1
|
Eberhardt N, Bergero G, Mazzocco Mariotta YL, Aoki MP. Purinergic modulation of the immune response to infections. Purinergic Signal 2022; 18:93-113. [PMID: 34997903 PMCID: PMC8742569 DOI: 10.1007/s11302-021-09838-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/17/2021] [Indexed: 02/07/2023] Open
Abstract
Infectious diseases are caused by the invasion of pathogenic microorganisms such as fungi, bacteria, viruses, and parasites. After infection, disease progression relies on the complex interplay between the host immune response and the microorganism evasion strategies. The host's survival depends on its ability to mount an efficient protective anti-microbial response to accomplish pathogen clearance while simultaneously preventing tissue injury by keeping under control the excessive inflammatory process. The purinergic system has the dual function of regulating the immune response and triggering effector antimicrobial mechanisms. This review provides an overview of the current knowledge of the modulation of innate and adaptive immunity driven by the purinergic system during parasitic, bacterial and viral infections.
Collapse
Affiliation(s)
- Natalia Eberhardt
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET) - Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Present Address: Department of Medicine, Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, USA
| | - Gastón Bergero
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET) - Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Yanina L. Mazzocco Mariotta
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET) - Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - M. Pilar Aoki
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET) - Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Haya de La Torre and Medina Allende, Ciudad Universitaria, CP 5000 Córdoba, Argentina
| |
Collapse
|
2
|
Paes-Vieira L, Gomes-Vieira AL, Meyer-Fernandes JR. E-NTPDases: Possible Roles on Host-Parasite Interactions and Therapeutic Opportunities. Front Cell Infect Microbiol 2021; 11:769922. [PMID: 34858878 PMCID: PMC8630654 DOI: 10.3389/fcimb.2021.769922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/25/2021] [Indexed: 11/24/2022] Open
Abstract
Belonging to the GDA1/CD39 protein superfamily, nucleoside triphosphate diphosphohydrolases (NTPDases) catalyze the hydrolysis of ATP and ADP to the monophosphate form (AMP) and inorganic phosphate (Pi). Several NTPDase isoforms have been described in different cells, from pathogenic organisms to animals and plants. Biochemical characterization of nucleotidases/NTPDases has revealed the existence of isoforms with different specificities regarding divalent cations (such as calcium and magnesium) and substrates. In mammals, NTPDases have been implicated in the regulation of thrombosis and inflammation. In parasites, such as Trichomonas vaginalis, Trypanosoma spp., Leishmania spp., Schistosoma spp. and Toxoplasma gondii, NTPDases were found on the surface of the cell, and important processes like growth, infectivity, and virulence seem to depend on their activity. For instance, experimental evidence has indicated that parasite NTPDases can regulate the levels of ATP and Adenosine (Ado) of the host cell, leading to the modulation of the host immune response. In this work, we provide a comprehensive review showing the involvement of the nucleotidases/NTPDases in parasites infectivity and virulence, and how inhibition of NTPDases contributes to parasite clearance and the development of new antiparasitic drugs.
Collapse
Affiliation(s)
- Lisvane Paes-Vieira
- Laboratório de Bioquímica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - André Luiz Gomes-Vieira
- Departamento de Bioquímica, Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil
| | - José Roberto Meyer-Fernandes
- Laboratório de Bioquímica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Paes-Vieira L, Rocco-Machado N, Freitas-Mesquita AL, Dos Santos Emiliano YS, Gomes-Vieira AL, de Almeida-Amaral EE, Meyer-Fernandes JR. Differential regulation of E-NTPdases during Leishmania amazonensis lifecycle and effect of their overexpression on parasite infectivity and virulence. Parasitol Int 2021; 85:102423. [PMID: 34298165 DOI: 10.1016/j.parint.2021.102423] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/28/2021] [Accepted: 07/16/2021] [Indexed: 10/20/2022]
Abstract
Infections caused by Leishmania amazonensis are characterized by a persistent parasitemia due to the ability of the parasite to modulate the immune response of macrophages. It has been proposed that ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDases) could be able to suppress the host immune defense by reducing the ATP and ADP levels. The AMP generated from E-NTPDase activity can be subsequently hydrolyzed by ecto-nucleotidases, increasing the levels of adenosine, which can reduce the inflammatory response. In the present work, we provide new information about the role of E-NTPDases on infectivity and virulence of L. amazonensis. Our data demonstrate that not only the E-NTPDase activity is differentially regulated during the parasite development but also the expression of the genes ntpd1 and ntpd2. E-NTPDase activity increases significantly in axenic amastigotes and metacyclic promastigotes, both infective forms in mammalian host. A similar profile was found for mRNA levels of the ntpd1 and ntpd2 genes. Using parasites overexpressing the genes ntpd1 and ntpd2, we could demonstrate that L. amazonensis promastigotes overexpressing ntpd2 gene show a remarkable increase in their ability to interact with macrophages compared to controls. In addition, both ntpd1 and ntpd2-overexpressing parasites were more infective to macrophages than controls. The kinetics of lesion formation by transfected parasites were similar to controls until the second week. However, twenty days post-infection, mice infected with ntpd1 and ntpd2-overexpressing parasites presented significantly reduced lesions compared to controls. Interestingly, parasite load reached similar levels among the different experimental groups. Thus, our data show a non-linear relationship between higher E-NTPDase activity and lesion formation. Previous studies have correlated increased ecto-NTPDase activity with virulence and infectivity of Leishmania parasites. Based in our results, we are suggesting that the induced overexpression of E-NTPDases in L. amazonensis could increase extracellular adenosine levels, interfering with the balance of the immune response to promote the pathogen clearance and maintain the host protection.
Collapse
Affiliation(s)
- Lisvane Paes-Vieira
- Laboratório de Bioquímica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Nathália Rocco-Machado
- Laboratório de Bioquímica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Anita Leocadio Freitas-Mesquita
- Laboratório de Bioquímica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Yago Sousa Dos Santos Emiliano
- Laboratório de Bioquímica de Tripanosomatideos, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz-FIOCRUZ, Pavilhão Leônidas Deane, 4° andar, sala 405A, Manguinhos, 21045-900 Rio de Janeiro, RJ, Brazil
| | - André Luiz Gomes-Vieira
- Instituto de Química, Departamento de Bioquímica, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil
| | - Elmo Eduardo de Almeida-Amaral
- Laboratório de Bioquímica de Tripanosomatideos, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz-FIOCRUZ, Pavilhão Leônidas Deane, 4° andar, sala 405A, Manguinhos, 21045-900 Rio de Janeiro, RJ, Brazil
| | - José Roberto Meyer-Fernandes
- Laboratório de Bioquímica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
4
|
da Silva W, da Rocha Torres N, de Melo Agripino J, da Silva VHF, de Souza ACA, Ribeiro IC, de Oliveira TA, de Souza LA, Andrade LKR, de Moraes JVB, Diogo MA, de Castro RB, Polêto MD, Afonso LCC, Fietto JLR. ENTPDases from Pathogenic Trypanosomatids and Purinergic Signaling: Shedding Light towards Biotechnological Applications. Curr Top Med Chem 2021; 21:213-226. [PMID: 33019932 DOI: 10.2174/1568026620666201005125146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/27/2020] [Accepted: 08/24/2020] [Indexed: 11/22/2022]
Abstract
ENTPDases are enzymes known for hydrolyzing extracellular nucleotides and playing an essential role in controlling the nucleotide signaling via nucleotide/purinergic receptors P2. Moreover, ENTPDases, together with Ecto-5´-nucleotidase activity, affect the adenosine signaling via P1 receptors. These signals control many biological processes, including the immune system. In this context, ATP is considered as a trigger to inflammatory signaling, while adenosine (Ado) induces anti-inflammatory response. The trypanosomatids Leishmania and Trypanosoma cruzi, pathogenic agents of Leishmaniasis and Chagas Disease, respectively, have their own ENTPDases named "TpENTPDases," which can affect the nucleotide signaling, adhesion and infection, in order to favor the parasite. Besides, TpENTPDases are essential for the parasite nutrition, since the Purine De Novo synthesis pathway is absent in them, which makes these pathogens dependent on the intake of purines and nucleopurines for the Salvage Pathway, in which TpENTPDases also take place. Here, we review information regarding TpNTPDases, including their known biological roles and their effect on the purinergic signaling. We also highlight the roles of these enzymes in parasite infection and their biotechnological applications, while pointing to future developments.
Collapse
Affiliation(s)
- Walmir da Silva
- Departamento de Bioquimica e Biologia Molecular, Universidade Federal de Vicosa, Vicosa, Minas Gerais, Brazil
| | - Nancy da Rocha Torres
- Departamento de Biologia Geral, Universidade Federal de Vicosa, Vicosa, Minas Gerais, Brazil
| | - Joice de Melo Agripino
- Departamento de Bioquimica e Biologia Molecular, Universidade Federal de Vicosa, Vicosa, Minas Gerais, Brazil
| | | | - Anna Cláudia Alves de Souza
- Departamento de Bioquimica e Biologia Molecular, Universidade Federal de Vicosa, Vicosa, Minas Gerais, Brazil
| | - Isadora Cunha Ribeiro
- Departamento de Bioquimica e Biologia Molecular, Universidade Federal de Vicosa, Vicosa, Minas Gerais, Brazil
| | | | - Luciana Angelo de Souza
- Departamento de Biologia Geral, Universidade Federal de Vicosa, Vicosa, Minas Gerais, Brazil
| | | | | | - Marcel Arruda Diogo
- Departamento de Bioquimica e Biologia Molecular, Universidade Federal de Vicosa, Vicosa, Minas Gerais, Brazil
| | - Raíssa Barbosa de Castro
- Departamento de Bioquimica e Biologia Molecular, Universidade Federal de Vicosa, Vicosa, Minas Gerais, Brazil
| | - Marcelo Depolo Polêto
- Departamento de Biologia Geral, Universidade Federal de Vicosa, Vicosa, Minas Gerais, Brazil
| | - Luis Carlos Crocco Afonso
- Nucleo de Pesquisa em Ciencias Biologicas (NUPEB), Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Juliana Lopes Rangel Fietto
- Departamento de Bioquimica e Biologia Molecular, Universidade Federal de Vicosa, Vicosa, Minas Gerais, Brazil
| |
Collapse
|
5
|
Silva D, Moreira D, Cordeiro-da-Silva A, Quintas C, Gonçalves J, Fresco P. Intracellular adenosine released from THP-1 differentiated human macrophages is involved in an autocrine control of Leishmania parasitic burden, mediated by adenosine A 2A and A 2B receptors. Eur J Pharmacol 2020; 885:173504. [PMID: 32858046 DOI: 10.1016/j.ejphar.2020.173504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/20/2020] [Accepted: 08/23/2020] [Indexed: 12/22/2022]
Abstract
Leishmania infected macrophages have conditions to produce adenosine. Despite its known immunosuppressive effects, no studies have yet established whether adenosine alter Leishmania parasitic burden upon macrophage infection. This work aimed at investigating whether endogenous adenosine exerts an autocrine modulation of macrophage response towards Leishmania infection, identifying its origin and potential pharmacological targets for visceral leishmaniasis (VL), using THP-1 differentiated macrophages. Adenosine deaminase treatment of infected THP-1 cells reduced the parasitic burden (29.1 ± 2.2%, P < 0.05). Adenosine A2A and A2B receptor subtypes expression was confirmed by RT-qPCR and by immunocytochemistry and their blockade with selective adenosine A2A and A2B antagonists reduced the parasitic burden [14.5 ± 3.1% (P < 0.05) and 12.3 ± 3.1% (P < 0.05), respectively; and 24.9 ± 2.8% (P < 0.05), by the combination of the two antagonists)], suggesting that adenosine A2 receptors are tonically activated in infected THP-1 differentiated macrophages. The tonic activation of adenosine A2 receptors was dependent on the release of intracellular adenosine through equilibrative nucleoside transporters (ENT1/ENT2): NBTI or dipyridamole reduced (~25%) whereas, when ENTs were blocked, adenosine A2 receptor antagonists failed to reduce and A2 agonists increase parasitic burden. Effects of adenosine A2 receptors antagonists and ENT1/2 inhibitor were prevented by L-NAME, indicating that nitric oxide production inhibition prevents adenosine from increasing parasitic burden. Results suggest that intracellular adenosine, released through ENTs, elicits an autocrine increase in parasitic burden in THP-1 macrophages, through adenosine A2 receptors activation. These observations open the possibility to use well-established ENT inhibitors or adenosine A2 receptor antagonists as new therapeutic approaches in VL.
Collapse
Affiliation(s)
- Dany Silva
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| | - Diana Moreira
- Parasite Disease Group, Institute of Molecular and Cellular Biology, Institute for Research and Innovation in Health Sciences, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal; Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| | - Anabela Cordeiro-da-Silva
- Parasite Disease Group, Institute of Molecular and Cellular Biology, Institute for Research and Innovation in Health Sciences, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal; Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| | - Clara Quintas
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| | - Jorge Gonçalves
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal; Epithelial Interactions in Cancer, Institute of Molecular Pathology and Immunology, Institute for Research and Innovation in Health Sciences, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.
| | - Paula Fresco
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| |
Collapse
|
6
|
Suman SS, Kumar A, Singh AK, Amit A, Topno RK, Pandey K, Das VNR, Das P, Ali V, Bimal S. Dendritic cell engineered cTXN as new vaccine prospect against L. donovani. Cytokine 2020; 145:155208. [PMID: 32736961 DOI: 10.1016/j.cyto.2020.155208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 07/06/2020] [Accepted: 07/11/2020] [Indexed: 10/23/2022]
Abstract
Dendritic cells (DCs), as antigen-presenting cells, can reportedly be infected withLeishmaniaparasites and hence provide a better option to trigger T-cell primary immune responses and immunological memory. We consistently primed DCs during culture with purified recombinant cytosolic tryparedoxin (rcTXN) and then evaluated the vaccine prospect of presentation of rcTXN against VL in BALB/c mice. We reported earlier the immunogenic properties of cTXN antigen derived fromL. donovani when anti-cTXN antibody was detected in the sera of kala-azar patients. It was observed that cTXN antigen, when used as an immunogen with murine DCs acting as a vehicle, was able to induce complete protection against VL in an infected group of immunized mice. This vaccination triggered splenic macrophages to produce more IL-12 and GM-CSF, and restricted IL-10 release to a minimum in an immunized group of infected animals. Concomitant changes in T-cell responses against cTXN antigen were also noticed, which increased the release of protective cytokine-like IFN-γ under the influence of NF-κβ in the indicated vaccinated group of animals. All cTXN-DCs-vaccinated BALB/c mice survived during the experimental period of 120 days. The results obtained in our study suggest that DCs primed with cTXN can be used as a vaccine prospect for the control of visceral leishmaniasis.
Collapse
Affiliation(s)
- Shashi S Suman
- Department of Immunology, Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - Akhilesh Kumar
- Department of Immunology, Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - Ashish K Singh
- Department of Immunology, Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - Ajay Amit
- Department of Forensic Science, Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.) 495009, India
| | - R K Topno
- Department of Epidemiology, Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - K Pandey
- Department of Clinical Medicine, Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - V N R Das
- Department of Clinical Medicine, Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - P Das
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - Vahab Ali
- Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - Sanjiva Bimal
- Department of Immunology, Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India.
| |
Collapse
|
7
|
Saini S, Rai AK. Hamster, a close model for visceral leishmaniasis: Opportunities and challenges. Parasite Immunol 2020; 42:e12768. [DOI: 10.1111/pim.12768] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Sheetal Saini
- Department of Biotechnology Motilal Nehru National Institute of Technology Allahabad Praygraj India
| | - Ambak K. Rai
- Department of Biotechnology Motilal Nehru National Institute of Technology Allahabad Praygraj India
| |
Collapse
|
8
|
Vijayamahantesh, Vijayalaxmi. Tinkering with targeting nucleotide signaling for control of intracellular Leishmania parasites. Cytokine 2019; 119:129-143. [PMID: 30909149 DOI: 10.1016/j.cyto.2019.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 12/23/2022]
Abstract
Nucleotides are one of the most primitive extracellular signalling molecules across all phyla and regulate a multitude of responses. The biological effects of extracellular nucleotides/sides are mediated via the specific purinergic receptors present on the cell surface. In mammalian system, adenine nucleotides are the predominant nucleotides found in the extracellular milieu and mediate a constellation of physiological functions. In the context of host-pathogen interaction, extracellular ATP is recognized as a danger signal and potentiates the release of pro-inflammatory mediators from activated immune cells, on the other hand, its breakdown product adenosine exerts potential anti-inflammatory and immunosuppressive actions. Therefore, it is increasingly apparent that the interplay between extracellular ATP/adenosine ratios has a significant role in coordinating the regulation of the immune system in health and diseases. Several pathogens express ectonucleotidases on their surface and exploit the purinergic signalling as one of the mechanisms to modulate the host immune response. Leishmania pathogens are one of the most successful intracellular pathogens which survive within host macrophages and manipulate protective Th1 response into disease promoting Th2 response. In this review, we discuss the regulation of extracellular ATP and adenosine levels, the role of ATP/adenosine counter signalling in regulating the inflammation and immune responses during infection and how Leishmania parasites exploit the purinergic signalling to manipulate host response. We also discuss the challenges and opportunities in targeting purinergic signalling and the future prospects.
Collapse
Affiliation(s)
- Vijayamahantesh
- Department of Biochemistry, Indian Institute of Science (IISc), Bengaluru, Karnataka, India.
| | - Vijayalaxmi
- Department of Zoology, Karnatak University, Dharwad, Karnataka, India
| |
Collapse
|
9
|
Baldissera MD, Souza CF, Bottari NB, Verdi CM, Santos RCV, Vizzotto BS, Baldisserotto B. Purinergic signalling displays an anti-inflammatory profile in the spleen of fish experimentally infected with Aeromonas caviae: Modulation of the immune response. JOURNAL OF FISH DISEASES 2018; 41:683-687. [PMID: 29265378 DOI: 10.1111/jfd.12773] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/24/2017] [Indexed: 06/07/2023]
Abstract
Extracellular adenosine triphosphate (ATP) and its metabolite adenosine (Ado) are recognized as key mediators of immune and inflammatory responses. Depending on its concentration, ATP may act as an immunostimulant or immunodepressant, while Ado levels display an anti-inflammatory profile. The aim of this study was to evaluate whether splenic purinergic signalling is capable of modulating immune and inflammatory responses in fish experimentally infected with Aeromonas caviae. Triphosphate diphosphohydrolase (NTPDase) and 5'-nucleotidase activities increased in the spleen of silver catfish (Rhamdia quelen) experimentally infected with A. caviae compared with the uninfected control group. Moreover, splenic Ado levels increased in the infected animals relative to the uninfected control group. Based on these lines of evidence, our findings revealed that adenine nucleotide hydrolysis is modified in the spleen of fish infected with A. caviae attempting to restrict the inflammatory process through the upregulation of NTPDase and 5'-nucleotidase activities, which occurs in an attempt to hydrolyse the excessive ATP in the extracellular environment and rapidly hydrolyse AMP to form Ado. In summary, purinergic signalling can modulate immune and inflammatory responses during A. caviae infection.
Collapse
Affiliation(s)
- M D Baldissera
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - C F Souza
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - N B Bottari
- Department of Biochemistry and Molecular Biology, Universidade Federal de Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil
| | - C M Verdi
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - R C V Santos
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - B S Vizzotto
- Laboratory of Molecular Biology, Centro Universitário Franciscano, Santa Maria, Rio Grande do Sul, Brazil
| | - B Baldisserotto
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| |
Collapse
|
10
|
Paes-Vieira L, Gomes-Vieira AL, Meyer-Fernandes JR. NTPDase activities: possible roles onLeishmania sppinfectivity and virulence. Cell Biol Int 2018; 42:670-682. [DOI: 10.1002/cbin.10944] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/27/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Lisvane Paes-Vieira
- Laboratório de Bioquímica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde; Universidade Federal do Rio de Janeiro; Rio de Janeiro RJ 21941-590 Brazil
| | - André Luiz Gomes-Vieira
- Instituto de Ciências Exatas, Departamento de Química; Universidade Federal Rural do Rio de Janeiro; Seropédica RJ Brazil
| | - José Roberto Meyer-Fernandes
- Laboratório de Bioquímica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde; Universidade Federal do Rio de Janeiro; Rio de Janeiro RJ 21941-590 Brazil
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem; Rio de Janeiro RJ Brazil
| |
Collapse
|
11
|
Baldissera MD, Souza CF, Doleski PH, Moreira KLS, da Veiga ML, da Rocha MIUM, Santos RCV, Baldisserotto B. Involvement of cholinergic and adenosinergic systems on the branchial immune response of experimentally infected silver catfish with Streptococcus agalactiae. JOURNAL OF FISH DISEASES 2018; 41:27-32. [PMID: 28699699 DOI: 10.1111/jfd.12665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 05/07/2017] [Accepted: 05/08/2017] [Indexed: 06/07/2023]
Abstract
It has been recognized that the cholinergic and adenosinergic systems have an essential role in immune and inflammatory responses during bacterial fish pathogens, such as the enzymes acetylcholinesterase (AChE) and adenosine deaminase (ADA), which are responsible for catalysis of the anti-inflammatory molecules acetylcholine (ACh) and adenosine (Ado) respectively. Thus, the aim of this study was to investigate the involvement of the cholinergic and adenosinergic systems on the immune response and inflammatory process in gills of experimentally infected Rhamdia quelen with Streptococcus agalactiae. Acetylcholinesterase activity decreased, while ACh levels increased in gills of infected animals compared to uninfected animals. On the other hand, a significant increase in ADA activity with a concomitant decrease in Ado levels was observed in infected animals compared to uninfected animals. Based on this evidence, we concluded that infection by S. agalactiae in silver catfish alters the cholinergic and adenosinergic systems, suggesting the involvement of AChE and ADA activities on immune and inflammatory responses, regulating the ACh and Ado levels. In summary, the downregulation of AChE activity exerts an anti-inflammatory profile in an attempt to reduce or prevent the tissue damage, while the upregulation of ADA activity exerts a pro-inflammatory profile, contributing to disease pathophysiology.
Collapse
Affiliation(s)
- M D Baldissera
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - C F Souza
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - P H Doleski
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - K L S Moreira
- Department of Morphology, Universidade Federal de Santa Maria (UFSM), Santa Maria, Brazil
| | - M L da Veiga
- Department of Morphology, Universidade Federal de Santa Maria (UFSM), Santa Maria, Brazil
| | - M I U M da Rocha
- Department of Morphology, Universidade Federal de Santa Maria (UFSM), Santa Maria, Brazil
| | - R C V Santos
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - B Baldisserotto
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, Brazil
| |
Collapse
|
12
|
Dikhit MR, Kumar A, Das S, Dehury B, Rout AK, Jamal F, Sahoo GC, Topno RK, Pandey K, Das VNR, Bimal S, Das P. Identification of Potential MHC Class-II-Restricted Epitopes Derived from Leishmania donovani Antigens by Reverse Vaccinology and Evaluation of Their CD4+ T-Cell Responsiveness against Visceral Leishmaniasis. Front Immunol 2017; 8:1763. [PMID: 29312304 PMCID: PMC5735068 DOI: 10.3389/fimmu.2017.01763] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/27/2017] [Indexed: 01/09/2023] Open
Abstract
Visceral leishmaniasis (VL) is one of the most neglected tropical diseases for which no vaccine exists. In spite of extensive efforts, no successful vaccine is available against this dreadful infectious disease. To support vaccine development, an immunoinformatics approach was applied to screen potential MHC class-II-restricted epitopes that can activate the immune cells. Initially, 37 epitopes derived from six stage-dependent, overexpressed antigens were predicted, which were presented by at least 26 diverse MHC class-II allele. Based on a population coverage analysis and human leukocyte antigen cross-presentation ability, six of the 37 epitopes were selected for further analysis. Stimulation with synthetic peptide alone or as a cocktail triggered intracellular IFN-γ production. Moreover, specific IgG antibodies were detected in the serum of active VL cases against P1, P4, P5, and P6 in order to evaluate the peptide effect on the humoral immune response. Additionally, most of the peptides, except P2, were found to be non-inducers of CD4+ IL-10 against both active VL as well as treated VL subjects. This finding suggests there is no role of these peptides in the pathogenesis of Leishmania. Peptide immunogenicity was validated in BALB/c mice immunized with a cocktail of synthetic peptide emulsified in complete Freund’s adjuvant/incomplete Freund’s adjuvant. The immunized splenocytes induced strong spleen cell proliferation upon parasite re-stimulation. Furthermore, increased IFN-γ, interleukin-12, IL-17, and IL-22 production augmented with elevated nitric oxide (NO) synthesis is thought to play a crucial role in macrophage activation. In this investigation, we identified six MHC class-II-restricted epitope hotspots of Leishmania antigens that induce CD4+ Th1 and Th17 responses, which could be used to potentiate a human universal T-epitope vaccine against VL.
Collapse
Affiliation(s)
- Manas Ranjan Dikhit
- BioMedical Informatics Division, Rajendra Memorial Research Institute of Medical Sciences, Patna, India.,Department of Immunology, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Akhilesh Kumar
- Department of Immunology, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Sushmita Das
- Department of Microbiology, All India Institute of Medical Sciences, Patna, India
| | - Budheswar Dehury
- Biomedical Informatics Centre, ICMR-Regional Medical Research Centre, Odisha, India
| | - Ajaya Kumar Rout
- Biotechnology Laboratory, ICAR-Central Inland Fisheries Research Institute, Kolkata, India
| | - Fauzia Jamal
- Department of Microbiology, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Ganesh Chandra Sahoo
- BioMedical Informatics Division, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Roshan Kamal Topno
- Department of Clinical Medicine, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Krishna Pandey
- Department of Clinical Medicine, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - V N R Das
- Department of Clinical Medicine, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Sanjiva Bimal
- Department of Immunology, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Pradeep Das
- Department of Molecular Parasitology, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| |
Collapse
|
13
|
Souza CF, Baldissera MD, Bottari NB, Moreira KLS, da Rocha MIUM, da Veiga ML, Santos RCV, Baldisserotto B. Purinergic signaling modulates the cerebral inflammatory response in experimentally infected fish with Streptococcus agalactiae: an attempt to improve the immune response. Mol Cell Biochem 2017; 443:131-138. [DOI: 10.1007/s11010-017-3217-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/20/2017] [Indexed: 12/20/2022]
|
14
|
Freitas-Mesquita AL, Meyer-Fernandes JR. 3'nucleotidase/nuclease in protozoan parasites: Molecular and biochemical properties and physiological roles. Exp Parasitol 2017; 179:1-6. [PMID: 28587841 DOI: 10.1016/j.exppara.2017.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 05/16/2017] [Accepted: 06/02/2017] [Indexed: 12/28/2022]
Abstract
3'-nucleotidase/nuclease (3'NT/NU) is a bi-functional enzyme that is able to hydrolyze 3'-monophosphorylated nucleotides and nucleic acids. This review summarizes the major molecular and biochemical properties of this enzyme in different trypanosomatid species. Sequence analysis of the gene encoding 3'NT/NU in Leishmania and Crithidia species showed that the protein possesses five highly conserved regions that are characteristic of members of the class I nuclease family. 3'NT/NU presents a molecular weight of approximately 40 kDa, which is conserved among the studied species. Throughout the review, we discuss inhibitors and substrate specificity, relating them to the putative structure of the enzyme. Finally, we present the major biological roles performed by 3'NT/NU. The involvement of 3'NT/NU in the purine salvage pathway was confirmed by the increase of activity and expression of the enzyme when the parasites were submitted to purine starvation. The generation of extracellular adenosine is also important to the modulation of the host immune response. Interaction assays involving Leishmania parasites and macrophages indicated that 3'-nucleotidase activity increases the association index between them. Recently, it was shown that 3'NT/NU plays a role in parasite escape from neutrophil extracellular traps, one of the first mechanisms of the host immune system for preventing infection.
Collapse
Affiliation(s)
- Anita Leocadio Freitas-Mesquita
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-590, Brazil.
| | - José Roberto Meyer-Fernandes
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-590, Brazil.
| |
Collapse
|
15
|
Immuno-informatics based approaches to identify CD8+ T cell epitopes within the Leishmania donovani 3-ectonucleotidase in cured visceral leishmaniasis subjects. Microbes Infect 2017; 19:358-369. [DOI: 10.1016/j.micinf.2017.03.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 03/10/2017] [Accepted: 03/24/2017] [Indexed: 01/22/2023]
|