1
|
Wang M, An G, Wang B, Chen Y, Liu G, Wang X, Liu S, Zhang D, Sun D, Zhang Y, Shen T, Li X. Integrated analysis of the lncRNA-miRNA-mRNA network based on competing endogenous RNA in atrial fibrillation. Front Cardiovasc Med 2023; 10:1099124. [PMID: 37180786 PMCID: PMC10174322 DOI: 10.3389/fcvm.2023.1099124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 04/07/2023] [Indexed: 05/16/2023] Open
Abstract
Objective Long non-coding RNAs (lncRNAs) play pivotal roles in the transcriptional regulation of atrial fibrillation (AF) by acting as competing endogenous RNAs (ceRNAs). In the present study, the expression levels of lncRNAs of sinus rhythm (SR) patients and AF patients were investigated with transcriptomics technology, and the lncRNA-miRNA-mRNA network based on the ceRNA theory in AF was elaborated. Methods Left atrial appendage (LAA) tissues were obtained from patients with valvular heart disease during cardiac surgery, and they were divided into SR and AF groups. The expression characterizations of differentially expressed (DE) lncRNAs in the two groups were revealed by high-throughput sequencing methods. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed, and the lncRNA-miRNA-mRNA-mediated ceRNA network was constructed. Results A total of differentially expressed 82 lncRNAs, 18 miRNAs, and 495 mRNAs in human atrial appendage tissues were targeted. Compared to SR patients, the following changes were found in AF patients: 32 upregulated and 50 downregulated lncRNAs; 7 upregulated and 11 downregulated miRNAs; and 408 upregulated and 87 downregulated mRNAs. A lncRNA-miRNA-mRNA network was constructed, which included 44 lncRNAs, 18 miRNAs, and 347 mRNAs. qRT-PCR was performed to verify these findings. GO and KEGG analyses suggested that inflammatory response, chemokine signaling pathway, and other biological processes play important roles in the pathogenesis of AF. Network analysis based on the ceRNA theory identified that lncRNA XR_001750763.2 and Toll-like receptor 2 (TLR2) compete for binding to miR-302b-3p. In AF patients, lncRNA XR_001750763.2 and TLR2 were upregulated, and miR-302b-3p was downregulated. Conclusion We identified a lncRNA XR_001750763.2/miR-302b-3p/TLR2 network based on the ceRNA theory in AF. The present study shed light on the physiological functions of lncRNAs and provided information for exploring potential treatments for AF.
Collapse
Affiliation(s)
- Manman Wang
- Jining Key Laboratory for Diagnosis and Treatment of Cardiovascular Diseases, Department of Cardiology, Affiliated Hospital of Jining Medical University, Jining, China
- Correspondence: Manman Wang Xiangting Li
| | - Guoying An
- Shandong Provincial Key Laboratory of Cardiac Disease Diagnosis and Treatment, Department of Cardiac Surgery, Affiliated Hospital of Jining Medical University, Jining, China
| | - Benxuan Wang
- Department of Neurology, Jinnan Hospital, Tianjin, China
| | - Yuanyuan Chen
- Jining Key Laboratory for Diagnosis and Treatment of Cardiovascular Diseases, Department of Cardiology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Genli Liu
- Jining Key Laboratory for Diagnosis and Treatment of Cardiovascular Diseases, Department of Cardiology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Xin Wang
- Jining Key Laboratory for Diagnosis and Treatment of Cardiovascular Diseases, Department of Cardiology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Shuai Liu
- Jining Key Laboratory for Diagnosis and Treatment of Cardiovascular Diseases, Department of Cardiology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Daozou Zhang
- Jining Key Laboratory for Diagnosis and Treatment of Cardiovascular Diseases, Department of Cardiology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Dandan Sun
- Jining Key Laboratory for Diagnosis and Treatment of Cardiovascular Diseases, Department of Cardiology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Yanyan Zhang
- Admission and Patient Service Center, Affiliated Hospital of Jining Medical University, Jining, China
| | - Tong Shen
- Jining Key Laboratory for Diagnosis and Treatment of Cardiovascular Diseases, Department of Cardiology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Xiangting Li
- Jining Key Laboratory for Diagnosis and Treatment of Cardiovascular Diseases, Department of Cardiology, Affiliated Hospital of Jining Medical University, Jining, China
- Correspondence: Manman Wang Xiangting Li
| |
Collapse
|
2
|
Imbalzano E, Murdaca G, Orlando L, Gigliotti-De Fazio M, Terranova D, Tonacci A, Gangemi S. Alarmins as a Possible Target of Future Therapies for Atrial Fibrillation. Int J Mol Sci 2022; 23:ijms232415946. [PMID: 36555588 PMCID: PMC9780784 DOI: 10.3390/ijms232415946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/23/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
To date, worldwide, atrial fibrillation is the most common cardiovascular disease in adults, with a prevalence of 2% to 4%. The trigger of the pathophysiological mechanism of arrhythmia includes several factors that sustain and exacerbate the disease. Ectopic electrical conductivity, associated with the resulting atrial mechanical dysfunction, atrial remodeling, and fibrosis, promotes hypo-contractility and blood stasis, involving micro endothelial damage. This causes a significant local inflammatory reaction that feeds and sustains the arrhythmia. In our literature review, we evaluate the role of HMGB1 proteins, heat shock proteins, and S100 in the pathophysiology of atrial fibrillation, offering suggestions for possible new therapeutic strategies. We selected scientific publications on the specific topics "alarmins" and "atrial fibrillation" from PubMed. The nonsystematic review confirms the pivotal role of molecules such as S100 proteins, high-mobility group box-1, and heat shock proteins in the molecular pattern of atrial fibrillation. These results could be considered for new therapeutic opportunities, including inhibition of oxidative stress, evaluation of new anticoagulant drugs with novel therapeutic targets, molecular and genetic studies, and consideration of these alarmins as predictive or prognostic biomarkers of disease onset and severity.
Collapse
Affiliation(s)
- Egidio Imbalzano
- Department of Clinical and Experimental Medicine, University of Messina, n. Viale Benedetto XV, n. 6, 98125 Messina, Italy
| | - Giuseppe Murdaca
- Department of Internal Medicine, Ospedale Policlinico San Martino, University of Genova, 16132 Genova, Italy
- Correspondence: ; Tel.: +39-0103537924; Fax: +39-0105556950
| | - Luana Orlando
- Department of Clinical and Experimental Medicine, University of Messina, n. Viale Benedetto XV, n. 6, 98125 Messina, Italy
| | - Marianna Gigliotti-De Fazio
- Department of Clinical and Experimental Medicine, University of Messina, n. Viale Benedetto XV, n. 6, 98125 Messina, Italy
| | - Dario Terranova
- Department of Clinical and Experimental Medicine, University of Messina, n. Viale Benedetto XV, n. 6, 98125 Messina, Italy
| | - Alessandro Tonacci
- Clinical Physiology Institute, National Research Council of Italy (IFC-CNR), 56124 Pisa, Italy
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy
| |
Collapse
|
3
|
Li X, Zhao C, Li M, Yu H, Liu X, Zhu Q, Song X, Wang Y, Yu B, Ma C. Predictive value of HMGB1 for atrial fibrillation recurrence after cryoballoon ablation in paroxysmal atrial fibrillation patients. Clin Cardiol 2022; 45:1229-1235. [PMID: 36124718 DOI: 10.1002/clc.23904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/28/2022] [Accepted: 07/26/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Cryoballoon ablation (CBA) is recommended for patients with symptomatic drug refractory paroxysmal atrial fibrillation (pAF). However, substantial atrial fibrillation (AF) recurrence is common during follow-up. Searching for a potential biomarker representing both myocardial injury and inflammation to identify patients at high risk of AF recurrence after CBA is very meaningful for postoperative management of AF patients. HYPOTHESIS To evaluate the clinical efficacy of high-mobility group box 1 (HMGB1) protein released from the left atrium to predict AF recurrence in pAF patients after CBA at 1-year follow-up. METHODS We included 72 pAF patients who underwent CBA. To determine the expression levels of HMGB1, left atrial blood samples were collected from the patients before CBA and after the procedure through the transseptal sheath. Patients were followed up for AF recurrence for 1 year. RESULTS A total of 19 patients of the 72 experienced AF recurrence. The level of postoperative HMGB1 (HMGB1post) was higher in the AF recurrence group than in the AF non recurrence group (p = .03). However, no differences were noted in the levels of other biomarkers such as preoperative high-sensitivity C-reactive protein (hs-CRP), postoperativehs-CRP, and preoperative HMGB1 between the two groups. Multiple logistic regression analysis revealed that a higher level of serum HMGB1post was associated with AF recurrence (odds ratio: 5.29 [1.17-23.92], p = .04). Receiver operating characteristic analysis revealed that HMGB1post had a moderate predictive power for AF recurrence (area under the curve: 0.68; sensitivity: 72%; and specificity: 68%). The 1-year AF-free survival was significantly lower in patients with a high HMGB1post level than in those with a low HMGB1post level (hazard ratio: 3.81 [1.49-9.75], p = .005). CONCLUSION In pAF patients who under went CBA, the level of HMGB1 after CBA was associated with AF recurrence and demonstrated a moderate predictive power. Thus, we offer a potential biomarker to identify pAF patients at high risk of AF recurrence.
Collapse
Affiliation(s)
- Xinxin Li
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Cuiting Zhao
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Meng Li
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Hongxiao Yu
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiping Liu
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Qing Zhu
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiaokun Song
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yonghuai Wang
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Bo Yu
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Chunyan Ma
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
4
|
Yao Y, Yang M, Liu D, Zhao Q. Immune remodeling and atrial fibrillation. Front Physiol 2022; 13:927221. [PMID: 35936905 PMCID: PMC9355726 DOI: 10.3389/fphys.2022.927221] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Atrial fibrillation (AF) is a highly prevalent arrhythmia that causes high morbidity and mortality. However, the underlying mechanism of AF has not been fully elucidated. Recent research has suggested that, during AF, the immune system changes considerably and interacts with the environment and cells involved in the initiation and maintenance of AF. This may provide a new direction for research and therapeutic strategies for AF. In this review, we elaborate the concept of immune remodeling based on available data in AF. Then, we highlight the complex relationships between immune remodeling and atrial electrical, structural and neural remodeling while also pointing out some research gaps in these field. Finally, we discuss several potential immunomodulatory treatments for AF. Although the heterogeneity of existing evidence makes it ambiguous to extrapolate immunomodulatory treatments for AF into the clinical practice, immune remodeling is still an evolving concept in AF pathophysiology and further studies within this field are likely to provide effective therapies for AF.
Collapse
Affiliation(s)
- Yajun Yao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Mei Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Dishiwen Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Qingyan Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
- *Correspondence: Qingyan Zhao,
| |
Collapse
|
5
|
The involvement of toll-like receptors 2 and 4 in human platelet signalling pathways. Cell Signal 2020; 76:109817. [PMID: 33132157 DOI: 10.1016/j.cellsig.2020.109817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 01/01/2023]
Abstract
In addition to haemostasis, platelets play an essential role in mechanisms of inflammation and in immunological reactions. Platelets express various toll-like receptors (TLR) on their surface, among them TLR2 and TLR4, which are important for the recognition of bacterial patterns. This study compared TLR2- and TLR4-dependent platelet signalling and their effect on platelet function. Platelet-rich-plasma and washed platelets were prepared from peripheral blood samples of healthy donors. Pam3CSK4 or LPS (lipopolysaccharides from Escherichia coli) were used for stimulation of TLR2 and TLR4. Intracellular signalling pathways were investigated by Western blot. TLR2- and TLR4-mediated specific transcription factor DNA binding activity was measured by the nuclear factor kappa B (NFκB) transcription factor assay kit. Platelet adhesion and glycoprotein Ib function were assessed by immunofluorescence staining and analysis of ristocetin-induced agglutination. Both, Pam3CSK4 and LPS were able to induce NFκB-mediated and classical activating platelet signalling with a higher stimulatory capacity of TLR2. In addition, TLR2 and TLR4 activation led to a similar activation of inhibitory pathways. In contrast to TLR2, stimulation of TLR4 resulted in decreased Akt/protein kinase B phosphorylation conditioned by enhanced protein phosphatase 2A activity. TLR4-mediated signalling induced platelet adhesion and facilitated ristocetin-induced platelet agglutination. In conclusion, Pam3CSK4 directly induces aggregation via classical activation cascades, whereas LPS enhances platelet adhesion and glycoprotein receptor Ib-dependent platelet agglutination.
Collapse
|
6
|
Revisiting Platelets and Toll-Like Receptors (TLRs): At the Interface of Vascular Immunity and Thrombosis. Int J Mol Sci 2020; 21:ijms21176150. [PMID: 32858930 PMCID: PMC7504402 DOI: 10.3390/ijms21176150] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 12/19/2022] Open
Abstract
While platelet function has traditionally been described in the context of maintaining vascular integrity, recent evidence suggests that platelets can modulate inflammation in a much more sophisticated and nuanced manner than previously thought. Some aspects of this expanded repertoire of platelet function are mediated via expression of Toll-like receptors (TLRs). TLRs are a family of pattern recognition receptors that recognize pathogen-associated and damage-associated molecular patterns. Activation of these receptors is crucial for orchestrating and sustaining the inflammatory response to both types of danger signals. The TLR family consists of 10 known receptors, and there is at least some evidence that each of these are expressed on or within human platelets. This review presents the literature on TLR-mediated platelet activation for each of these receptors, and the existing understanding of platelet-TLR immune modulation. This review also highlights unresolved methodological issues that potentially contribute to some of the discrepancies within the literature, and we also suggest several recommendations to overcome these issues. Current understanding of TLR-mediated platelet responses in influenza, sepsis, transfusion-related injury and cardiovascular disease are discussed, and key outstanding research questions are highlighted. In summary, we provide a resource—a “researcher’s toolkit”—for undertaking further research in the field of platelet-TLR biology.
Collapse
|
7
|
Dib PRB, Quirino-Teixeira AC, Merij LB, Pinheiro MBM, Rozini SV, Andrade FB, Hottz ED. Innate immune receptors in platelets and platelet-leukocyte interactions. J Leukoc Biol 2020; 108:1157-1182. [PMID: 32779243 DOI: 10.1002/jlb.4mr0620-701r] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 06/11/2020] [Accepted: 06/28/2020] [Indexed: 12/14/2022] Open
Abstract
Platelets are chief cells in hemostasis. Apart from their hemostatic roles, platelets are major inflammatory effector cells that can influence both innate and adaptive immune responses. Activated platelets have thromboinflammatory functions linking hemostatic and immune responses in several physiological and pathological conditions. Among many ways in which platelets exert these functions, platelet expression of pattern recognition receptors (PRRs), including TLR, Nod-like receptor, and C-type lectin receptor families, plays major roles in sensing and responding to pathogen-associated or damage-associated molecular patterns (PAMPs and DAMPs, respectively). In this review, an increasing body of evidence is compiled showing the participation of platelet innate immune receptors, including PRRs, in infectious diseases, sterile inflammation, and cancer. How platelet recognition of endogenous DAMPs participates in sterile inflammatory diseases and thrombosis is discussed. In addition, platelet recognition of both PAMPs and DAMPs initiates platelet-mediated inflammation and vascular thrombosis in infectious diseases, including viral, bacterial, and parasite infections. The study also focuses on the involvement of innate immune receptors in platelet activation during cancer, and their contribution to tumor microenvironment development and metastasis. Finally, how innate immune receptors participate in platelet communication with leukocytes, modulating leukocyte-mediated inflammation and immune functions, is highlighted. These cell communication processes, including platelet-induced release of neutrophil extracellular traps, platelet Ag presentation to T-cells and platelet modulation of monocyte cytokine secretion are discussed in the context of infectious and sterile diseases of major concern in human health, including cardiovascular diseases, dengue, HIV infection, sepsis, and cancer.
Collapse
Affiliation(s)
- Paula Ribeiro Braga Dib
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil.,Laboratory of Immunology, Infectious Diseases and Obesity, Department of Parasitology, Microbiology and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Anna Cecíllia Quirino-Teixeira
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Laura Botelho Merij
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Mariana Brandi Mendonça Pinheiro
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Stephane Vicente Rozini
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Fernanda Brandi Andrade
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Eugenio Damaceno Hottz
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| |
Collapse
|
8
|
Rosenberg JH, Werner JH, Plitt GD, Noble VV, Spring JT, Stephens BA, Siddique A, Merritt-Genore HL, Moulton MJ, Agrawal DK. Immunopathogenesis and biomarkers of recurrent atrial fibrillation following ablation therapy in patients with preexisting atrial fibrillation. Expert Rev Cardiovasc Ther 2019; 17:193-207. [PMID: 30580643 PMCID: PMC6386629 DOI: 10.1080/14779072.2019.1562902] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 12/20/2018] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Recurrent atrial fibrillation (RAF) following ablation therapy occurs in about 50% of patients. The pathogenesis of RAF is unknown, but is believed to be driven by atrial remodeling in the setting of background inflammation. Structural, electrophysiological and mechanical remodeling has been associated with atrial fibrillation (AF). Inflammation and fibrotic remodeling are the major factors perpetuating AF, as mediators released from the atrial tissues and cardiomyocytes due to mechanical and surgical injury could initiate the inflammatory process. In this article, we have critically reviewed the key mediators that may serve as potential biomarkers to predict RAF. Areas covered: Damage associated molecular patterns, heat shock proteins, inflammatory cytokines, non-inflammatory markers, markers of inflammatory cell activity, and markers of collagen deposition and metabolism are evaluated as potential biomarkers with molecular treatment options in RAF. Expert commentary: Establishing biomarkers to predict RAF could be useful in reducing morbidity and mortality. Investigations into the role of DAMPs participating in a sterile immune response may provide greater insight into the pathogenesis of RAF. Markers evaluating immune cell activity, collagen deposition, and levels of heat shock proteins show the greatest promise as potential biomarkers to predict RAF and develop novel therapies.
Collapse
Affiliation(s)
- John H Rosenberg
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE USA
| | - John H Werner
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE USA
| | - Gilman D Plitt
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE USA
| | - Victoria V Noble
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE USA
| | - Jordan T Spring
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE USA
| | - Brooke A Stephens
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE USA
| | - Aleem Siddique
- Department of Cardiothoracic Surgery, University of Nebraska Medical Center, Omaha, NE USA
| | | | - Michael J Moulton
- Department of Cardiothoracic Surgery, University of Nebraska Medical Center, Omaha, NE USA
| | - Devendra K Agrawal
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE USA
| |
Collapse
|