1
|
Sarmiento-Ortega VE, Moroni-González D, Diaz A, García-González MÁ, Brambila E, Treviño S. Hepatic Insulin Resistance Model in the Male Wistar Rat Using Exogenous Insulin Glargine Administration. Metabolites 2023; 13:metabo13040572. [PMID: 37110230 PMCID: PMC10144445 DOI: 10.3390/metabo13040572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/04/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Metabolic diseases are a worldwide health problem. Insulin resistance (IR) is their distinctive hallmark. For their study, animal models that provide reliable information are necessary, permitting the analysis of the cluster of abnormalities that conform to it, its progression, and time-dependent molecular modifications. We aimed to develop an IR model by exogenous insulin administration. The effective dose of insulin glargine to generate hyperinsulinemia but without hypoglycemia was established. Then, two groups (control and insulin) of male Wistar rats of 100 g weight were formed. The selected dose (4 U/kg) was administered for 15, 30, 45, and 60 days. Zoometry, a glucose tolerance test, insulin response, IR, and the serum lipid profile were assessed. We evaluated insulin signaling, glycogenesis and lipogenesis, redox balance, and inflammation in the liver. Results showed an impairment of glucose tolerance, dyslipidemia, hyperinsulinemia, and peripheral and time-dependent selective IR. At the hepatic level, insulin signaling was impaired, resulting in reduced hepatic glycogen levels and triglyceride accumulation, an increase in the ROS level with MAPK-ERK1/2 response, and mild pro-oxidative microenvironmental sustained by MT, GSH, and GR activity. Hepatic IR coincides with additions in MAPK-p38, NF-κB, and zoometric changes. In conclusion, daily insulin glargine administration generated a progressive IR model. At the hepatic level, the IR was combined with oxidative conditions but without inflammation.
Collapse
Affiliation(s)
- Victor Enrique Sarmiento-Ortega
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Meritorious Autonomous University of Puebla, 14 Sur. FCQ1, Ciudad Universitaria, Puebla City 72560, Mexico
| | - Diana Moroni-González
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Meritorious Autonomous University of Puebla, 14 Sur. FCQ1, Ciudad Universitaria, Puebla City 72560, Mexico
| | - Alfonso Diaz
- Department of Pharmacy, Faculty of Chemistry Science, Meritorious Autonomous University of Puebla, 22 South, FCQ9, Ciudad Universitaria, Puebla City 72560, Mexico
| | - Miguel Ángel García-González
- Laboratory of Clinical Pharmacy, Faculty of Chemistry Science, Meritorious Autonomous University of Puebla, 22 South, FCQ10, Ciudad Universitaria, Puebla City 72560, Mexico
| | - Eduardo Brambila
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Meritorious Autonomous University of Puebla, 14 Sur. FCQ1, Ciudad Universitaria, Puebla City 72560, Mexico
| | - Samuel Treviño
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Meritorious Autonomous University of Puebla, 14 Sur. FCQ1, Ciudad Universitaria, Puebla City 72560, Mexico
| |
Collapse
|
2
|
Moroni-González D, Sarmiento-Ortega VE, Diaz A, Brambila E, Treviño S. Pancreas-Liver-Adipose Axis: Target of Environmental Cadmium Exposure Linked to Metabolic Diseases. TOXICS 2023; 11:223. [PMID: 36976988 PMCID: PMC10059892 DOI: 10.3390/toxics11030223] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Cadmium has been well recognized as a critical toxic agent in acute and chronic poisoning cases in occupational and nonoccupational settings and environmental exposure situations. Cadmium is released into the environment after natural and anthropogenic activities, particularly in contaminated and industrial areas, causing food pollution. In the body, cadmium has no biological activity, but it accumulates primarily in the liver and kidney, which are considered the main targets of its toxicity, through oxidative stress and inflammation. However, in the last few years, this metal has been linked to metabolic diseases. The pancreas-liver-adipose axis is largely affected by cadmium accumulation. Therefore, this review aims to collect bibliographic information that establishes the basis for understanding the molecular and cellular mechanisms linked to cadmium with carbohydrate, lipids, and endocrine impairments that contribute to developing insulin resistance, metabolic syndrome, prediabetes, and diabetes.
Collapse
Affiliation(s)
- Diana Moroni-González
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, Meritorious Autonomous University of Puebla, Ciudad Universitaria, Puebla 72560, Mexico
| | - Victor Enrique Sarmiento-Ortega
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, Meritorious Autonomous University of Puebla, Ciudad Universitaria, Puebla 72560, Mexico
| | - Alfonso Diaz
- Department of Pharmacy, Faculty of Chemistry Science, Meritorious Autonomous University of Puebla, 22 South. FCQ9, Ciudad Universitaria, Puebla 72560, Mexico
| | - Eduardo Brambila
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, Meritorious Autonomous University of Puebla, Ciudad Universitaria, Puebla 72560, Mexico
| | - Samuel Treviño
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, Meritorious Autonomous University of Puebla, Ciudad Universitaria, Puebla 72560, Mexico
| |
Collapse
|
3
|
Balandrán JC, Zamora-Herrera G, Romo-Rodríguez R, Pelayo R. Emergency Hematopoiesis in the Pathobiology of COVID-19: The Dark Side of an Early Innate Protective Mechanism. J Interferon Cytokine Res 2022; 42:393-405. [PMID: 35675647 DOI: 10.1089/jir.2022.0028] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The recognition of pathogens to which we are constantly exposed induces the immediate replenishment of innate immune cells from the most primitive stages of their development through emergency hematopoiesis, a central mechanism contributing to early infection control. However, as with other protective mechanisms, its functional success is at risk when the excess of inducing signals accelerates immunological catastrophes. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection exhibits a clinical spectrum that ranges from completely asymptomatic states to fatal outcomes, with the amplification of inflammatory components being the critical point that determine the progress, complication, and severity of the disease. This review focuses on the most relevant findings that entail emergency hematopoiesis to SARS-CoV-2 infection response and revolutionize our understanding of the mechanisms governing the clinical prognosis of COVID-19. Of special interest are the metabolic or hyperinflammatory conditions in aging that exacerbate the phenomenon and favor the uncontrolled emergency myelopoiesis leading to the evolution of severe disease.
Collapse
Affiliation(s)
- Juan Carlos Balandrán
- Department of Pathology, NYU Grossman School of Medicine, New York, New York, USA.,Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, New York, USA
| | - Gabriela Zamora-Herrera
- Centro de Investigación Biomédica de Oriente, Delegación Puebla, Instituto Mexicano del Seguro Social, Puebla, Mexico
| | - Rubí Romo-Rodríguez
- Centro de Investigación Biomédica de Oriente, Delegación Puebla, Instituto Mexicano del Seguro Social, Puebla, Mexico
| | - Rosana Pelayo
- Centro de Investigación Biomédica de Oriente, Delegación Puebla, Instituto Mexicano del Seguro Social, Puebla, Mexico
| |
Collapse
|