrantly activated in many malignancies. Inhibition of this pathway via JAK inhibitors (JAKinibs) is therefore an attractive therapeutic strategy underlined by Ruxolitinib (JAK1/2 inhibitor) being approved for the treatment of myeloproliferative neoplasms. As a consequence of the crucial role of the JAK-STAT pathway in the regulation of immune responses, inhibition of JAKs suppresses the immune system. This review article provides a thorough overview of the current knowledge on JAKinibs’ effects on immune cells in the context of hematological malignancies. We also discuss the potential use of JAKinibs for the treatment of diseases in which lymphocytes are the source of the malignancy. Abstract The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway propagates signals from a variety of cytokines, contributing to cellular responses in health and disease. Gain of function mutations in JAKs or STATs are associated with malignancies, with JAK2V617F being the main driver mutation in myeloproliferative neoplasms (MPN). Therefore, inhibition of this pathway is an attractive therapeutic strategy for different types of cancer. Numerous JAK inhibitors (JAKinibs) have entered clinical trials, including the JAK1/2 inhibitor Ruxolitinib approved for the treatment of MPN. Importantly, loss of function mutations in JAK-STAT members are a cause of immune suppression or deficiencies. MPN patients undergoing Ruxolitinib treatment are more susceptible to infections and secondary malignancies. This highlights the suppressive effects of JAKinibs on immune responses, which renders them successful in the treatment of autoimmune diseases but potentially detrimental for cancer patients. Here, we review the current knowledge on the effects of JAKinibs on immune cells in the context of hematological malignancies. Furthermore, we discuss the potential use of JAKinibs for the treatment of diseases in which lymphocytes are the source of malignancies. In summary, this review underlines the necessity of a robust immune profiling to provide the best benefit for JAKinib-treated patients.
Collapse
|
14
|
Walker KL, Rinella SP, Hess NJ, Turicek DP, Kabakov SA, Zhu F, Bouchlaka MN, Olson SL, Cho MM, Quamine AE, Feils AS, Gavcovich TB, Rui L, Capitini CM. CXCR4 allows T cell acute lymphoblastic leukemia to escape from JAK1/2 and BCL2 inhibition through CNS infiltration. Leuk Lymphoma 2021; 62:1167-1177. [PMID: 33843403 DOI: 10.1080/10428194.2021.1910684] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Targeting the JAK/STAT and BCL2 pathways in patients with relapsed/refractory T cell acute lymphoblastic leukemia (T-ALL) may provide an alternative approach to achieve clinical remissions. Ruxolitinib and venetoclax show a dose-dependent effect on T-ALL individually, but combination treatment reduces survival and proliferation of T-ALL in vitro. Using a xenograft model, the combination treatment fails to improve survival, with death from hind limb paralysis. Despite on-target inhibition by the drugs, histopathology demonstrates increased leukemic infiltration into the central nervous system (CNS) as compared to liver or bone marrow. Liquid chromatography-tandem mass spectroscopy shows that ruxolitinib and venetoclax insufficiently cross into the CNS. The addition of the CXCR4 inhibitor plerixafor with ruxolitinib and venetoclax reduces clinical scores and enhances survival. While combination therapy with ruxolitinib and venetoclax shows promise for treating T-ALL, additional inhibition of the CXCR4-CXCL12 axis may be needed to maximize the possibility of complete remission.
Collapse
Affiliation(s)
- Kirsti L Walker
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Sean P Rinella
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Nicholas J Hess
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - David P Turicek
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Sabrina A Kabakov
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Fen Zhu
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Myriam N Bouchlaka
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Sydney L Olson
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Monica M Cho
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Aicha E Quamine
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Arika S Feils
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Tara B Gavcovich
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Lixin Rui
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Christian M Capitini
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
15
|
Sanachai K, Aiebchun T, Mahalapbutr P, Seetaha S, Tabtimmai L, Maitarad P, Xenikakis I, Geronikaki A, Choowongkomon K, Rungrotmongkol T. Discovery of novel JAK2 and EGFR inhibitors from a series of thiazole-based chalcone derivatives. RSC Med Chem 2021; 12:430-438. [PMID: 34046625 PMCID: PMC8130606 DOI: 10.1039/d0md00436g] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 01/25/2021] [Indexed: 01/12/2023] Open
Abstract
The Janus kinase (JAK) and epidermal growth factor receptor (EGFR) have been considered as potential targets for cancer therapy due to their role in regulating proliferation and survival of cancer cells. In the present study, the aromatic alkyl-amino analogs of thiazole-based chalcone were selected to experimentally and theoretically investigate their inhibitory activity against JAK2 and EGFR proteins as well as their anti-cancer effects on human cancer cell lines expressing JAK2 (TF1 and HEL) and EGFR (A549 and A431). In vitro cytotoxicity screening results demonstrated that the HEL erythroleukemia cell line was susceptible to compounds 11 and 12, whereas the A431 lung cancer cell line was vulnerable to compound 25. However, TF1 and A549 cells were not sensitive to our thiazole derivatives. From kinase inhibition assay results, compound 25 was found to be a dual inhibitor against JAK2 and EGFR, whereas compounds 11 and 12 selectively inhibited the JAK2 protein. According to the molecular docking analysis, compounds 11, 12 and 25 formed hydrogen bonds with the hinge region residues Lys857, Leu932 and Glu930 and hydrophobically came into contact with Leu983 at the catalytic site of JAK2, while compound 25 formed a hydrogen bond with Met769 at the hinge region, Lys721 near a glycine loop, and Asp831 at the activation loop of EGFR. Altogether, these potent thiazole derivatives, following Lipinski's rule of five, could likely be developed as a promising JAK2/EGFR targeted drug(s) for cancer therapy.
Collapse
Affiliation(s)
- Kamonpan Sanachai
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University Bangkok 10330 Thailand +662 2185418 +662 2185426
| | - Thitinan Aiebchun
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University Bangkok 10330 Thailand +662 2185418 +662 2185426
| | - Panupong Mahalapbutr
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University Khon Kaen 40002 Thailand
| | - Supaphorn Seetaha
- Department of Biochemistry, Faculty of Science, Kasetsart University Bangkok 10900 Thailand
| | - Lueacha Tabtimmai
- Department of Biotechnology, Faculty of Applied Science, King Mongkut's University of Technology of North Bangkok Bangkok Thailand
| | - Phornphimon Maitarad
- Research Center of Nano Science and Technology, Shanghai University Shanghai 200444 PR China
| | - Iakovos Xenikakis
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University of Thessaloniki Thessaloniki 54124 Greece
| | - Athina Geronikaki
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University of Thessaloniki Thessaloniki 54124 Greece
| | | | - Thanyada Rungrotmongkol
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University Bangkok 10330 Thailand +662 2185418 +662 2185426
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University Bangkok 10330 Thailand
| |
Collapse
|
16
|
JAK3 Is Expressed in the Nucleus of Malignant T Cells in Cutaneous T Cell Lymphoma (CTCL). Cancers (Basel) 2021; 13:cancers13020280. [PMID: 33466582 PMCID: PMC7828698 DOI: 10.3390/cancers13020280] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/19/2020] [Accepted: 01/11/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary JAK3 plays an important role in the pathogenesis of cutaneous T cell lymphoma. JAK3 belongs to the Janus kinase family of receptor-associated tyrosine kinases located in cytoplasm adjacent to the plasma membrane. In this study, we show that JAK3 can also be ectopically expressed in the nucleus in CTCL cell lines and primary cells from CTCL patients. Importantly, JAK3 interacts with the nuclear protein RNA polymerase II and phosphorylates Histone H3. Thus, our data provide first evidence for nuclear expression of JAK3 and interactions with key nuclear proteins in malignant T cells suggesting a novel non-canonical role in CTCL. Abstract Perturbation in JAK-STAT signaling has been reported in the pathogenesis of cutaneous T cell lymphoma (CTCL). JAK3 is predominantly associated with the intra-cytoplasmic part of IL-2Rγc located in the plasma membrane of hematopoietic cells. Here we demonstrate that JAK3 is also ectopically expressed in the nucleus of malignant T cells. We detected nuclear JAK3 in various CTCL cell lines and primary malignant T cells from patients with Sézary syndrome, a leukemic variant of CTCL. Nuclear localization of JAK3 was independent of its kinase activity whereas STAT3 had a modest effect on nuclear JAK3 expression. Moreover, JAK3 nuclear localization was only weakly affected by blockage of nuclear export. An inhibitor of the nuclear export protein CRM1, Leptomycin B, induced an increased expression of SOCS3 in the nucleus, but only a weak increase in nuclear JAK3. Importantly, immunoprecipitation experiments indicated that JAK3 interacts with the nuclear protein POLR2A, the catalytic subunit of RNA Polymerase II. Kinase assays showed tyrosine phosphorylation of recombinant human Histone H3 by JAK3 in vitro—an effect which was blocked by the JAK inhibitor (Tofacitinib citrate). In conclusion, we provide the first evidence of nuclear localization of JAK3 in malignant T cells. Our findings suggest that JAK3 may have a cytokine-receptor independent function in the nucleus of malignant T cells, and thus a novel non-canonical role in CTCL.
Collapse
|
17
|
Chteinberg E, Wetzels S, Gerritsen W, Temmerman L, van den Oord J, Biessen E, Kurz AK, Winnepenninckx V, Zenke M, Speel EJ, Zur Hausen A. Navitoclax combined with Alpelisib effectively inhibits Merkel cell carcinoma cell growth in vitro. Ther Adv Med Oncol 2020; 12:1758835920975621. [PMID: 33403016 PMCID: PMC7739210 DOI: 10.1177/1758835920975621] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022] Open
Abstract
Background: Merkel cell carcinoma (MCC) is a highly malignant skin cancer. Despite major treatment improvements during the last decade, up to 50% of patients do not respond to therapy or develop recurrent disease. For these patients, alternative treatment options are urgently needed. Here, we assessed the efficacy of the combination of the BCL-2 inhibitor Navitoclax and the PI3K p110α inhibitor Alpelisib in MCC cell lines. Methods: The expression of BCL-2 was assessed by immunohistochemistry in MCC and MCC cell lines. Treatment with Navitoclax and Alpelisib alone and in combination was performed on four MCC cell lines. The decrease of cell viability during treatment was assessed by XTT assay and visualized for the combinations by 3D combinatorial index plotting. The increase of apoptotic cells was determined by cleaved PARP Western blotting and Annexin V staining. Results: Some 94% of MCCs and all three MCPyV-positive cell lines showed BCL-2 expression. Navitoclax monotreatment was shown to be highly effective when treating BCL-2-positive cell lines (IC50-values ranging from 96.0 to 323.0 nM). The combination of Alpelisib and Navitoclax resulted in even stronger synergistic and prolonged inhibitions of MCC cell viability through apoptosis up to 4 days. Discussion: Our results show that the anti-apoptotic BCL-2 is frequently expressed in MCC and MCC cell lines. Inhibition of BCL-2 by Navitoclax in combination with Alpelisib revealed a strong synergy and prolonged inhibition of MCC cell viability and induction of apoptosis. The combination of Navitoclax and Alpelisib is a novel potential treatment option for MCC patients.
Collapse
Affiliation(s)
- Emil Chteinberg
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, Limburg, The Netherlands
| | - Suzan Wetzels
- Experimental Vascular Pathology, Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Limburg, The Netherlands
| | - Wouter Gerritsen
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, Limburg, The Netherlands
| | - Lieve Temmerman
- Experimental Vascular Pathology, Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Limburg, The Netherlands
| | - Joost van den Oord
- Laboratory of Translational Cell and Tissue Research, University of Leuven, Leuven
| | - Erik Biessen
- Experimental Vascular Pathology, Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Limburg, The Netherlands
| | - Anna Kordelia Kurz
- Department of Internal Medicine IV, RWTH Aachen University Hospital, Aachen, Nordrhein-Westfalen, Germany
| | - Véronique Winnepenninckx
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, Limburg, The Netherlands
| | - Martin Zenke
- Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Hospital, Aachen, Nordrhein-Westfalen, Germany
| | - Ernst-Jan Speel
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, Limburg, The Netherlands
| | - Axel Zur Hausen
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre +, P. Debyelaan 25, Maastricht, 6229 HX, The Netherlands
| |
Collapse
|
18
|
Lu K, Wu W, Zhang C, Liu Z, Xiao B, Yuan Z, Li A, Chen D, Zhai X, Jiang Y. Discovery of triazolo [1,5-a] pyridine derivatives as novel JAK1/2 inhibitors. Bioorg Med Chem Lett 2020; 30:127225. [PMID: 32527540 DOI: 10.1016/j.bmcl.2020.127225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 11/25/2022]
Abstract
Small molecule JAK inhibitors have been demonstrated efficacy in rheumatoid arthritis, inflammatory bowel disease, and psoriasis with the approval of several drugs. Aiming to develop potent JAK1/2 inhibitors, two series of triazolo [1,5-a] pyridine derivatives were designed and synthesized by various strategies. The pharmacological results identified the optimized compounds J-4 and J-6, which exerted high potency against JAK1/2, and selectivity over JAK3 in enzyme assays. Furthermore, J-4 and J-6 effectively suppressed proliferation of JAK1/2 high-expression BaF3 cells accompanied with acceptable metabolic stability in liver microsomes. Therefore, J-4 and J-6 might serve as promising JAK1/2 inhibitors for further investigation.
Collapse
Affiliation(s)
- Kuan Lu
- Department of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China; Shenzhen Kivita Innovative Drug Discovery Institute, Shenzhen 518057, PR China
| | - Weibin Wu
- Shenzhen Kivita Innovative Drug Discovery Institute, Shenzhen 518057, PR China; National & Local United Engineering Lab for Personalized Anti-tumor Drugs, The Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China
| | - Cunlong Zhang
- Shenzhen Kivita Innovative Drug Discovery Institute, Shenzhen 518057, PR China; National & Local United Engineering Lab for Personalized Anti-tumor Drugs, The Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China
| | - Zijian Liu
- Shenzhen Kivita Innovative Drug Discovery Institute, Shenzhen 518057, PR China
| | - Boren Xiao
- Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| | - Zigao Yuan
- Shenzhen Kivita Innovative Drug Discovery Institute, Shenzhen 518057, PR China
| | - Anqi Li
- Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| | - Dawei Chen
- Shenzhen Kivita Innovative Drug Discovery Institute, Shenzhen 518057, PR China
| | - Xin Zhai
- Department of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China.
| | - Yuyang Jiang
- Department of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China; Joint Key State Laboratory of Tumor Chemogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
19
|
Harvey RC, Tasian SK. Clinical diagnostics and treatment strategies for Philadelphia chromosome-like acute lymphoblastic leukemia. Blood Adv 2020; 4:218-228. [PMID: 31935290 PMCID: PMC6960477 DOI: 10.1182/bloodadvances.2019000163] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 11/20/2019] [Indexed: 12/13/2022] Open
Abstract
Philadelphia chromosome-like B-cell acute lymphoblastic leukemia (Ph-like ALL) accounts for 15% to 30% of B-cell acute lymphoblastic leukemia in older children, adolescents, and adults and is associated with high rates of conventional treatment failure and relapse. Current clinical trials are assessing the efficacy of the addition of tyrosine kinase inhibitors (TKIs) to chemotherapy for children and adults with Ph-like ALL harboring ABL class translocations or CRLF2 rearrangements and other JAK pathway alterations. However, real-time diagnosis of patients can be quite challenging given the genetic heterogeneity of this disease and the often cytogenetically cryptic nature of Ph-like ALL-associated alterations. In this review, we discuss the complex biologic and clinical features of Ph-like ALL across the age spectrum, available diagnostic testing modalities, and current clinical treatment strategies for these high-risk patients. We further propose a practical and step-wise approach to Ph-like ALL genetic testing to facilitate the identification and allocation of patients to appropriate clinical trials of TKI-based therapies or commercially available drugs. Although the majority of patients with Ph-like ALL can be successfully identified via current clinical assays by the end of induction chemotherapy, increasing diagnostic efficiency and sensitivity and decreasing time to test resulting will facilitate earlier therapeutic intervention and may improve clinical outcomes for these high-risk patients.
Collapse
Affiliation(s)
- Richard C Harvey
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM
| | - Sarah K Tasian
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA; and
- Department of Pediatrics and Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| |
Collapse
|
20
|
Elli EM, Baratè C, Mendicino F, Palandri F, Palumbo GA. Mechanisms Underlying the Anti-inflammatory and Immunosuppressive Activity of Ruxolitinib. Front Oncol 2019; 9:1186. [PMID: 31788449 PMCID: PMC6854013 DOI: 10.3389/fonc.2019.01186] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/21/2019] [Indexed: 12/20/2022] Open
Abstract
The JAK-STAT signaling pathway plays a central role in signal transduction in hematopoietic cells, as well as in cells of the immune system. The occurrence in most patients affected by myeloproliferative neoplasms (MPNs) of driver mutations resulting in the constitutive activation of JAK2-dependent signaling identified the deregulated JAK-STAT signal transduction pathway as the major pathogenic mechanism of MPNs. It also prompted the development of targeted drugs for MPNs. Ruxolitinib is a potent and selective oral inhibitor of both JAK2 and JAK1 protein kinases. Its use in patients with myelofibrosis is associated with a substantial reduction in spleen volume, attenuation of symptoms and decreased mortality. With growing clinical experience, concerns about infectious complications, and increased risk of B-cell lymphoma, presumably caused by the effects of JAK1/2 inhibition on immune response and immunosurveillance, have been raised. Evidence shows that ruxolitinib exerts potent anti-inflammatory and immunosuppressive effects. Cellular targets of ruxolitinib include various components of both the innate and adaptive immune system, such as natural killer cells, dendritic cells, T helper, and regulatory T cells. On the other hand, immunomodulatory properties have proven beneficial in some instances, as highlighted by the successful use of ruxolitinib in corticosteroid-resistant graft vs. host disease. The objective of this article is to provide an overview of published evidence addressing the key question of the mechanisms underlying ruxolitinib-induced immunosuppression.
Collapse
Affiliation(s)
- Elena Maria Elli
- Hematology Division and Bone Marrow Transplant Unit, Ospedale San Gerardo, ASST Monza, Monza, Italy
| | - Claudia Baratè
- Department of Clinical and Experimental Medicine, Section of Hematology, University of Pisa, Pisa, Italy
| | - Francesco Mendicino
- Hematology Unit, Department of Hemato-Oncology, Ospedale Annunziata, Cosenza, Italy
| | - Francesca Palandri
- Institute of Hematology "L. and A. Seràgnoli", Sant'Orsola-Malpighi University Hospital, Bologna, Italy
| | - Giuseppe Alberto Palumbo
- Dipartimento di Scienze Mediche, Chirurgiche e Tecnologie Avanzate "G.F. Ingrassia", University of Catania, Catania, Italy
| |
Collapse
|
21
|
Maurer B, Kollmann S, Pickem J, Hoelbl-Kovacic A, Sexl V. STAT5A and STAT5B-Twins with Different Personalities in Hematopoiesis and Leukemia. Cancers (Basel) 2019; 11:E1726. [PMID: 31690038 PMCID: PMC6895831 DOI: 10.3390/cancers11111726] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/25/2019] [Accepted: 11/01/2019] [Indexed: 12/14/2022] Open
Abstract
The transcription factors STAT5A and STAT5B have essential roles in survival and proliferation of hematopoietic cells-which have been considered largely redundant. Mutations of upstream kinases, copy number gains, or activating mutations in STAT5A, or more frequently in STAT5B, cause altered hematopoiesis and cancer. Interfering with their activity by pharmacological intervention is an up-and-coming therapeutic avenue. Precision medicine requests detailed knowledge of STAT5A's and STAT5B's individual functions. Recent evidence highlights the privileged role for STAT5B over STAT5A in normal and malignant hematopoiesis. Here, we provide an overview on their individual functions within the hematopoietic system.
Collapse
Affiliation(s)
- Barbara Maurer
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, 1210 Vienna, Austria.
| | - Sebastian Kollmann
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Judith Pickem
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Andrea Hoelbl-Kovacic
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Veronika Sexl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, 1210 Vienna, Austria
| |
Collapse
|
22
|
McNally R, Li Q, Li K, Dekker C, Vangrevelinghe E, Jones M, Chène P, Machauer R, Radimerski T, Eck MJ. Discovery and Structural Characterization of ATP-Site Ligands for the Wild-Type and V617F Mutant JAK2 Pseudokinase Domain. ACS Chem Biol 2019; 14:587-593. [PMID: 30763067 DOI: 10.1021/acschembio.8b00722] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The oncogenic V617F mutation lies in the pseudokinase domain of JAK2, marking it as a potential target for development of compounds that might inhibit the pathogenic activity of the mutant protein. We used differential scanning fluorimetry to identify compounds that bind the JAK2 pseudokinase domain. Crystal structures of five candidate compounds with the wild-type domain reveal their modes of binding. Exploration of analogs of screening hit BI-D1870 led to the identification of compound 2, a 123 nM ligand for the pseudokinase domain. Interestingly, crystal structures of the V617F domain in complex with two unrelated compounds reveal a conformation that is characteristic of the wild-type domain, rather than that previously observed for the V617F mutant. These structures suggest that certain ATP-site ligands can modulate the V617F allosteric site, thereby providing a mechanistic rationale for targeting the pseudokinase domain and a structural foundation for development of more potent and pseudokinase-selective compounds.
Collapse
Affiliation(s)
- Randall McNally
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, United States
| | - Qing Li
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, United States
| | - Kunhua Li
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, United States
| | - Carien Dekker
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, 4056 Basel, Switzerland
| | - Eric Vangrevelinghe
- Oncology Research, Novartis Institutes for BioMedical Research, 4056 Basel, Switzerland
| | - Matthew Jones
- Oncology Research, Novartis Institutes for BioMedical Research, 4056 Basel, Switzerland
| | - Patrick Chène
- Oncology Research, Novartis Institutes for BioMedical Research, 4056 Basel, Switzerland
| | - Rainer Machauer
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 4056 Basel, Switzerland
| | - Thomas Radimerski
- Oncology Research, Novartis Institutes for BioMedical Research, 4056 Basel, Switzerland
| | - Michael J. Eck
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, United States
| |
Collapse
|
23
|
Liang X, Zang J, Li X, Tang S, Huang M, Geng M, Chou CJ, Li C, Cao Y, Xu W, Liu H, Zhang Y. Discovery of Novel Janus Kinase (JAK) and Histone Deacetylase (HDAC) Dual Inhibitors for the Treatment of Hematological Malignancies. J Med Chem 2019; 62:3898-3923. [PMID: 30901208 DOI: 10.1021/acs.jmedchem.8b01597] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xuewu Liang
- Department of Medicinal Chemistry, School of Pharmacy, Shandong University, Ji’nan, Shandong 250012, P. R. China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Jie Zang
- Department of Medicinal Chemistry, School of Pharmacy, Shandong University, Ji’nan, Shandong 250012, P. R. China
| | - Xiaoyang Li
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Shuai Tang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Min Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Meiyu Geng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - C. James Chou
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Chunpu Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Yichun Cao
- School of Pharmacy, Fudan University, 826 Zhanghen Road, Shanghai 201203, China
| | - Wenfang Xu
- Department of Medicinal Chemistry, School of Pharmacy, Shandong University, Ji’nan, Shandong 250012, P. R. China
| | - Hong Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Yingjie Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Shandong University, Ji’nan, Shandong 250012, P. R. China
| |
Collapse
|
24
|
Abstract
Small molecules are rapidly broadening the spectrum of systemic oncologic therapies. Targets of those drugs are-among others-tyrosine and serine/threonine kinases like VEGF-R, EGF-R, Bcr-Abl, c‑kit, JAK, CDK as well as BRAF and MEK. Clinical data of potential risks to male fertility are still very limited and are generally only available for older preparations. In addition, they are often multikinase inhibitors, so that even small molecules with the same (main) target are not completely comparable. For fertility protection, sperm cryopreservation should be offered to men seeking fatherhood before starting targeted therapy.
Collapse
|
25
|
Inhibiting Janus Kinase 1 and BCL-2 to treat T cell acute lymphoblastic leukemia with IL7-Rα mutations. Oncotarget 2018; 9:22605-22617. [PMID: 29854301 PMCID: PMC5978251 DOI: 10.18632/oncotarget.25194] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 04/04/2018] [Indexed: 12/14/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common cancer in children. Current chemotherapy is quite toxic in growing children and more directed therapeutics are being sought. The IL-7R pathway is a major driver of ALL and here we evaluate two drugs directed to that pathway using a model of T cell ALL. Mutant gain-of-function IL-7Rα was transduced into an IL-7-dependent murine thymocyte line conferring ligand-independent survival and growth. JAK1 is associated with IL-7Rα and mediates signaling from the mutant receptor. In vitro, treating the transformed cell line with the JAK1/2 inhibitor ruxolitinib inhibited ligand-independent signaling and induced cell death. Transfer of the transformed cell line into mice resulted in aggressive leukemia and untreated mice succumbed in about three weeks. Treatment with ruxolitinib incorporated into chow showed a potent therapeutic benefit with reduction in leukemic burden and extension of survival. BCL-2 is an anti-apoptotic downstream mediator of the IL-7R survival mechanism. Venetoclax, an inhibitor of BCL-2, showed activity against the transformed cell line in vitro and could be combined with ruxolitinib in vivo. These findings support the therapeutic potential of treating T-ALL by targeting the IL-7R pathway.
Collapse
|
26
|
Abstract
The IL-6/JAK/STAT3 pathway is aberrantly hyperactivated in many types of cancer, and such hyperactivation is generally associated with a poor clinical prognosis. In the tumour microenvironment, IL-6/JAK/STAT3 signalling acts to drive the proliferation, survival, invasiveness, and metastasis of tumour cells, while strongly suppressing the antitumour immune response. Thus, treatments that target the IL-6/JAK/STAT3 pathway in patients with cancer are poised to provide therapeutic benefit by directly inhibiting tumour cell growth and by stimulating antitumour immunity. Agents targeting IL-6, the IL-6 receptor, or JAKs have already received FDA approval for the treatment of inflammatory conditions or myeloproliferative neoplasms and for the management of certain adverse effects of chimeric antigen receptor T cells, and are being further evaluated in patients with haematopoietic malignancies and in those with solid tumours. Novel inhibitors of the IL-6/JAK/STAT3 pathway, including STAT3-selective inhibitors, are currently in development. Herein, we review the role of IL-6/JAK/STAT3 signalling in the tumour microenvironment and the status of preclinical and clinical investigations of agents targeting this pathway. We also discuss the potential of combining IL-6/JAK/STAT3 inhibitors with currently approved therapeutic agents directed against immune-checkpoint inhibitors.
Collapse
Affiliation(s)
- Daniel E. Johnson
- Department of Otolaryngology – Head and Neck Surgery, University of California, San Francisco, CA, USA
| | - Rachel A. O’Keefe
- Department of Otolaryngology – Head and Neck Surgery, University of California, San Francisco, CA, USA
| | - Jennifer R. Grandis
- Department of Otolaryngology – Head and Neck Surgery, University of California, San Francisco, CA, USA
| |
Collapse
|
27
|
Fusion of the genes ataxin 2 like, ATXN2L, and Janus kinase 2, JAK2, in cutaneous CD4 positive T-cell lymphoma. Oncotarget 2017; 8:103775-103784. [PMID: 29262599 PMCID: PMC5732765 DOI: 10.18632/oncotarget.21790] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 09/21/2017] [Indexed: 11/29/2022] Open
Abstract
Acquired mutations were recently described in cutaneous T-cell lymphomas for the JAK1, JAK3, STAT3, and STAT5B genes of the JAK-STAT pathway. In the present study, RNA-sequencing of a primary cutaneous CD4 positive T-cell lymphoma carrying a three-way t(9;13;16)(p24;q34;p11) chromosome translocation showed that JAK2 from chromosome band 9p24 was rearranged and fused to a novel partner gene, ATXN2L, from 16p11. RT-PCR together with Sanger sequencing verified the presence of the ATXN2L-JAK2 fusion transcript. The ATXN2L-JAK2 fusion gene would code for a chimeric protein containing all domains of ATXN2L and the catalytic domain of the JAK2 tyrosine kinase. The ATXN2L-JAK2 chimeric protein could lead to constitutive activation of the downstream JAK-STAT signaling pathway in a manner similar to that seen for other JAK2 fusion proteins.
Collapse
|
28
|
Degryse S, de Bock CE, Demeyer S, Govaerts I, Bornschein S, Verbeke D, Jacobs K, Binos S, Skerrett-Byrne DA, Murray HC, Verrills NM, Van Vlierberghe P, Cools J, Dun MD. Mutant JAK3 phosphoproteomic profiling predicts synergism between JAK3 inhibitors and MEK/BCL2 inhibitors for the treatment of T-cell acute lymphoblastic leukemia. Leukemia 2017; 32:788-800. [PMID: 28852199 PMCID: PMC5843905 DOI: 10.1038/leu.2017.276] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/17/2017] [Accepted: 08/15/2017] [Indexed: 02/06/2023]
Abstract
Mutations in the interleukin-7 receptor (IL7R) or the Janus kinase 3 (JAK3) kinase occur frequently in T-cell acute lymphoblastic leukemia (T-ALL) and both are able to drive cellular transformation and the development of T-ALL in mouse models. However, the signal transduction pathways downstream of JAK3 mutations remain poorly characterized. Here we describe the phosphoproteome downstream of the JAK3(L857Q)/(M511I) activating mutations in transformed Ba/F3 lymphocyte cells. Signaling pathways regulated by JAK3 mutants were assessed following acute inhibition of JAK1/JAK3 using the JAK kinase inhibitors ruxolitinib or tofacitinib. Comprehensive network interrogation using the phosphoproteomic signatures identified significant changes in pathways regulating cell cycle, translation initiation, mitogen-activated protein kinase and phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/AKT signaling, RNA metabolism, as well as epigenetic and apoptotic processes. Key regulatory proteins within pathways that showed altered phosphorylation following JAK inhibition were targeted using selumetinib and trametinib (MEK), buparlisib (PI3K) and ABT-199 (BCL2), and found to be synergistic in combination with JAK kinase inhibitors in primary T-ALL samples harboring JAK3 mutations. These data provide the first detailed molecular characterization of the downstream signaling pathways regulated by JAK3 mutations and provide further understanding into the oncogenic processes regulated by constitutive kinase activation aiding in the development of improved combinatorial treatment regimens.
Collapse
Affiliation(s)
- S Degryse
- VIB Center for Cancer Biology, Leuven, Belgium.,KU Leuven Center for Human Genetics, Leuven, Belgium
| | - C E de Bock
- VIB Center for Cancer Biology, Leuven, Belgium.,KU Leuven Center for Human Genetics, Leuven, Belgium
| | - S Demeyer
- VIB Center for Cancer Biology, Leuven, Belgium.,KU Leuven Center for Human Genetics, Leuven, Belgium
| | - I Govaerts
- VIB Center for Cancer Biology, Leuven, Belgium.,KU Leuven Center for Human Genetics, Leuven, Belgium
| | - S Bornschein
- VIB Center for Cancer Biology, Leuven, Belgium.,KU Leuven Center for Human Genetics, Leuven, Belgium
| | - D Verbeke
- VIB Center for Cancer Biology, Leuven, Belgium.,KU Leuven Center for Human Genetics, Leuven, Belgium
| | - K Jacobs
- VIB Center for Cancer Biology, Leuven, Belgium.,KU Leuven Center for Human Genetics, Leuven, Belgium
| | - S Binos
- Thermo Fisher Scientific, Scoresby, Victoria, Australia
| | - D A Skerrett-Byrne
- Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia.,Cancer Research Program, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, New South Wales, Australia
| | - H C Murray
- Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia.,Cancer Research Program, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, New South Wales, Australia
| | - N M Verrills
- Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia.,Cancer Research Program, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, New South Wales, Australia
| | - P Van Vlierberghe
- Department of Pediatrics and Genetics, Center for Medical Genetics, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - J Cools
- VIB Center for Cancer Biology, Leuven, Belgium.,KU Leuven Center for Human Genetics, Leuven, Belgium
| | - M D Dun
- Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia.,Cancer Research Program, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, New South Wales, Australia
| |
Collapse
|