1
|
Yu Y, Cui Y, Song B. The cooperation between orf virus and Staphylococcus aureus leads to intractable lesions in skin infection. Front Cell Infect Microbiol 2024; 13:1213694. [PMID: 38259972 PMCID: PMC10800892 DOI: 10.3389/fcimb.2023.1213694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 10/31/2023] [Indexed: 01/24/2024] Open
Abstract
A large amount of evidence shows that different kinds of microorganisms can jointly cope with environmental pressures including cell hosts. For example, in many cases, it has been found that secondary or mixed infection of animals caused by ORFV (an epitheliophilic Parapoxvirus) and bacteria (such as Staphylococcus aureus or Streptococcus) shows a mutual aid mode that indirectly leads to the deterioration of the disease. However, the lack of research on the co-pathogenic mechanism, including how to hijack and destroy the cell host in the pathological microenvironment, has hindered the in-depth understanding of the pathogenic process and consequences of this complex infection and the development of clinical treatment methods. Here, we summarized the current strategies of trapping cell hosts together, based on the previously defined ORFV-Host (O-H) system. The opportunistic invasion of S. aureus destroyed the delicate dynamic balance of the O-H, thus aggravating tissue damage through bacterial products (mediated by Agr), even causing sepsis or inducing cytokine storms. In fact, the virus products from its adaptive regulatory system (VARS) weaken the immune attacks and block molecular pathways, so that S. aureus can settle there more smoothly, and the toxins can penetrate into local tissues more quickly. This paper focuses on the main challenges faced by cell hosts in dealing with mixed infection, which provides a starting point for us to deal with this disease in the future.
Collapse
Affiliation(s)
- Yongzhong Yu
- College of Biological Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yudong Cui
- College of Biological Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Baifen Song
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
2
|
Li S, Jing T, Zhu F, Chen Y, Yao X, Tang X, Zuo C, Liu M, Xie Y, Jiang Y, Wang Y, Li D, Li L, Gao S, Chen D, Zhao H, Ma W. Genetic Analysis of Orf Virus (ORFV) Strains Isolated from Goats in China: Insights into Epidemiological Characteristics and Evolutionary Patterns. Virus Res 2023; 334:199160. [PMID: 37402415 PMCID: PMC10410590 DOI: 10.1016/j.virusres.2023.199160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/14/2023] [Accepted: 06/22/2023] [Indexed: 07/06/2023]
Abstract
Contagious ecthyma (CE) is an acute infectious zoonosis caused by orf virus (ORFV) that mainly infects sheep and goats and causes obvious lesions and low market value of livestock, resulting in huge economic losses for farmers. In this study, two strains of ORFV were isolated from Shaanxi Province and Yunnan Province in China, named FX and LX. The two ORFVs were located in the major clades of domestic strains respectively, and exhibited distinct sequence homology. We analyzed the genetic data of core genes (B2L, F1L, VIR, ORF109) and variable genes (GIF, ORF125 and vIL-10) of ORFV to investigate its epidemiological and evolutionary characteristics. The sequences from 2007 to 2018 constituted the majority of the viral population, predominantly concentrated in India and China. Most genes were clustered into SA00-like type and IA82-like type, and the hotspots in East and South Asia were identified in the ORFV transmission trajectories. For these genes, VIR had the highest substitution rate of 4.85 × 10-4, both VIR and vIL-10 suffered the positive selection pressure during ORFV evolution. Many motifs associated with viral survival were distributed among ORFVs. In addition, some possible viral epitopes have been predicted, which still require validation in vivo and in vitro. This work gives more insight into the prevalence and phylogenetic relationships of existing orf viruses and facilitate better vaccine design.
Collapse
Affiliation(s)
- Shaofei Li
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi Province 712100, China
| | - Tian Jing
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi Province 712100, China
| | - Fang Zhu
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi Province 712100, China
| | - Yiming Chen
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi Province 712100, China
| | - Xiaoting Yao
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi Province 712100, China
| | - Xidian Tang
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi Province 712100, China
| | - Chenxiang Zuo
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi Province 712100, China
| | - Mingjie Liu
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi Province 712100, China
| | - Yanfei Xie
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi Province 712100, China
| | - Yuecai Jiang
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi Province 712100, China
| | - Yunpeng Wang
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi Province 712100, China
| | - Dengliang Li
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi Province 712100, China
| | - Lulu Li
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi Province 712100, China
| | - Shikong Gao
- Shenmu Animal Husbandry Development Center, Shenmu, Shaanxi Province 719399, China
| | - Dekun Chen
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi Province 712100, China.
| | - Huiying Zhao
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi Province 712100, China.
| | - Wentao Ma
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi Province 712100, China.
| |
Collapse
|
3
|
Genetic analysis of two viroceptor genes of orf virus. Arch Virol 2022; 167:1577-1582. [PMID: 35567695 DOI: 10.1007/s00705-022-05447-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 03/09/2022] [Indexed: 01/02/2023]
Abstract
In the present study, we analyzed the chemokine-binding protein (CBP) and the GM-CSF/IL-2 inhibition factor (GIF) of orf virus (ORFV) isolates of sheep and goat origin from different geographical regions of India. Both are immunomodulatory proteins known for their unique strategy of establishing short-term immunity and re-infection in their host. The GIF gene is highly conserved, whereas the CBP gene is highly variable. Both the proteins have conserved potential N-glycosylation sites. The GIF protein contains the "WDPWV" motif responsible for receptor activation. In addition, the SUSHI/short consensus repeats (SCR) domain is reported for the first time in ORFV. Both proteins could potentially be used as immunotherapeutic agents in inflammatory diseases related to the overexpression of specific cytokines.
Collapse
|
4
|
Yu Y, Lian Z, Cui Y. The OH system: A panorama view of the PPV-host interaction. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 98:105220. [PMID: 35066165 DOI: 10.1016/j.meegid.2022.105220] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 11/19/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Poxviruses are a family of specialized cytoplasm-parasitic DNA viruses that replicate and assembly in virus factory. In Parapoxvirus (PPV) genus, with the orf virus (ORFV) as a representative species of this genus, their behaviors are significantly different from that of Orthopoxvirus, and the plots of viral practical solutions for evading host immunity are intricate and fascinating, particularly to anti-host and host's antiviral mechanisms. In order to protect the virus factory from immune elimination caused by infection, PPVs attempt to interfere with multiple stress levels of host, mainly by modulating innate immunity response (IIR) and adaptive immunity response (AIR). Given that temporarily constructed by virus infection, ORFV-HOST (OH) system accompanied by viral strategies is carefully managed in the virus factory, thus directing many life-critical events once undergoing the IIR and AIR. Evolutionarily, to reduce the risk of system destruction, ORFV have evolved into a mild-looking mode to avoid overstimulation. Moreover, the current version of development also focus on recognizing and hijacking more than eight antiviral security mechanisms of host cells, such as the 2',5'-oligoadenylate synthetase (OAS)/RNase L and PKR systems, the ubiquitin protease system (UPS), and so on. In summary, this review assessed inescapable pathways as mentioned above, through which viruses compete with their hosts strategically. The OH system provides a panoramic view and a powerful platform for us to study the PPV-Host interaction, as well as the corresponding implications on a great application potential in anti-virus design.
Collapse
Affiliation(s)
- Yongzhong Yu
- College of Biological Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China.
| | - Zhengxing Lian
- College of Animal Science and Technology, China Agricultural University, Beijing 100039, PR China
| | - Yudong Cui
- College of Biological Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| |
Collapse
|
5
|
Struzik J, Szulc-Dąbrowska L. NF-κB as an Important Factor in Optimizing Poxvirus-Based Vaccines against Viral Infections. Pathogens 2020; 9:pathogens9121001. [PMID: 33260450 PMCID: PMC7760304 DOI: 10.3390/pathogens9121001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 11/16/2022] Open
Abstract
Poxviruses are large dsDNA viruses that are regarded as good candidates for vaccine vectors. Because the members of the Poxviridae family encode numerous immunomodulatory proteins in their genomes, it is necessary to carry out certain modifications in poxviral candidates for vaccine vectors to improve the vaccine. Currently, several poxvirus-based vaccines targeted at viral infections are under development. One of the important aspects of the influence of poxviruses on the immune system is that they encode a large array of inhibitors of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), which is the key element of both innate and adaptive immunity. Importantly, the NF-κB transcription factor induces the mechanisms associated with adaptive immunological memory involving the activation of effector and memory T cells upon vaccination. Since poxviruses encode various NF-κB inhibitor proteins, before the use of poxviral vaccine vectors, modifications that influence NF-κB activation and consequently affect the immunogenicity of the vaccine should be carried out. This review focuses on NF-κB as an essential factor in the optimization of poxviral vaccines against viral infections.
Collapse
|
6
|
Yao X, Pang M, Wang T, Chen X, Tang X, Chang J, Chen D, Ma W. Genomic Features and Evolution of the Parapoxvirus during the Past Two Decades. Pathogens 2020; 9:E888. [PMID: 33120928 PMCID: PMC7694016 DOI: 10.3390/pathogens9110888] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/21/2020] [Accepted: 10/24/2020] [Indexed: 11/23/2022] Open
Abstract
Parapoxvirus (PPV) has been identified in some mammals and poses a great threat to both the livestock production and public health. However, the prevalence and evolution of this virus are still not fully understood. Here, we performed an in silico analysis to investigate the genomic features and evolution of PPVs. We noticed that although there were significant differences of GC contents between orf virus (ORFV) and other three species of PPVs, all PPVs showed almost identical nucleotide bias, that is GC richness. The structural analysis of PPV genomes showed the divergence of different PPV species, which may be due to the specific adaptation to their natural hosts. Additionally, we estimated the phylogenetic diversity of seven different genes of PPV. According to all available sequences, our results suggested that during 2010-2018, ORFV was the dominant virus species under the selective pressure of the optimal gene patterns. Furthermore, we found the substitution rates ranged from 3.56 × 10-5 to 4.21 × 10-4 in different PPV segments, and the PPV VIR gene evolved at the highest substitution rate. In these seven protein-coding regions, purifying selection was the major evolutionary pressure, while the GIF and VIR genes suffered the greatest positive selection pressure. These results may provide useful knowledge on the virus genetic evolution from a new perspective which could help to create prevention and control strategies.
Collapse
Affiliation(s)
- Xiaoting Yao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (X.Y.); (M.P.); (T.W.); (X.C.); (X.T.)
| | - Ming Pang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (X.Y.); (M.P.); (T.W.); (X.C.); (X.T.)
| | - Tianxing Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (X.Y.); (M.P.); (T.W.); (X.C.); (X.T.)
| | - Xi Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (X.Y.); (M.P.); (T.W.); (X.C.); (X.T.)
| | - Xidian Tang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (X.Y.); (M.P.); (T.W.); (X.C.); (X.T.)
| | - Jianjun Chang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China;
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Dekun Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (X.Y.); (M.P.); (T.W.); (X.C.); (X.T.)
| | - Wentao Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (X.Y.); (M.P.); (T.W.); (X.C.); (X.T.)
| |
Collapse
|
7
|
Comparative analysis, distribution, and characterization of microsatellites in Orf virus genome. Sci Rep 2020; 10:13852. [PMID: 32807836 PMCID: PMC7431841 DOI: 10.1038/s41598-020-70634-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 07/01/2020] [Indexed: 11/09/2022] Open
Abstract
Genome-wide in-silico identification of microsatellites or simple sequence repeats (SSRs) in the Orf virus (ORFV), the causative agent of contagious ecthyma has been carried out to investigate the type, distribution and its potential role in the genome evolution. We have investigated eleven ORFV strains, which resulted in the presence of 1,036-1,181 microsatellites per strain. The further screening revealed the presence of 83-107 compound SSRs (cSSRs) per genome. Our analysis indicates the dinucleotide (76.9%) repeats to be the most abundant, followed by trinucleotide (17.7%), mononucleotide (4.9%), tetranucleotide (0.4%) and hexanucleotide (0.2%) repeats. The Relative Abundance (RA) and Relative Density (RD) of these SSRs varied between 7.6-8.4 and 53.0-59.5 bp/kb, respectively. While in the case of cSSRs, the RA and RD ranged from 0.6-0.8 and 12.1-17.0 bp/kb, respectively. Regression analysis of all parameters like the incident of SSRs, RA, and RD significantly correlated with the GC content. But in a case of genome size, except incident SSRs, all other parameters were non-significantly correlated. Nearly all cSSRs were composed of two microsatellites, which showed no biasedness to a particular motif. Motif duplication pattern, such as, (C)-x-(C), (TG)-x-(TG), (AT)-x-(AT), (TC)- x-(TC) and self-complementary motifs, such as (GC)-x-(CG), (TC)-x-(AG), (GT)-x-(CA) and (TC)-x-(AG) were observed in the cSSRs. Finally, in-silico polymorphism was assessed, followed by in-vitro validation using PCR analysis and sequencing. The thirteen polymorphic SSR markers developed in this study were further characterized by mapping with the sequence present in the database. The results of the present study indicate that these SSRs could be a useful tool for identification, analysis of genetic diversity, and understanding the evolutionary status of the virus.
Collapse
|
8
|
Karki M, Kumar A, Arya S, Venkatesan G. Circulation of orf viruses containing the NZ7-like vascular endothelial growth factor (VEGF-E) gene type in India. Virus Res 2020; 281:197908. [PMID: 32126295 DOI: 10.1016/j.virusres.2020.197908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/25/2020] [Accepted: 02/28/2020] [Indexed: 10/24/2022]
Abstract
Orf, a poxviral skin infection of small ruminants is caused by orf virus (ORFV) of the genus Parapoxvirus of the Poxviridae family. Vascular endothelial growth factor (VEGF) is an important virulence factor that is responsible for proliferative lesions in parapoxviral infections. VEGF gene shows high intra- and inter-species variability. Two variants of VEGF have been described globally in ORFV, viz. NZ2- and NZ7-like. In the present study, ORFV isolates of different geographic regions of India were analysed on the basis of the VEGF gene. Indian ORFV isolates showed 95.7-100 % nucleotide (nt) and 78.4-99.3 % amino acid (aa) identity with each other, except ORFV-Assam/LK/14 and ORFV-Meghalaya/03 which shared 85.1-88.35 % and 79.1-81.8 % identity, at nt and aa levels, respectively with other Indian ORFV isolates. All Indian ORFVs under the study demonstrated 83.5-99.1 % nt and 80.5-97.9 % aa identity with NZ7-like VEGF as compared to 41.2-44.8 % nt and 30.7-38.4 % aa identity with NZ2-like VEGF on comparison with global ORFV strains. Phylogenetic analysis based on the VEGF gene showed two clusters of ORFV in which the Indian ORFVs clustered with NZ7-like VEGF from global ORFV strains, mostly from China. Despite the considerable variation, VEGF protein from Indian ORFV strains showed conserved VEGF homology domain with eight cysteine residues. Homology modeling of Indian ORFV strains predicted the presence of extended Loop 3 similar to NZ7-like VEGF. Therefore, the present study showed the circulation of ORFV strains with comparatively less variable NZ7-like VEGF in India which implicates its importance in the epidemiology of ORFV infections in the country.
Collapse
Affiliation(s)
- Monu Karki
- Division of Virology, ICAR- Indian Veterinary Research Institute, Mukteswar, Uttarakhand, India
| | - Amit Kumar
- Division of Virology, ICAR- Indian Veterinary Research Institute, Mukteswar, Uttarakhand, India
| | - Sargam Arya
- Division of Virology, ICAR- Indian Veterinary Research Institute, Mukteswar, Uttarakhand, India
| | - Gnanavel Venkatesan
- Division of Virology, ICAR- Indian Veterinary Research Institute, Mukteswar, Uttarakhand, India.
| |
Collapse
|