1
|
Sauerbruch T, Hennenberg M, Trebicka J, Schierwagen R. Beta-blockers in patients with liver cirrhosis: Pragmatism or perfection? Front Med (Lausanne) 2023; 9:1100966. [PMID: 36743678 PMCID: PMC9891090 DOI: 10.3389/fmed.2022.1100966] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
With increasing decompensation, hyperdynamic circulatory disturbance occurs in liver cirrhosis despite activation of vasoconstrictors. Here, the concept of a therapy with non-selective beta-blockers was established decades ago. They lower elevated portal pressure, protect against variceal hemorrhage, and may also have pleiotropic immunomodulatory effects. Recently, the beneficial effect of carvedilol, which blocks alpha and beta receptors, has been highlighted. Carvedilol leads to "biased-signaling" via recruitment of beta-arrestin. This effect and its consequences have not been sufficiently investigated in patients with liver cirrhosis. Also, a number of questions remain open regarding the expression of beta-receptors and its intracellular signaling and the respective consequences in the intra- and extrahepatic tissue compartments. Despite the undisputed role of non-selective beta-blockers in the treatment of liver cirrhosis, we still can improve the knowledge as to when and how beta-blockers should be used in which patients.
Collapse
Affiliation(s)
- Tilman Sauerbruch
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | - Martin Hennenberg
- Department of Urology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Jonel Trebicka
- Department of Internal Medicine B, University of Münster, Münster, Germany
- European Foundation for the Study of Chronic Liver Failure, Barcelona, Spain
| | - Robert Schierwagen
- Department of Internal Medicine B, University of Münster, Münster, Germany
| |
Collapse
|
2
|
Jengelley DHA, Wang M, Narasimhan A, Rupert JE, Young AR, Zhong X, Horan DJ, Robling AG, Koniaris LG, Zimmers TA. Exogenous Oncostatin M induces Cardiac Dysfunction, Musculoskeletal Atrophy, and Fibrosis. Cytokine 2022; 159:155972. [PMID: 36054964 PMCID: PMC10468097 DOI: 10.1016/j.cyto.2022.155972] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 01/21/2023]
Abstract
Musculoskeletal diseases such as muscular dystrophy, cachexia, osteoarthritis, and rheumatoid arthritis impair overall physical health and reduce survival. Patients suffer from pain, dysfunction, and dysmobility due to inflammation and fibrosis in bones, muscles, and joints, both locally and systemically. The Interleukin-6 (IL-6) family of cytokines, most notably IL-6, is implicated in musculoskeletal disorders and cachexia. Here we show elevated circulating levels of OSM in murine pancreatic cancer cachexia and evaluate the effects of the IL-6 family member, Oncostatin M (OSM), on muscle and bone using adeno-associated virus (AAV) mediated over-expression of murine OSM in wildtype and IL-6 deficient mice. Initial studies with high titer AAV-OSM injection yielded high circulating OSM and IL-6, thrombocytosis, inflammation, and 60% mortality without muscle loss within 4 days. Subsequently, to mimic OSM levels in cachexia, a lower titer of AAV-OSM was used in wildtype and Il6 null mice, observing effects out to 4 weeks and 12 weeks. AAV-OSM caused muscle atrophy and fibrosis in the gastrocnemius, tibialis anterior, and quadriceps of the injected limb, but these effects were not observed on the non-injected side. In contrast, OSM induced both local and distant trabecular bone loss as shown by reduced bone volume, trabecular number, and thickness, and increased trabecular separation. OSM caused cardiac dysfunction including reduced ejection fraction and reduced fractional shortening. RNA-sequencing of cardiac muscle revealed upregulation of genes related to inflammation and fibrosis. None of these effects were different in IL-6 knockout mice. Thus, OSM induces local muscle atrophy, systemic bone loss, tissue fibrosis, and cardiac dysfunction independently of IL-6, suggesting a role for OSM in musculoskeletal conditions with these characteristics, including cancer cachexia.
Collapse
Affiliation(s)
- Daenique H A Jengelley
- Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Richard L. Roudebush Veterans Administration Medical Center, Indianapolis, IN 46202, USA
| | - Meijing Wang
- Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Richard L. Roudebush Veterans Administration Medical Center, Indianapolis, IN 46202, USA
| | - Ashok Narasimhan
- Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Richard L. Roudebush Veterans Administration Medical Center, Indianapolis, IN 46202, USA
| | - Joseph E Rupert
- Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Richard L. Roudebush Veterans Administration Medical Center, Indianapolis, IN 46202, USA
| | - Andrew R Young
- Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Xiaoling Zhong
- Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA; Richard L. Roudebush Veterans Administration Medical Center, Indianapolis, IN 46202, USA
| | - Daniel J Horan
- Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Richard L. Roudebush Veterans Administration Medical Center, Indianapolis, IN 46202, USA
| | - Alexander G Robling
- Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Richard L. Roudebush Veterans Administration Medical Center, Indianapolis, IN 46202, USA
| | - Leonidas G Koniaris
- Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA; Richard L. Roudebush Veterans Administration Medical Center, Indianapolis, IN 46202, USA
| | - Teresa A Zimmers
- Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Otolaryngology, Head & Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA; Richard L. Roudebush Veterans Administration Medical Center, Indianapolis, IN 46202, USA.
| |
Collapse
|
3
|
Rovina RL, Pinto AP, Muñoz VR, da Rocha AL, Rebelo MA, Teixeira GR, Tavares MEA, Pauli JR, de Moura LP, Cintra DE, Ropelle ER, da Silva ASR. Genetic deletion of IL-6 increases CK-MB, a classic cardiac damage marker, and decreases UPRmt genes after exhaustive exercise. Cell Biochem Funct 2022; 40:369-378. [PMID: 35411956 DOI: 10.1002/cbf.3701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/25/2022] [Accepted: 03/30/2022] [Indexed: 11/10/2022]
Abstract
The intensity, duration, type of contraction, and muscle damage influence interleukin-6 (IL-6) response to acute exercise. However, in response to an exhaustive exercise session, the upregulation of IL-6 in the serum and heart is associated with an inflammatory condition and can inhibit autophagy. This study aimed to investigate the role of IL-6 in autophagy pathway responses and mitochondrial function in the heart of mice submitted to acute exhaustive physical exercise. The mice were allocated into three groups, five animals per group, for the wild type (WT) and the IL-6 knockout (IL-6 KO): Basal (sedentary; Basal), 1 h (after 1 h of the acute exercise; 1 h), and 3 h (after 3 h of the acute exercise; 3 h). After the specific time for each group, the blood was collected, each mouse heart was removed, and the left ventricle (LV) was isolated. In summary, under basal conditions, without the influence of the acute exercise, the IL-6 KO group showed lower number of nuclei in the cardiac tissue, but higher collagen deposition; lower messenger RNA (mRNA) levels of Prkaa1 and Mtco1, but higher mRNA levels of Ulk1; and higher protein levels of the ratio p-AMPK/AMPK in the heart when compared to WT at the same time point. After the acute exercise (1 and 3 h), the IL-6 KO group had lower mRNA levels of Tfam, Mtnd1, Mtco1, and Nampt in the heart when compared to WT after exercise; higher serum levels of creatine kinase (CK), CK-MB, and lactate dehydrogenase for the IL-6 group when compared to the WT group after the exercise. Specifically, the heat-shock protein 60 protein levels in the heart increased 3 h after exhaustive exercise in the WT group, but not in the IL-6 KO group. The study emphasizes that IL-6 may offer cardioprotective effects, including mitochondrial adaptations in response to acute exhaustive exercise.
Collapse
Affiliation(s)
- Rafael L Rovina
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Ana P Pinto
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Vitor R Muñoz
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Alisson L da Rocha
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Macario A Rebelo
- Department of Pharmacology, Faculty of Medicinal Sciences, State University of Campinas (UNICAMP), University of Campinas, Campinas, São Paulo, Brazil
| | - Giovana R Teixeira
- Multicentric Program of Postgraduate in Physiological Sciences, School of Dentistry of Araçatuba, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil.,Department of Physical Education, State University of São Paulo (UNESP), Presidente Prudente, São Paulo, Brazil
| | - Maria Eduarda A Tavares
- Multicentric Program of Postgraduate in Physiological Sciences, School of Dentistry of Araçatuba, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - José R Pauli
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Leandro P de Moura
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Dennys E Cintra
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Eduardo R Ropelle
- Laboratory of Molecular Biology of Exercise (LaBMEx), School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Adelino S R da Silva
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil.,Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|