1
|
Li B, Shaikh F, Zamzam A, Abdin R, Qadura M. Investigating the Prognostic Potential of Plasma ST2 in Patients with Peripheral Artery Disease: Identification and Evaluation. Proteomes 2024; 12:24. [PMID: 39311197 PMCID: PMC11417877 DOI: 10.3390/proteomes12030024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/26/2024] Open
Abstract
Soluble interleukin 1 receptor-like 1 (ST2) is a circulating protein demonstrated to be associated with cardiovascular diseases; however, it has not been studied as a biomarker for peripheral artery disease (PAD). Using a prospectively recruited cohort of 476 patients (312 with PAD and 164 without PAD), we conducted a prognostic study of PAD using clinical/biomarker data. Plasma concentrations of three circulating proteins [ST2, cytokine-responsive gene-2 (CRG-2), vascular endothelial growth factor (VEGF)] were measured at baseline and the cohort was followed for 2 years. The outcome of interest was a 2-year major adverse limb event (MALE; composite of major amputation, vascular intervention, or acute limb ischemia). Using 10-fold cross-validation, a random forest model was trained using clinical characteristics and plasma ST2 levels. The primary model evaluation metric was the F1 score. Out of the three circulating proteins analyzed, ST2 was the only one that was statistically significantly higher in individuals with PAD compared to patients without PAD (mean concentration in plasma of 9.57 [SD 5.86] vs. 11.39 [SD 6.43] pg/mL, p < 0.001). Over a 2-year period, 28 (9%) patients with PAD experienced MALE. Our predictive model, incorporating clinical features and plasma ST2 levels, achieved an F1 score of 0.713 for forecasting 2-year MALE outcomes. Patients identified as high-risk by this model showed a significantly increased likelihood of developing MALE (HR 1.06, 95% CI 1.02-1.13, p = 0.003). By combining clinical characteristics and plasma ST2 levels, our proposed predictive model offers accurate risk assessment for 2-year MALE in PAD patients. This algorithm supports risk stratification in PAD, guiding clinical decisions regarding further vascular evaluation, specialist referrals, and appropriate medical or surgical interventions, thereby potentially enhancing patient outcomes.
Collapse
Affiliation(s)
- Ben Li
- Department of Surgery, University of Toronto, Toronto, ON M5S 1A1, Canada;
- Division of Vascular Surgery, St. Michael’s Hospital, Unity Health Toronto, University of Toronto, Toronto, ON M5B 1W8, Canada; (F.S.); (A.Z.)
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A1, Canada
- Temerty Centre for Artificial Intelligence Research and Education in Medicine (T-CAIREM), University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Farah Shaikh
- Division of Vascular Surgery, St. Michael’s Hospital, Unity Health Toronto, University of Toronto, Toronto, ON M5B 1W8, Canada; (F.S.); (A.Z.)
| | - Abdelrahman Zamzam
- Division of Vascular Surgery, St. Michael’s Hospital, Unity Health Toronto, University of Toronto, Toronto, ON M5B 1W8, Canada; (F.S.); (A.Z.)
| | - Rawand Abdin
- Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada;
| | - Mohammad Qadura
- Department of Surgery, University of Toronto, Toronto, ON M5S 1A1, Canada;
- Division of Vascular Surgery, St. Michael’s Hospital, Unity Health Toronto, University of Toronto, Toronto, ON M5B 1W8, Canada; (F.S.); (A.Z.)
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A1, Canada
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Unity Health Toronto, University of Toronto, Toronto, ON M5B 1W8, Canada
| |
Collapse
|
2
|
Kiełbowski K, Skórka P, Plewa P, Bakinowska E, Pawlik A. The Role of Alarmins in the Pathogenesis of Atherosclerosis and Myocardial Infarction. Curr Issues Mol Biol 2024; 46:8995-9015. [PMID: 39194749 DOI: 10.3390/cimb46080532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/30/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
Atherosclerosis is a condition that is associated with lipid accumulation in the arterial intima. Consequently, the enlarging lesion, which is also known as an atherosclerotic plaque, may close the blood vessel lumen, thus leading to organ ischaemia. Furthermore, the plaque may rupture and initiate the formation of a thrombus, which can cause acute ischaemia. Atherosclerosis is a background pathological condition that can eventually lead to major cardiovascular diseases such as acute coronary syndrome or ischaemic stroke. The disorder is associated with an altered profile of alarmins, stress response molecules that are secreted due to cell injury or death and that induce inflammatory responses. High-mobility group box 1 (HMGB1), S100 proteins, interleukin-33, and heat shock proteins (HSPs) also affect the behaviour of endothelial cells and vascular smooth muscle cells (VSMCs). Thus, alarmins control the inflammatory responses of endothelial cells and proliferation of VSMCs, two important processes implicated in the pathogenesis of atherosclerosis. In this review, we will discuss the role of alarmins in the pathophysiology of atherosclerosis and myocardial infarction.
Collapse
Affiliation(s)
- Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Patryk Skórka
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Paulina Plewa
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland
| | - Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| |
Collapse
|
3
|
Thazhathveettil J, Kumawat AK, Demirel I, Sirsjö A, Paramel GV. Vascular smooth muscle cells in response to cholesterol crystals modulates inflammatory cytokines release and promotes neutrophil extracellular trap formation. Mol Med 2024; 30:42. [PMID: 38519881 PMCID: PMC10960408 DOI: 10.1186/s10020-024-00809-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/14/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND The formation and accumulation of cholesterol crystals (CC) at the lesion site is a hallmark of atherosclerosis. Although studies have shown the importance of vascular smooth muscle cells (VSMCs) in the disease atherosclerosis, little is known about the molecular mechanism behind the uptake of CC in VSMCs and their role in modulating immune response. METHODS Human aortic smooth muscle cells were cultured and treated with CC. CC uptake and CC mediated signaling pathway and protein induction were studied using flow cytometry, confocal microscopy, western blot and Olink proteomics. Conditioned medium from CC treated VSMCs was used to study neutrophil adhesion, ROS production and phagocytosis. Neutrophil extracellular traps (NETs) formations were visualized using confocal microscopy. RESULTS VSMCs and macrophages were found around CC clefts in human carotid plaques. CC uptake in VSMCs are largely through micropinocytosis and phagocytosis via PI3K-AkT dependent pathway. The uptake of CC in VSMCs induce the release inflammatory proteins, including IL-33, an alarming cytokine. Conditioned medium from CC treated VSMCs can induce neutrophil adhesion, neutrophil reactive oxygen species (ROS) and neutrophil extracellular traps (NETs) formation. IL-33 neutralization in conditioned medium from CC treated VSMCs inhibited neutrophil ROS production and NETs formation. CONCLUSION We demonstrate that VSMCs due to its vicinity to CC clefts in human atherosclerotic lesion can modulate local immune response and we further reveal that the interaction between CC and VSMCs impart an inflammatory milieu in the atherosclerotic microenvironment by promoting IL-33 dependent neutrophil influx and NETs formation.
Collapse
Affiliation(s)
- Jishamol Thazhathveettil
- Cardiovascular Research Centre, School of Medical Sciences, Faculty of Medicine and Health, Örebro University, 70182, Örebro, Sweden
- School of Medical Sciences, Örebro University, 70182, Örebro, Sweden
| | - Ashok Kumar Kumawat
- Cardiovascular Research Centre, School of Medical Sciences, Faculty of Medicine and Health, Örebro University, 70182, Örebro, Sweden
- School of Medical Sciences, Örebro University, 70182, Örebro, Sweden
| | - Isak Demirel
- School of Medical Sciences, Örebro University, 70182, Örebro, Sweden
| | - Allan Sirsjö
- Cardiovascular Research Centre, School of Medical Sciences, Faculty of Medicine and Health, Örebro University, 70182, Örebro, Sweden
- School of Medical Sciences, Örebro University, 70182, Örebro, Sweden
| | - Geena Varghese Paramel
- Cardiovascular Research Centre, School of Medical Sciences, Faculty of Medicine and Health, Örebro University, 70182, Örebro, Sweden.
- School of Medical Sciences, Örebro University, 70182, Örebro, Sweden.
| |
Collapse
|
4
|
Alfadul H, Sabico S, Alnaami AM, Amer OE, Hussain SD, Wani K, Clerici M, Al-Daghri NM. Acute Glycemic Control in Prediabetes Individuals Favorably Alters Serum NLRP3 Inflammasome and Related Interleukins. Int J Mol Sci 2023; 24:13837. [PMID: 37762140 PMCID: PMC10530894 DOI: 10.3390/ijms241813837] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/03/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Hyperglycemia associated with prediabetes (PD) alters NLRP3 inflammasome activity and related interleukins, yet no study has evaluated the expression of the NLRP3 inflammasome complex and related interleukins in individuals with a PD condition that did or did not develop type 2 diabetes mellitus (T2DM). This study investigated the effect of 6 months of lifestyle modification on the expression of the NLRP3 inflammasome and related interleukins (1α, 1β, 18, 33 and 37) in the sera of individuals with a PD condition that did or did not develop T2DM. This interventional study included 67 Saudi adults (mean age = 41.9 ± 8.0 years, mean BMI = 33.2 ± 5.5 kg/m2). Overnight-fasting serum samples were collected at baseline and at the 6-month follow-up. Serum levels of NLRP3, capsase-1 and related ILs were analyzed at both visits using commercially available immunoassay kits. Results showed that IL-1α increased in the PD group that developed T2DM (p = 0.046), IL-33 decreased in the PD group that reverted to normal (p < 0.001) and NLRP3 decreased in the PD group that remained PD (p = 0.01). Results also showed a positive over-time correlation between NLRP3 and both IL-1α and IL-33 (p < 0.001 and p = 0.028, respectively). In conclusion, glycemic control favorably altered NLRP3 inflammasome complex activity, and lifestyle modification in PD individuals is crucial in reversing harmful metabolic and inflammatory phenotypes.
Collapse
Affiliation(s)
- Hend Alfadul
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Shaun Sabico
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah M. Alnaami
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Osama E. Amer
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Syed D. Hussain
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Kaiser Wani
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mario Clerici
- Department of Medical-Surgery Physiopathology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Nasser M. Al-Daghri
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
5
|
Witkowska A, Staciwa M, Duraj I, Wozniak E, Broncel M, Gorzelak-Pabis P. Interleukin-33/sST2: Dynamic assessment in patients with acute coronary syndrome. Adv Med Sci 2023; 68:195-201. [PMID: 37216709 DOI: 10.1016/j.advms.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/28/2023] [Accepted: 05/09/2023] [Indexed: 05/24/2023]
Abstract
PURPOSE Interleukin (IL)-33 and its soluble receptor ST2 (sST2) play a crucial role in the immune response. sST2 has been approved by the Food and Drug Administration as a prognostic biomarker of mortality in chronic heart failure patients, however, the role of IL-33 and sST2 in atherosclerotic cardiovascular disease remains unclear. The aim of this study was to measure serum level of IL-33 and sST2 of patients at the onset of acute coronary syndrome (ACS) and 3 months after primary percutaneous revascularization. PATIENTS AND METHODS Forty patients were divided into ST segment elevation myocardial infarction (STEMI) group, non-ST segment elevation myocardial infarction (NSTEMI) and unstable angina (UA) group. IL-33 and sST2 level were measured with ELISA. Additionally, IL-33 expression in peripheral blood mononuclear cells (PBMCs), was evaluated. RESULTS All ACS patients had a significantly lower level of sST2 3 months after ACS as compared to the baseline (p < 0.039). The STEMI patients had higher serum levels of IL-33 at the moment of ACS as compared to 3 months after the event, with an average decrease of 17.87 pg/ml (p < 0.007). Conversely, sST2 serum levels were still high after 3 months following an ACS in STEMI patients. ROC curve demonstrated that increased IL-33 serum level could be STEMI predictor. CONCLUSIONS The assessment of the baseline and dynamics of changes in IL-33 and sST2 concentrations in patients with ACS may be important for the diagnostic process and may help in understanding of how the immune mechanisms work at the moment of an ACS event.
Collapse
Affiliation(s)
- Anna Witkowska
- Department of Internal Diseases and Clinical Pharmacology, Laboratory of Tissue Immunopharmacology, Medical University of Lodz, Lodz, Poland.
| | - Mateusz Staciwa
- Department of Internal Diseases and Clinical Pharmacology, Laboratory of Tissue Immunopharmacology, Medical University of Lodz, Lodz, Poland
| | - Iwona Duraj
- Department of Internal Diseases and Clinical Pharmacology, Laboratory of Tissue Immunopharmacology, Medical University of Lodz, Lodz, Poland
| | - Ewelina Wozniak
- Department of Internal Diseases and Clinical Pharmacology, Laboratory of Tissue Immunopharmacology, Medical University of Lodz, Lodz, Poland
| | - Marlena Broncel
- Department of Internal Diseases and Clinical Pharmacology, Laboratory of Tissue Immunopharmacology, Medical University of Lodz, Lodz, Poland
| | - Paulina Gorzelak-Pabis
- Department of Internal Diseases and Clinical Pharmacology, Laboratory of Tissue Immunopharmacology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
6
|
Stojkovic S, Kampf S, Harkot O, Nackenhorst M, Brekalo M, Huber K, Hengstenberg C, Neumayer C, Wojta J, Demyanets S. Soluble ST2 in Patients with Carotid Artery Stenosis-Association with Plaque Morphology and Long-Term Outcome. Int J Mol Sci 2023; 24:ijms24109007. [PMID: 37240352 DOI: 10.3390/ijms24109007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/14/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Interleukin (IL-33) and the ST2 receptor are implicated in the pathogenesis of atherosclerosis. Soluble ST2 (sST2), which negatively regulates IL-33 signaling, is an established biomarker in coronary artery disease and heart failure. Here we aimed to investigate the association of sST2 with carotid atherosclerotic plaque morphology, symptom presentation, and the prognostic value of sST2 in patients undergoing carotid endarterectomy. A total of 170 consecutive patients with high-grade asymptomatic or symptomatic carotid artery stenosis undergoing carotid endarterectomy were included in the study. The patients were followed up for 10 years, and the primary endpoint was defined as a composite of adverse cardiovascular events and cardiovascular mortality, with all-cause mortality as the secondary endpoint. The baseline sST2 showed no association with carotid plaque morphology assessed using carotid duplex ultrasound (B 0.051, 95% CI -0.145-0.248, p = 0.609), nor with modified histological AHA classification based on morphological description following surgery (B -0.032, 95% CI -0.194-0.130, p = 0.698). Furthermore, sST2 was not associated with baseline clinical symptoms (B -0.105, 95% CI -0.432-0.214, p = 0.517). On the other hand, sST2 was an independent predictor for long-term adverse cardiovascular events after adjustment for age, sex, and coronary artery disease (HR 1.4, 95% CI 1.0-2.4, p = 0.048), but not for all-cause mortality (HR 1.2, 95% CI 0.8-1.7, p = 0.301). Patients with high baseline sST2 levels had a significantly higher adverse cardiovascular event rate as compared to patients with lower sST2 (log-rank p < 0.001). Although IL-33 and ST2 play a role in the pathogenesis of atherosclerosis, sST2 is not associated with carotid plaque morphology. However, sST2 is an excellent prognostic marker for long-term adverse cardiovascular outcomes in patients with high-grade carotid artery stenosis.
Collapse
Affiliation(s)
- Stefan Stojkovic
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria
| | - Stephanie Kampf
- Department of General Surgery, Division of Vascular Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Olesya Harkot
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria
| | - Maja Nackenhorst
- Department of Pathology, Medical University of Vienna, 1090 Vienna, Austria
| | - Mira Brekalo
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria
| | - Kurt Huber
- 3rd Medical Department with Cardiology and Intensive Care Medicine, Klinik Ottakring, 1160 Vienna, Austria
- Medical School, Sigmund Freud University, 1020 Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, 1090 Vienna, Austria
| | - Christian Hengstenberg
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria
| | - Christoph Neumayer
- Department of General Surgery, Division of Vascular Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Johann Wojta
- Ludwig Boltzmann Institute for Cardiovascular Research, 1090 Vienna, Austria
- Core Facilities, Medical University of Vienna, 1090 Vienna, Austria
| | - Svitlana Demyanets
- Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
7
|
Tsioufis P, Theofilis P, Tsioufis K, Tousoulis D. The Impact of Cytokines in Coronary Atherosclerotic Plaque: Current Therapeutic Approaches. Int J Mol Sci 2022; 23:ijms232415937. [PMID: 36555579 PMCID: PMC9788180 DOI: 10.3390/ijms232415937] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Coronary atherosclerosis is a chronic pathological process that involves inflammation together with endothelial dysfunction and lipoprotein dysregulation. Experimental studies during the past decades have established the role of inflammatory cytokines in coronary artery disease, namely interleukins (ILs), tumor necrosis factor (TNF)-α, interferon-γ, and chemokines. Moreover, their value as biomarkers in disease development and progression further enhance the validity of this interaction. Recently, cytokine-targeted treatment approaches have emerged as potential tools in the management of atherosclerotic disease. IL-1β, based on the results of the CANTOS trial, remains the most validated option in reducing the residual cardiovascular risk. Along the same line, colchicine was also proven efficacious in preventing major adverse cardiovascular events in large clinical trials of patients with acute and chronic coronary syndrome. Other commercially available agents targeting IL-6 (tocilizumab), TNF-α (etanercept, adalimumab, infliximab), or IL-1 receptor antagonist (anakinra) have mostly been assessed in the setting of other inflammatory diseases and further testing in atherosclerosis is required. In the future, potential targeting of the NLRP3 inflammasome, anti-inflammatory IL-10, or atherogenic chemokines could represent appealing options, provided that patient safety is proven to be of no concern.
Collapse
|
8
|
Tembhre MK, Sriwastva MK, Hote MP, Srivastava S, Solanki P, Imran S, Lakshmy R, Sharma A, Jaiswal K, Upadhyay AD. Interleukin-33 Induces Neutrophil Extracellular Trap (NET) Formation and Macrophage Necroptosis via Enhancing Oxidative Stress and Secretion of Proatherogenic Factors in Advanced Atherosclerosis. Antioxidants (Basel) 2022; 11:antiox11122343. [PMID: 36552551 PMCID: PMC9774908 DOI: 10.3390/antiox11122343] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/16/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Interleukin-33 (IL-33) acts as an 'alarmin', and its role has been demonstrated in driving immune regulation and inflammation in many human diseases. However, the precise mechanism of action of IL-33 in regulating neutrophil and macrophage functioning is not defined in advanced atherosclerosis (aAT) patients. Further, the role of IL-33 in neutrophil extracellular trap (NET) formation in aAT and its consequent effect on macrophage function is not known. In the present study, we recruited n = 52 aAT patients and n = 52 control subjects. The neutrophils were isolated from both groups via ficoll/percoll-based density gradient centrifugation. The effect of IL-33 on the NET formation ability of the neutrophils was determined in both groups. Monocytes, isolated via a positive selection method, were used to differentiate them into macrophages from each of the study subjects and were challenged by IL-33-primed NETs, followed by the measurement of oxidative stress by calorimetric assay and the expression of the proinflammatory molecules by quantitative PCR (qPCR). Transcript and protein expression was determined by qPCR and immunofluorescence/ELISA, respectively. The increased expression of IL-33R (ST-2) was observed in the neutrophils, along with an increased serum concentration of IL-33 in aAT compared to the controls. IL-33 exacerbates NET formation via specifically upregulating CD16 expression in aAT. IL-33-primed NETs/neutrophils increased the cellular oxidative stress levels in the macrophages, leading to enhanced macrophage necroptosis and the release of atherogenic factors and matrix metalloproteinases (MMPs) in aAT compared to the controls. These findings suggested a pathogenic effect of the IL-33/ST-2 pathway in aAT patients by exacerbating NET formation and macrophage necroptosis, thereby facilitating the release of inflammatory factors and the release of MMPs that may be critical for the destabilization/rupture of atherosclerotic plaques in aAT. Targeting the IL-33/ST-2-NETs axis may be a promising therapeutic target for preventing plaque instability/rupture and its adverse complications in aAT.
Collapse
Affiliation(s)
- Manoj Kumar Tembhre
- Department of Cardiac Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
- Correspondence: ; Tel.: +91-880-050-2994
| | | | - Milind Padmakar Hote
- Department of Cardiothoracic & Vascular Surgery, C. T. Centre, AIIMS, New Delhi 110029, India
| | - Shikha Srivastava
- Department of Microbiology & Immunology, University of Louisville, Louisville, KY 40202, USA
| | - Priyanka Solanki
- Department of Cardiac Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Shafaque Imran
- Department of Cardiac Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Ramakrishnan Lakshmy
- Department of Cardiac Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Alpana Sharma
- Department of Biochemistry, AIIMS, New Delhi 110029, India
| | - Kailash Jaiswal
- Department of Cardiac Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | | |
Collapse
|
9
|
Liu R, Liu L, Wei C, Li D. IL-33/ST2 immunobiology in coronary artery disease: A systematic review and meta-analysis. Front Cardiovasc Med 2022; 9:990007. [PMID: 36337880 PMCID: PMC9630943 DOI: 10.3389/fcvm.2022.990007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 10/06/2022] [Indexed: 11/29/2022] Open
Abstract
The IL-33/ST2 axis is reported to be controversially associated with coronary artery disease (CAD). A systematic review of the association between the IL-33/ST2 axis and CAD revealed that IL-33/ST2 plays a protective role in CAD and serum sST2 and IL-33 levels are increased in patients with cardiovascular disease. Therefore, the association of IL-33/ST2 single nucleotide polymorphisms (SNPs) with CAD prevalence, prognosis, and risk factors was assessed by performing a meta-analysis. Through a literature search of relevant articles in various databases using the relevant keywords, seven studies were included in the analysis. The meta-analysis showed that the IL-33/ST2 axis was associated with increased CAD risk [pooled odds ratio (OR) = 1.17, 95% confidence interval (CI): 1.13–1.20]. Gene subgroup analysis showed a close association of IL1RL1 (OR = 1.25, 95% CI: 1.20–1.30; I2 = 85.9%; p = 0.000) and IL1RAcP (OR = 1.42, 95% CI: 1.26–1.60; I2 = 27.1%; p = 0.203) with increased CAD risk. However, the association for the IL-33 gene was not statistically significant. SNPs rs7044343 (T), rs10435816 (G), rs11792633 (C) in IL-33 gene were associated with a protective effect in CAD. However, rs7025417 (T) in IL-33, rs11685424 (G) in IL1RL1, rs950880 (A) in sST2, and rs4624606 (A) in IL1RAcP were related to increased CAD risk. Overall, polymorphisms in IL-33/ST2 axis components were associated with increased CAD risk. These results may help identify key features of IL-33/ST2 immunobiology in CAD along with potential treatment strategies to lower disease burden.
Collapse
|
10
|
Scicchitano P, Marzullo A, Santoro A, Zito A, Cortese F, Galeandro C, Ciccone AS, Angiletta D, Manca F, Pulli R, Navarese EP, Gurbel PA, Ciccone MM. The Prognostic Role of ST2L and sST2 in Patients Who Underwent Carotid Plaque Endarterectomy: A Five-Year Follow-Up Study. J Clin Med 2022; 11:jcm11113142. [PMID: 35683529 PMCID: PMC9181783 DOI: 10.3390/jcm11113142] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 02/04/2023] Open
Abstract
Soluble suppressor of tumorigenicity (sST)-2 plasma concentration is related to atherosclerosis. The aim of this study was to assess the prognostic impact of sST2 and its membrane-associated form (ST2L) in patients with carotid atherosclerotic plaque who underwent endarterectomy (CEA). Eighty-two consecutive patients (age range: 48−86 years) who underwent CEA were enrolled. Anthropometric, clinical, instrumental, and laboratory evaluations were gathered. Thirty-seven (45%) patients were symptomatic of cerebrovascular diseases. Patients underwent a five-year follow-up. Phone calls and the analysis of national and regional databases were performed in order to evaluate the occurrence of the primary outcome (all-cause mortality). The population was divided according to survival status. Statins were administered in 81% and 87.5% of survivors and non-survivors, respectively. sST2 levels were higher in non-survivors than in survivors (117.0 ± 103.9 vs. 38.0 ± 30.0 ng/mL, p < 0.001) and in symptomatic individuals, compared with asymptomatic (80.3 ± 92.1 ng/mL vs. 45.4 ± 41.4 ng/mL, p = 0.02). ROC curve analysis identified sST2 cut-off: >98.44 ng/mL as the best predictor for mortality. At the one-year follow-up, the survival rate decreased up to 20% in patients with sST2 higher than the cut-off value. A multivariate regression analysis revealed that only sST2 (HR: 1.012, 95% CI: 1.008−1.016, p < 0.0001) and triglycerides plasma levels (HR: 1.008, 95% CI: 1.002−1.015, p = 0.0135) remained significantly associated with all-cause mortality. ST2L was not associated with all-cause mortality risk. sST2 may act as an independent prognostic determinant of all-cause mortality and symptomatic cerebrovascular diseases in patients with carotid atherosclerotic plaque who underwent CEA.
Collapse
Affiliation(s)
- Pietro Scicchitano
- Cardiology Department, Hospital “F. Perinei”, 70022 Altamura, Italy
- Correspondence: ; Tel.: +39-080-3108286
| | - Andrea Marzullo
- Pathology Division, Department of Emergency and Organ Transplantation, University of Bari, 70121 Bari, Italy; (A.M.); (A.S.C.)
| | - Annarita Santoro
- Section of Cardiovascular Diseases, Department of Emergency and Organ Transplantation, University of Bari, 70121 Bari, Italy; (A.S.); (A.Z.); (F.C.); (M.M.C.)
| | - Annapaola Zito
- Section of Cardiovascular Diseases, Department of Emergency and Organ Transplantation, University of Bari, 70121 Bari, Italy; (A.S.); (A.Z.); (F.C.); (M.M.C.)
| | - Francesca Cortese
- Section of Cardiovascular Diseases, Department of Emergency and Organ Transplantation, University of Bari, 70121 Bari, Italy; (A.S.); (A.Z.); (F.C.); (M.M.C.)
| | - Cristina Galeandro
- Section of Vascular Surgery, Department of Emergency and Organ Transplantation, University of Bari, 70121 Bari, Italy; (C.G.); (D.A.); (R.P.)
| | - Andrea Sebastiano Ciccone
- Pathology Division, Department of Emergency and Organ Transplantation, University of Bari, 70121 Bari, Italy; (A.M.); (A.S.C.)
| | - Domenico Angiletta
- Section of Vascular Surgery, Department of Emergency and Organ Transplantation, University of Bari, 70121 Bari, Italy; (C.G.); (D.A.); (R.P.)
| | - Fabio Manca
- Department of Science of Educational Psychology and Communication, University of Bari, 70121 Bari, Italy;
| | - Raffaele Pulli
- Section of Vascular Surgery, Department of Emergency and Organ Transplantation, University of Bari, 70121 Bari, Italy; (C.G.); (D.A.); (R.P.)
| | - Eliano Pio Navarese
- Inova Center for Thrombosis Research and Drug Development, Inova Heart and Vascular Institute, Inova Fairfax Medical Center, Falls Church, VA 22042, USA; (E.P.N.); (P.A.G.)
| | - Paul A. Gurbel
- Inova Center for Thrombosis Research and Drug Development, Inova Heart and Vascular Institute, Inova Fairfax Medical Center, Falls Church, VA 22042, USA; (E.P.N.); (P.A.G.)
| | - Marco Matteo Ciccone
- Section of Cardiovascular Diseases, Department of Emergency and Organ Transplantation, University of Bari, 70121 Bari, Italy; (A.S.); (A.Z.); (F.C.); (M.M.C.)
| |
Collapse
|
11
|
Evans BR, Yerly A, van der Vorst EPC, Baumgartner I, Bernhard SM, Schindewolf M, Döring Y. Inflammatory Mediators in Atherosclerotic Vascular Remodeling. Front Cardiovasc Med 2022; 9:868934. [PMID: 35600479 PMCID: PMC9114307 DOI: 10.3389/fcvm.2022.868934] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/11/2022] [Indexed: 12/23/2022] Open
Abstract
Atherosclerotic vascular disease remains the most common cause of ischemia, myocardial infarction, and stroke. Vascular function is determined by structural and functional properties of the arterial vessel wall, which consists of three layers, namely the adventitia, media, and intima. Key cells in shaping the vascular wall architecture and warranting proper vessel function are vascular smooth muscle cells in the arterial media and endothelial cells lining the intima. Pathological alterations of this vessel wall architecture called vascular remodeling can lead to insufficient vascular function and subsequent ischemia and organ damage. One major pathomechanism driving this detrimental vascular remodeling is atherosclerosis, which is initiated by endothelial dysfunction allowing the accumulation of intimal lipids and leukocytes. Inflammatory mediators such as cytokines, chemokines, and modified lipids further drive vascular remodeling ultimately leading to thrombus formation and/or vessel occlusion which can cause major cardiovascular events. Although it is clear that vascular wall remodeling is an elementary mechanism of atherosclerotic vascular disease, the diverse underlying pathomechanisms and its consequences are still insufficiently understood.
Collapse
Affiliation(s)
- Bryce R. Evans
- Division of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Anaïs Yerly
- Division of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Emiel P. C. van der Vorst
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
- Institute for Molecular Cardiovascular Research (IMCAR) and Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, Aachen, Germany
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, Netherlands
| | - Iris Baumgartner
- Division of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Sarah Maike Bernhard
- Division of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Marc Schindewolf
- Division of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Yvonne Döring
- Division of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich (LMU), Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
- *Correspondence: Yvonne Döring
| |
Collapse
|
12
|
Demyanets S, Stojkovic S, Huber K, Wojta J. The Paradigm Change of IL-33 in Vascular Biology. Int J Mol Sci 2021; 22:ijms222413288. [PMID: 34948083 PMCID: PMC8707059 DOI: 10.3390/ijms222413288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/30/2021] [Accepted: 12/07/2021] [Indexed: 12/30/2022] Open
Abstract
In this review, we focus on the actual understanding of the role of IL-33 in vascular biology in the context of the historical development since the description of IL-33 as a member of IL-1 superfamily and the ligand for ST2 receptor in 2005. We summarize recent data on the biology, structure and signaling of this dual-function factor with both nuclear and extracellular cytokine properties. We describe cellular sources of IL-33, particularly within vascular wall, changes in its expression in different cardio-vascular conditions and mechanisms of IL-33 release. Additionally, we summarize the regulators of IL-33 expression as well as the effects of IL-33 itself in cells of the vasculature and in monocytes/macrophages in vitro combined with the consequences of IL-33 modulation in models of vascular diseases in vivo. Described in murine atherosclerosis models as well as in macrophages as an atheroprotective cytokine, extracellular IL-33 induces proinflammatory, prothrombotic and proangiogenic activation of human endothelial cells, which are processes known to be involved in the development and progression of atherosclerosis. We, therefore, discuss that IL-33 can possess both protective and harmful effects in experimental models of vascular pathologies depending on experimental conditions, type and dose of administration or method of modulation.
Collapse
Affiliation(s)
- Svitlana Demyanets
- Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria;
| | - Stefan Stojkovic
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Kurt Huber
- 3rd Medical Department with Cardiology and Intensive Care Medicine, Clinic Ottakring, 1160 Vienna, Austria;
- Medical School, Sigmund Freud University, 1020 Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, 1090 Vienna, Austria
| | - Johann Wojta
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria;
- Ludwig Boltzmann Institute for Cardiovascular Research, 1090 Vienna, Austria
- Core Facilities, Medical University of Vienna, 1090 Vienna, Austria
- Correspondence: ; Tel.: +43-1-40400-73500; Fax: +43-1-40400-73586
| |
Collapse
|
13
|
Zivanovic S, Papic M, Vucicevic T, Miletic Kovacevic M, Jovicic N, Nikolic N, Milasin J, Paunovic V, Trajkovic V, Mitrovic S, Lukic ML, Lukic A, Ljujic B. Periapical lesions in two inbred strains of rats differing in immunological reactivity. Int Endod J 2021; 55:64-78. [PMID: 34614243 DOI: 10.1111/iej.13638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 12/13/2022]
Abstract
AIM To investigate the influence of strain differences in immune responses on the pathogenesis of experimental periapical lesions in Dark Agouti (DA) and Albino Oxford (AO) inbred strains of rats. METHODOLOGY Periapical lesions were induced in male DA and AO rats by pulp exposure of the first mandibular right molars to the oral environment. Animals were killed 21 days after pulp exposure. The mandibular jaws were retrieved and prepared for radiographic, pathohistological, immunohistochemical analysis, real-time PCR and flow cytometry. Blood samples and the supernatant of periapical lesions were collected for measurement of cytokines and oxidative stress marker levels. Statistical analysis was performed using the Kruskal-Wallis H and Mann-Whitney U non-parametric tests or parametric One-Way anova and Independent Samples T-test to determine the differences between groups depending on the normality of the data. A significant difference was considered when p values were <.05. RESULTS DA rats developed significantly larger (p < .05) periapical lesions compared to AO rats as confirmed by radiographic and pathohistological analysis. The immunohistochemical staining intensity for CD3 was significantly greater in periapical lesions of DA rats compared to AO rats (p < .05). In DA rats, periapical lesions had a significantly higher (p < .05) percentage of CD3+ cells compared to AO rats. Also, the percentage of INF-γ, IL-17 and IL-10 CD3+CD4+ cells was significantly higher in DA rats (p < .05). DA rats had a significantly higher Th17/Th10 ratio. RT-PCR expression of IL-1β, INF-γ and IL-17 genes was significantly higher in periapical lesions of DA compared to AO rats (p < .05). The receptor activator of nuclear factor kappa-Β ligand/osteoprotegerin ratio was higher in DA compared to AO rats with periapical lesions (p < .05). Systemic levels of TNF-α and IL-6 were significantly higher in DA compared to AO rats (p < .05). Levels of lipid peroxidation measured as thiobarbituric acid reactive substances and reduced glutathione were significantly higher (p < .05) in the supernatant in the periapical lesions of DA rats. CONCLUSION After pulp exposure, DA rats developed much larger periapical lesions compared to AO rats. Genetically determined differences in immunopathology have been demonstrated to be a significant element defining the severity of periapical lesions.
Collapse
Affiliation(s)
- Suzana Zivanovic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Milos Papic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Tamara Vucicevic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Marina Miletic Kovacevic
- Department of Histology and Embryology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Nemanja Jovicic
- Department of Histology and Embryology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Nadja Nikolic
- Department of Biology and Human Genetics, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - Jelena Milasin
- Department of Biology and Human Genetics, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - Verica Paunovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vladimir Trajkovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Slobodanka Mitrovic
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Miodrag L Lukic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Aleksandra Lukic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Biljana Ljujic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
14
|
Siniscalchi A, Murphy S, Gray C, De Sarro G, Gallelli L. Biomarkers in unstable carotid plaque: Physiopathology and Prediction. Cardiovasc Hematol Agents Med Chem 2021; 20:13-19. [PMID: 34468303 DOI: 10.2174/1871525719666210901131509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/17/2021] [Accepted: 07/14/2021] [Indexed: 11/22/2022]
Abstract
AIMS To study the role of cytokines and vascular inflammatory biomarkers in unstable carotid plaque. BACKGROUND Clinical studies showed that not only the degree of stenosis but also the type of carotid plaque can be responsible for ipsilateral ischemic stroke. OBJECTIVE The objective of this study is to suggest a role for vulnerable carotid atherosclerotic disease in the occurrence of ischemic stroke. METHODS PubMed, Embase, Cochrane library, and reference lists have been used to evaluate articles published until February 15, 2021. RESULTS Several factors may be involved in unstable plaque. Clinical studies support the involvement of brain inflammatory biomarkers as well as cytokines in the unstable carotid plaque. CONCLUSIONS Biomarkers could help to stratify patients with a vulnerable carotid plaque and to personalize the drug treatment. In this review, we briefly discuss the characteristics of vulnerable plaque and the role of biomarkers in the vulnerable carotid plaque.
Collapse
Affiliation(s)
- Antonio Siniscalchi
- Department of Neurology and Stroke Unit, Annunziata Hospital of Cosenza, Cosenza, Italy
| | - Sean Murphy
- General Medicine, Stroke Unit, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Cleona Gray
- Vascular and Endovascular Surgery Unit, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Giovambattista De Sarro
- Chair of Pharmacology, Department of Health Science, School of Medicine, University of Catanzaro, Clinical Pharmacology Unit, Mater Domini University Hospital, Catanzaro, Italy
| | - Luca Gallelli
- Department of Health Science, School of Medicine, University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
15
|
Xiang D, Li Y, Cao Y, Huang Y, Zhou L, Lin X, Qiao Y, Li X, Liao D. Different Effects of Endothelial Extracellular Vesicles and LPS-Induced Endothelial Extracellular Vesicles on Vascular Smooth Muscle Cells: Role of Curcumin and Its Derivatives. Front Cardiovasc Med 2021; 8:649352. [PMID: 34150863 PMCID: PMC8210670 DOI: 10.3389/fcvm.2021.649352] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/07/2021] [Indexed: 12/25/2022] Open
Abstract
Background: During the progression of atherosclerosis (AS), the vascular endothelial and smooth muscle cells are reciprocally regulated by extracellular vesicles (EVs). EVs have different effects on pathological and physiological processes due to the different cargoes contained in EVs. Purpose: To study the effects of endothelial cells-derived EVs on normal and inflammatory conditions. To investigate the effects of curcumin and curcumin derivatives (Nicotinic-curcumin) on endothelial EVs. Methods: EVs were isolated from human umbilical vein endothelial cells (HUVECs) by ultracentrifugation. To examined the effect of normal and LPS-induced endothelial cells-derived EVs on the proliferation of human aortic smooth muscle cells (HASMCs), the CCK-8 assay was performed. Transwell and wound healing assays were conducted to assess cell migration. The effects of EVs on lipid accumulation following treatment with oxidized low-density lipoprotein (Ox-LDL) were evaluated with the oil red O staining assay and HPLC. The number of EVs was calculated using the nanoparticle tracking analysis (NTA) and BCA. The expression levels of Rab27a and Rab27b that regulate the EVs secretion were measured by Western blotting assay. The differential expression of miRNAs in endothelial EVs and LPS-induced endothelial EVs was analyzed using miRNA-Sequencing (miRNA-Seq) and RT-PCR. Results: Treatment with endothelial EVs reduced the proliferation and migration of HASMCs as well as lipid accumulation in HASMCs. However, treatment with LPS-induced endothelial EVs did not inhibit the migration of HASMCs or lipid accumulation, instead it promoted the proliferation of HASMCs. Treatment with the two types of EVs induced differential expression of several miRNAs, including miR-92a-3p, miR-126-5p, miR-125a-3p, miR-143-3p, etc. Moreover, 1 μg/mL LPS induction greatly increased secretion of endothelial EVs. Treatment with curcumin and nicotinic-curcumin reduced endothelial EVs secretion, possibly by inhibiting inflammation. Conclusion: Endothelial EVs may confer beneficial effects on atherosclerosis by regulating vascular smooth muscle cell (VSMCs), whereas pro-inflammatory factors may disrupt this effect.
Collapse
Affiliation(s)
| | - Yamei Li
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, China
| | - Yuling Cao
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, China
| | - Ying Huang
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Lili Zhou
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, China
| | - Xiulian Lin
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, China
| | - Yong Qiao
- The Third Hospital of Changsha, Changsha, China
| | - Xin Li
- The Third Hospital of Changsha, Changsha, China
| | - Duanfang Liao
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
16
|
Stojkovic S, Demyanets S, Kopp CW, Hengstenberg C, Wojta J, Eichelberger B, Panzer S, Gremmel T. Association of Soluble Suppression of Tumorigenesis 2 (sST2) With Platelet Activation, Monocyte Tissue Factor and Ischemic Outcomes Following Angioplasty and Stenting. Front Cardiovasc Med 2021; 7:605669. [PMID: 33415128 PMCID: PMC7782352 DOI: 10.3389/fcvm.2020.605669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 11/26/2020] [Indexed: 01/22/2023] Open
Abstract
Background: Peripheral artery disease (PAD) patients undergoing infrainguinal angioplasty with stenting suffer high rates of target lesion restenosis and ischemic events. Blood-based prognostic markers in these patients are currently limited. The IL-33/ST2-system is involved in atherothrombosis. Soluble ST2 has been proposed as a biomarker in patients with cardiovascular disease. Aim: To investigate the association of sST2 with platelet activation and monocyte tissue factor (TF) in 316 patients undergoing elective angioplasty and stenting for cardiovascular disease, and its predictive value for ischemic outcomes following infrainguinal angioplasty with stent implantation in 104 PAD patients within this cohort. Methods and Results: Circulating levels of sST2, platelet surface P-selectin, monocyte TF expression as well as soluble P-selectin were determined in 316 consecutive patients on dual antiplatelet therapy following angioplasty and stenting. sST2 was independently associated with soluble P-selectin (B = 6.4, 95% CI 2.0-10.7, p = 0.004) and TF expression (B = 0.56, 95% CI 0.02-1.1, p = 0.041) but not with platelet surface P-selectin (B = 0.1, 95% CI -0.1-0.3, p = 0.307) after adjustment for age, sex, clinical risk factors and inflammatory parameters. During the follow-up of 24 months, the primary endpoint occurred in 41 of 104 PAD patients (39.4%). However, circulating levels of sST2 did not predict the primary endpoint in PAD patients (HR 1.1, 95% CI 0.76-1.71, p = 0.527). Conclusion: sST2 is associated with soluble P-selectin and monocyte TF expression in atherosclerosis but not with ischemic outcomes following infrainguinal angioplasty with stent implantation for PAD.
Collapse
Affiliation(s)
- Stefan Stojkovic
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Svitlana Demyanets
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Christoph W Kopp
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | | | - Johann Wojta
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria.,Core Facilities, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
| | - Beate Eichelberger
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
| | - Simon Panzer
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
| | - Thomas Gremmel
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria.,Department of Internal Medicine I, Cardiology and Intensive Care Medicine, Landesklinikum Mistelbach-Gänserndorf, Mistelbach, Austria
| |
Collapse
|
17
|
The carotid plaque as paradigmatic case of site-specific acceleration of aging process: The microRNAs and the inflammaging contribution. Ageing Res Rev 2020; 61:101090. [PMID: 32474155 DOI: 10.1016/j.arr.2020.101090] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/31/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023]
Abstract
Atherosclerosis is considered a chronic inflammatory disease of arteries associated with the aging process. Many risk factors have been identified and they are mainly related to life-styles, gene-environment interactions and socioeconomic status. Carotid and coronary artery diseases are the two major atherosclerotic conditions, being the primary cause of stroke and heart attack, respectively. Nevertheless, carotid plaque assumes particular aspects not only for the specific molecular mechanisms, but also for the types of atheroma which may be associated with a better or a worst prognosis. The identification of circulating blood biomarkers able to distinguish carotid plaque types (stable or vulnerable) is a crucial step for the improvement of adequate therapeutic approaches avoiding or delaying endarterectomy in the oldest old individuals (> 80 years), a population predicted to growth in the next years. The review highlights the most recent knowledge on carotid plaque molecular mechanisms, focusing on microRNAs (miRs), as a site-specific accelerated aging within the conceptual framework of Geroscience for new affordable therapies.
Collapse
|
18
|
Kouhpeikar H, Delbari Z, Sathyapalan T, Simental-Mendía LE, Jamialahmadi T, Sahebkar A. The Effect of Statins through Mast Cells in the Pathophysiology of Atherosclerosis: a Review. Curr Atheroscler Rep 2020; 22:19. [PMID: 32458165 DOI: 10.1007/s11883-020-00837-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW In this review, we discuss the evidence supporting the effects of statins on mast cells (MCs) in atherosclerosis and their molecular mechanism of action. RECENT FINDINGS Statins or HMG-CoA reductase inhibitors are known for their lipid-lowering properties and are widely used in the prevention and treatment of cardiovascular diseases. There is growing evidence that statins have an inhibitory effect on MCs, which contributes to the pleiotropic effect of statins in various diseases. MCs are one of the crucial effectors of the immune system which play an essential role in the pathogenesis of multiple disorders. Recent studies have shown that MCs are involved in the development of atherosclerotic plaques. MCs secrete various inflammatory cytokines (IL-6, IL4, TNF-α, and IFNγ) and inflammatory mediators (histamine, tryptase, proteoglycans) after activation by various stimulants. This, in turn, will exacerbate atherosclerosis. Statins suppress the activation of MCs via IgE inhibition which leads to inhibition of inflammatory mediators and cytokines which are involved in the development and progression of atherosclerosis. In keeping with this evidence presented here, MCs can be considered as one of the therapeutic targets for statins in the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Hamideh Kouhpeikar
- Department of hematology and blood bank, Tabas school of nursing, Birjand University of Medical Science, Birjand, Iran
| | - Zahra Delbari
- Inflammation and Inflammatory Diseases Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, HU3 2JZ, UK
| | | | - Tannaz Jamialahmadi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran. .,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. .,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
19
|
Vianello E, Dozio E, Tacchini L, Frati L, Corsi Romanelli MM. ST2/IL-33 signaling in cardiac fibrosis. Int J Biochem Cell Biol 2019; 116:105619. [DOI: 10.1016/j.biocel.2019.105619] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/12/2019] [Accepted: 09/23/2019] [Indexed: 12/27/2022]
|
20
|
In Vitro and In Silico Studies on the Toxic Effects of Antibacterial Drugs as Human Serum Paraoxonase 1 Inhibitor. ChemistrySelect 2019. [DOI: 10.1002/slct.201902424] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|