1
|
Bao J, Ma Y, Ding M, Wang C, Du G, Zhou Y, Guo L, Kang H, Wang C, Gu B. Preliminary exploration on the serum biomarkers of bloodstream infection with carbapenem-resistant Klebsiella pneumoniae based on mass spectrometry. J Clin Lab Anal 2021; 35:e23915. [PMID: 34331328 PMCID: PMC8418493 DOI: 10.1002/jcla.23915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/06/2021] [Accepted: 07/11/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Carbapenem-resistant K. pneumoniae (CRKP) bloodstream infections (BSI) must be rapidly identified to improve patient survival rates. This study investigated a new mass spectrometry-based method for improving the identification of CRKP BSI and explored potential biomarkers that could differentiate CRKP BSI from sensitive. METHODS Mouse models of BSI were first established. MALDI-TOF MS was then used to profile serum peptides in CRKP BSI versus normal samples before applying BioExplorer software to establish a diagnostic model to distinguish CRKP from normal. The diagnostic value of the model was then tested against 32 clinical CRKP BSI and 27 healthy serum samples. Finally, the identities of the polypeptides used to establish the diagnostic model were determined by secondary mass spectrometry. RESULTS 107 peptide peaks were shared between the CRKP and normal groups, with 18 peaks found to be differentially expressed. Five highly expressed peptides in the CRKP group (m/z 1349.8, 2091.3, 2908.2, 4102.1, and 8129.5) were chosen to establish a diagnostic model. The accuracy, specificity and sensitivity of the model were determined as 79.66%, 81.48%, and 78.12%, respectively. Secondary mass spectrometry identified the Fibrinogen alpha chain (FGA), Inter-alpha-trypsin inhibitor heavy chain H4 (ITIH4) and Serum amyloid A-2 protein (SAA2) as the source of the 5 serum peptides. CONCLUSIONS We successfully established a serum peptide-based diagnostic model that distinguished clinical CRKP BSI samples from normal healthy controls. The application of MALDI-TOF MS to measure serum peptides, therefore, represents a promising approach for early BSI diagnosis of BSI, especially for multidrug-resistant bacteria where identification is urgent.
Collapse
Affiliation(s)
- Jinfeng Bao
- College of Medical TechnologyXuzhou Medical UniversityXuzhouChina
- Department of Clinical LaboratoryThe First Medical CentreThe PLA General HospitalBeijingChina
| | - Yating Ma
- Department of Clinical LaboratoryThe First Medical CentreThe PLA General HospitalBeijingChina
| | - Mengshan Ding
- College of Medical TechnologyXuzhou Medical UniversityXuzhouChina
- Department of Clinical LaboratoryThe First Medical CentreThe PLA General HospitalBeijingChina
| | - Chi Wang
- Department of Clinical LaboratoryThe First Medical CentreThe PLA General HospitalBeijingChina
| | - Gaofei Du
- College of Medical TechnologyXuzhou Medical UniversityXuzhouChina
| | - Yuan Zhou
- College of Medical TechnologyXuzhou Medical UniversityXuzhouChina
| | - Ling Guo
- Department of Clinical LaboratoryThe First Medical CentreThe PLA General HospitalBeijingChina
| | - Haiquan Kang
- College of Medical TechnologyXuzhou Medical UniversityXuzhouChina
| | - Chengbin Wang
- Department of Clinical LaboratoryThe First Medical CentreThe PLA General HospitalBeijingChina
| | - Bing Gu
- College of Medical TechnologyXuzhou Medical UniversityXuzhouChina
- Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| |
Collapse
|
2
|
Ma Y, Li R, Wang J, Jiang W, Yuan X, Cui J, Wang C. ITIH4, as an inflammation biomarker, mainly increases in bacterial bloodstream infection. Cytokine 2020; 138:155377. [PMID: 33348064 DOI: 10.1016/j.cyto.2020.155377] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 12/17/2022]
Abstract
Bloodstream infection (BSI) is usually accompanied with the changes of varieties of inflammation proteins. In our previous study, we identified that inter-α-trypsin inhibitor heavy chain H4 (ITIH4) was highly expressed in the infection arms than the normal control arm. However, the correlated verification and mechanism remain obscure. Escherichia coli infected mice model and clinical serum samples were used to validate the concentration of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), interleukin-10 (IL-10), as well as ITIH4, in ELISA method. Cytokines (IL-6, TNF-α, IL-10 and lipopolysaccharide (LPS)) were used to stimulate the HepG2 cell model to explore which cytokines influence the expression of ITIH4. JAK/STAT inhibitor was treated before IL-6 and LPS stimulation. Westernblot, as well as real-time PCR were performed to detect the expression of ITIH4 in liver tissue from protein and transcription levels. Immunohistochemistry analysis was used to observe the expression of ITIH4 in mice liver tissue. In mice model, IL-6, TNF-α, as well as IL-10 increased in the infection arms than the normal control arm. ITIH4 in serum and liver tissue of mice model increased from 1 h to 128 h, which were remarkably different from that of the normal control arm. Besides, ITIH4 increased in the bacterial infection arm greatly than the fungemia arm, mycoplasma pneumoniae (MP) arm and febrile arm in clinical serum samples. Furthermore, using the HepG2 cell line, we demonstrated that ITIH4 was up-regulated at both protein and mRNA levels upon dose- and time- response treatments with IL-6, as well as LPS. Moreover, IL-6 or LPS mediated induction of ITIH4 expression could be significantly decreased by treatment with an JAK/STAT inhibitor in protein or mRNA level. No changes were observed after TNF-α or IL-10 stimulation. ITIH4 might be a critical inflammatory biomarker which correlated with the development of BSI, especially with bacterial bloodstream infection. It is expected that this study would provide some insights into potential functional mechanisms underlying BSI.
Collapse
Affiliation(s)
- Yating Ma
- Department of Laboratory Medicine, Chinese PLA General Hospital, Beijing 100853, China; Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Ruibing Li
- Department of Laboratory Medicine, Chinese PLA General Hospital, Beijing 100853, China
| | - Jianan Wang
- Department of Laboratory Medicine, Chinese PLA General Hospital, Beijing 100853, China
| | - Wencan Jiang
- Department of Laboratory Medicine, Chinese PLA General Hospital, Beijing 100853, China
| | - Xiaozhou Yuan
- Department of Laboratory Medicine, Chinese PLA General Hospital, Beijing 100853, China
| | - Jiayue Cui
- Department of Laboratory Medicine, Chinese PLA General Hospital, Beijing 100853, China
| | - Chengbin Wang
- Department of Laboratory Medicine, Chinese PLA General Hospital, Beijing 100853, China; Nankai University School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
3
|
Miao Z, Ding K, Jin S, Dai L, Dai C, Li X. Using serum peptidomics to discovery the diagnostic marker for different stage of ulcerative colitis. J Pharm Biomed Anal 2020; 193:113725. [PMID: 33181429 DOI: 10.1016/j.jpba.2020.113725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 10/23/2022]
Abstract
The use of peptidomics to find diagnostic markers has attracted increasing clinical attention. Ulcerative colitis (UC) is a type of inflammatory bowel disease, and the traditional auxiliary diagnostic technique is colonoscopy. However, this invasive method is not effective in distinguishing between patients with endoscopic remission and healthy people, which carries the risk of delayed diagnosis of UC. In this study, we used peptidomics to find serum diagnostic markers for different stages of UC. A total of 78 serum samples were collected to form a training set (60 samples) and a testing set (18 samples). Among them, patients with active UC, remitting UC and healthy people accounted for one third each. The nano-liquid chromatography coupled with hybrid linear trap quadrupole orbitrap mass spectrometry was used for detection of low molecular weight peptides in serum. According to the protein database search and de novo sequencing algorithm, forty peptides were simultaneously identified in all samples. Six biomarker peptides were screened in the training set through orthogonal partial least-squares-discriminant analysis and receiver operating characteristic curve analysis. These six peptides were derived from proteins involved in coagulation and complement activation. We evaluated the diagnostic ability of the six peptides in the testing set through hierarchical cluster analysis, and showed that perturbation of these peptides could distinguish patients with active UC, patients with remitting UC and healthy people. This study validated the feasibility of serum peptidomics for the discovery of diagnostic markers, and provided a potential method for diagnosing different stages of UC.
Collapse
Affiliation(s)
- Zhiwei Miao
- Department of Gastroenterology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, China
| | - Kang Ding
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, China
| | - Shuyin Jin
- First Clinical Medical College, Nanjing University of Chinese Medicine, China
| | - Lin Dai
- College of Life Sciences, Nanjing Agricultural University, China
| | - Chen Dai
- College of Life Sciences, Nanjing Agricultural University, China.
| | - Xiang Li
- Department of Gastroenterology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, China.
| |
Collapse
|
4
|
Ma Y, Wen X, Kong Y, Chen C, Yang M, He S, Wang J, Wang C. Identification of New Peptide Biomarkers for Bacterial Bloodstream Infection. Proteomics Clin Appl 2019; 14:e1900075. [PMID: 31579992 DOI: 10.1002/prca.201900075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/02/2019] [Indexed: 12/26/2022]
Abstract
PURPOSE Due to a lack of effective early diagnostic measures, new diagnostic methods for bacterial bloodstream infections (BSIs) are urgently needed. A protein-peptide profiling approach can be used to identify novel diagnostic biomarkers of BSIs. EXPERIMENTAL DESIGN In this study, MALDI-TOF MS and nano-LC/ESI-MS/MS are used to analyze serum peptides. In addition, GO and network analyses are conducted as a means of analyzing these potential protein markers. Finally, the potential biomarkers are verified in independent clinical samples via ELISA. RESULTS m/z 1533.8, 2794.3, 3597.3, 5007.3, and 7816.7 reveal an identical trend; the intensity of m/z 1533.8, 2794.3, and 3597.3 are higher in the infection group relative to controls, whereas the intensity of m/z 5007.3 and 7816.7 are lower in the infection group. Four peaks are successfully identified including ITIH4, KNG1, SAA2, and C3. GO and network analyses find these proteins to form an interaction network, which may be correlated with BSI. ELISA results indicate that ITIH4, KNG1, and SAA2 are effective in differentiating infected from normal control group and the febrile group. CONCLUSIONS AND CLINICAL RELEVANCE These biomarkers have the potential to offer new insights into the signaling networks underlying the development and progression of BSI.
Collapse
Affiliation(s)
- Yating Ma
- Department of Clinical Laboratory, The PLA General Hospital, Beijing, 100853, China.,Nankai University School of Medicine, Nankai University, Tianjin, 300071, China
| | - Xinyu Wen
- Department of Clinical Laboratory, The PLA General Hospital, Beijing, 100853, China
| | - Yi Kong
- Department of Clinical Laboratory, The PLA General Hospital, Beijing, 100853, China.,Jining No. 1 People's Hospital, Jining Medical University, Jining, 272000, China
| | - Chen Chen
- Department of Clinical Laboratory, The PLA General Hospital, Beijing, 100853, China
| | - Ming Yang
- Department of Clinical Laboratory, The PLA General Hospital, Beijing, 100853, China.,Department of Laboratory Medicine, The Third XiangYa Hospital of Central South University, Changsha, 410013, China
| | - Shang He
- Department of Clinical Laboratory, The PLA General Hospital, Beijing, 100853, China
| | - Jianan Wang
- Department of Clinical Laboratory, The PLA General Hospital, Beijing, 100853, China
| | - Chengbin Wang
- Department of Clinical Laboratory, The PLA General Hospital, Beijing, 100853, China.,Nankai University School of Medicine, Nankai University, Tianjin, 300071, China
| |
Collapse
|