1
|
Huang R, Chen H, Pi D, He X, Yu C, Yu C. Preparation of etoposide liposomes for enhancing antitumor efficacy on small cell lung cancer and reducing hematotoxicity of drugs. Eur J Pharm Biopharm 2024; 198:114239. [PMID: 38452907 DOI: 10.1016/j.ejpb.2024.114239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/01/2024] [Accepted: 02/27/2024] [Indexed: 03/09/2024]
Abstract
Etoposide (VP16) is commonly used in the treatment of small cell lung cancer (SCLC) in clinical practice. However, severe adverse reactions such as bone marrow suppression toxicity limit its clinical application. Although several studies on VP16 liposomes were reported, no significant improvement in bone marrow suppression toxicity has been found, and there was a lack of validation of animal models for in vivo antitumor effects. Therefore, we attempted to develop a PEGylated liposomal formulation that effectively encapsulated VP16 (VP16-LPs) and evaluated its therapeutic effect and toxicity at the cellular level and in animal models. First, we optimized the preparation process of VP16-LPs using an orthogonal experimental design and further prepared them into freeze-dried powder to improve storage stability of the product. Results showed that VP16-LPs freeze-dried powder exhibited good dispersibility and stability after redispersion. In addition, compared to marketed VP16 injection, VP16-LPs exhibited sustained drug release characteristics. At the cellular level, VP16-LPs enhanced the cellular uptake of drugs and exhibited strong cytotoxic activity. In animal models, VP16-LPs could target and aggregate in tumors and exhibit a higher anti-tumor effect than VP16-injection after intravenous injection. Most importantly, hematological analysis results showed that VP16-LPs significantly alleviated the bone marrow suppression toxicity of drug. In summary, our study confirmed that PEGylated liposomes could enhance therapeutic efficacy and reduce toxicity of VP16, which demonstrated that VP16-LPs had enormous clinical application potential.
Collapse
Affiliation(s)
- Ruixue Huang
- Research Center of Pharmaceutical Preparations and Nanomedicine, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Huali Chen
- Research Center of Pharmaceutical Preparations and Nanomedicine, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Damao Pi
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xuemei He
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Chao Yu
- Research Center of Pharmaceutical Preparations and Nanomedicine, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory for Pharmaceutical Metabolism Research, College of 10 Pharmacy, Chongqing Medical University, Chongqing 400016, China; Pharmaceutical Engineering Research Center, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Chaoqun Yu
- Research Center of Pharmaceutical Preparations and Nanomedicine, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
2
|
Nie J, Yang H, Liu X, Deng W, Fu B. Identification and validation of shared gene signature of kidney renal clear cell carcinoma and COVID-19. PeerJ 2024; 12:e16927. [PMID: 38464749 PMCID: PMC10921934 DOI: 10.7717/peerj.16927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/22/2024] [Indexed: 03/12/2024] Open
Abstract
Background COVID-19 is a severe infectious disease caused by the SARS-CoV-2 virus, and previous studies have shown that patients with kidney renal clear cell carcinoma (KIRC) are more susceptible to SARS-CoV-2 infection than the general population. Nevertheless, their co-pathogenesis remains incompletely elucidated. Methods We obtained shared genes between these two diseases based on public datasets, constructed a prognostic risk model consisting of hub genes, and validated the accuracy of the model using internal and external validation sets. We further analyzed the immune landscape of the prognostic risk model, investigated the biological functions of the hub genes, and detected their expression in renal cell carcinoma cells using qPCR. Finally, we searched the candidate drugs associated with hub gene-related targets from DSigDB and CellMiner databases. Results We obtained 156 shared genes between KIRC and COVID-19 and constructed a prognostic risk model consisting of four hub genes. Both shared genes and hub genes were highly enriched in immune-related functions and pathways. Hub genes were significantly overexpressed in COVID-19 and KIRC. ROC curves, nomograms, etc., showed the reliability and robustness of the risk model, which was validated in both internal and external datasets. Moreover, patients in the high-risk group showed a higher proportion of immune cells, higher expression of immune checkpoint genes, and more active immune-related functions. Finally, we identified promising drugs for COVID-19 and KIRC, such as etoposide, fulvestrant, and topotecan. Conclusion This study identified and validated four shared genes for KIRC and COVID-19. These genes are associated with immune functions and may serve as potential prognostic biomarkers for KIRC. The shared pathways and genes may provide new insights for further mechanistic research and treatment of comorbidities.
Collapse
Affiliation(s)
- Jianqiang Nie
- First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hailang Yang
- First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaoqiang Liu
- First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Institute of Urology, Nanchang, China
| | - Wen Deng
- First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Institute of Urology, Nanchang, China
| | - Bin Fu
- First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Institute of Urology, Nanchang, China
| |
Collapse
|
3
|
Yu H, Hu M, Wang X, Wang X, Xun L, Liu H. Rapid Detection of the Anti-Tumor Drug Etoposide in Biological Samples by Using a Nanoporous-Gold-Based Electrochemical Sensor. Molecules 2024; 29:1060. [PMID: 38474572 DOI: 10.3390/molecules29051060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
Monitoring etoposide is important due to its wide usage in anti-tumor therapy; however, the commonly used HPLC method is expensive and often requires complicated extraction and detection procedures. Electrochemical analysis has great application prospects because of its rapid response and high specificity, sensitivity, and efficiency with low cost and high convenience. In this study, we constructed a nanoporous gold (NPG)-modified GCE for the detection of etoposide. The electrochemical oxidation of etoposide by NPG caused a sensitive current peak at +0.27 V with good reproductivity in 50 mM of phosphate buffer (pH 7.4). The relationship between etoposide concentration and peak current was linear in the range between 0.1 and 20 μM and between 20 and 150 μM, with a detection sensitivity of 681.8 μA mM-1 cm-2 and 197.2 μA mM-1 cm-2, respectively, and a limit of detection (LOD) reaching 20 nM. The electrode had a good anti-interference ability to several common anions and cations. Spiked recovery tests in serum, urine, and fermentation broth verified the excellent performance of the sensor in terms of sensitivity, reproducibility, and specificity. This may provide a promising tool for the detection of etoposide in biological samples.
Collapse
Affiliation(s)
- Huiyuan Yu
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Mengjie Hu
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Xiaolei Wang
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Xia Wang
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Luying Xun
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
| | - Honglei Liu
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| |
Collapse
|
4
|
Sola D, Smirne C, Bruggi F, Bottino Sbaratta C, Tamen Njata AC, Valente G, Pavanelli MC, Vitetta R, Bellan M, De Paoli L, Pirisi M. Unveiling the Mystery of Adult-Onset Still's Disease: A Compelling Case Report. Life (Basel) 2024; 14:195. [PMID: 38398704 PMCID: PMC10890189 DOI: 10.3390/life14020195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Adult-onset Still's disease (AOSD) is a rare systemic inflammatory disorder. Diagnosis can take a long time, especially in the presence of confounding factors, and it is, to some extent, a process of exclusion. AOSD has life-threating complications ranging from asymptomatic to severe, such as macrophage activation syndrome (MAS), which is also referred to as hemophagocytic lymphohistocytosis (HLH). This condition is correlated with cytokine storm production and monocyte/macrophage overactivation and typically occurs with rash, pyrexia, pancytopenia, hepatosplenomegaly and systemic involvement. Exitus occurs in approximately 10% of cases. For the treatment of MAS-HLH, the Histiocyte Society currently suggests high-dose corticosteroids, with the possible addition of cyclosporine A, anti-interleukin (IL)-1, or IL-6 biological drugs; the inclusion of etoposide is recommended for the most severe conditions. In all cases, a multidisciplinary collaboration involving the resources and expertise of several specialists (e.g., rheumatologist, infectiologist, critical care medicine specialist) is advised. Herein, we provide a detailed description of the clinical case of a previously healthy young woman in which MAS developed as a dramatic onset manifestation of AOSD and whose diagnosis posed a real clinical challenge; the condition was finally resolved by applying the HLH-94 protocol (i.e., etoposide in combination with dexamethasone).
Collapse
Affiliation(s)
- Daniele Sola
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
- Internal Medicine Unit, Maggiore della Carità Hospital, 28100 Novara, Italy
- CAAD (Center for Autoimmune and Allergic Diseases), Università del Piemonte Orientale, 28100 Novara, Italy
- IRCAD (Interdisciplinary Research Center of Autoimmune Diseases), Università del Piemonte Orientale, 28100 Novara, Italy
| | - Carlo Smirne
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
- Internal Medicine Unit, Maggiore della Carità Hospital, 28100 Novara, Italy
| | - Francesco Bruggi
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
- Internal Medicine Unit, Maggiore della Carità Hospital, 28100 Novara, Italy
| | - Chiara Bottino Sbaratta
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
- Internal Medicine Unit, Maggiore della Carità Hospital, 28100 Novara, Italy
| | - Aubin Cardin Tamen Njata
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
- Internal Medicine Unit, Maggiore della Carità Hospital, 28100 Novara, Italy
| | - Guido Valente
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
- Pathology Unit, Sant'Andrea Hospital, 13100 Vercelli, Italy
| | | | - Rosetta Vitetta
- Rheumatology Unit, Sant'Andrea Hospital, 13100 Vercelli, Italy
| | - Mattia Bellan
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
- Internal Medicine Unit, Maggiore della Carità Hospital, 28100 Novara, Italy
- CAAD (Center for Autoimmune and Allergic Diseases), Università del Piemonte Orientale, 28100 Novara, Italy
- IRCAD (Interdisciplinary Research Center of Autoimmune Diseases), Università del Piemonte Orientale, 28100 Novara, Italy
| | | | - Mario Pirisi
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
- Internal Medicine Unit, Maggiore della Carità Hospital, 28100 Novara, Italy
- CAAD (Center for Autoimmune and Allergic Diseases), Università del Piemonte Orientale, 28100 Novara, Italy
- IRCAD (Interdisciplinary Research Center of Autoimmune Diseases), Università del Piemonte Orientale, 28100 Novara, Italy
| |
Collapse
|
5
|
Tadić V, Zhang W, Brozovic A. The high-grade serous ovarian cancer metastasis and chemoresistance in 3D models. Biochim Biophys Acta Rev Cancer 2024; 1879:189052. [PMID: 38097143 DOI: 10.1016/j.bbcan.2023.189052] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
High-grade serous ovarian cancer (HGSOC) is the most frequent and aggressive type of epithelial ovarian cancer, with high recurrence rate and chemoresistance being the main issues in its clinical management. HGSOC is specifically challenging due to the metastatic dissemination via spheroids in the ascitic fluid. The HGSOC spheroids represent the invasive and chemoresistant cellular fraction, which is impossible to investigate in conventional two-dimensional (2D) monolayer cell cultures lacking critical cell-to-cell and cell-extracellular matrix interactions. Three-dimensional (3D) HGSOC cultures, where cells aggregate and exhibit relevant interactions, offer a promising in vitro model of peritoneal metastasis and multicellular drug resistance. This review summarizes recent studies of HGSOC in 3D culture conditions and highlights the role of multicellular HGSOC spheroids and ascitic environment in HGSOC metastasis and chemoresistance.
Collapse
Affiliation(s)
- Vanja Tadić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička Str. 54, Zagreb HR-10000, Croatia
| | - Wei Zhang
- Department of Engineering Mechanics, Dalian University of Technology, Linggong Road 2, Dalian CN-116024, China
| | - Anamaria Brozovic
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička Str. 54, Zagreb HR-10000, Croatia.
| |
Collapse
|
6
|
Salem MG, Abu El-Ata SA, Elsayed EH, Mali SN, Alshwyeh HA, Almaimani G, Almaimani RA, Almasmoum HA, Altwaijry N, Al-Olayan E, Saied EM, Youssef MF. Novel 2-substituted-quinoxaline analogs with potential antiproliferative activity against breast cancer: insights into cell cycle arrest, topoisomerase II, and EGFR activity. RSC Adv 2023; 13:33080-33095. [PMID: 37954422 PMCID: PMC10633821 DOI: 10.1039/d3ra06189b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/26/2023] [Indexed: 11/14/2023] Open
Abstract
Breast cancer is a global health concern, with increasing disease burden and disparities in access to healthcare. Late diagnosis and limited treatment options in underserved areas contribute to poor outcomes. In response to this challenge, we developed a novel family of 2-substituted-quinoxaline analogues, combining coumarin and quinoxaline scaffolds known for their anticancer properties. Through a versatile synthetic approach, we designed, synthesized, and characterized a set of 2-substituted quinoxaline derivatives. The antiproliferative activity of the synthesized compounds was assessed toward the MCF-7 breast cancer cells. Our investigations showed that the synthesized compounds exhibit considerable antiproliferative activity toward MCF-7 cells. Notably, compound 3b, among examined compounds, displayed a superior inhibitory effect (IC50 = 1.85 ± 0.11 μM) toward the growth of MCF-7 cells compared to the conventional anticancer drug staurosporine (IC50 = 6.77 ± 0.41 μM) and showed minimal impact on normal cells (MCF-10A cell lines, IC50 = 33.7 ± 2.04 μM). Mechanistic studies revealed that compound 3b induced cell cycle arrest at the G1 transition and triggered apoptosis in MCF-7 cells, as evidenced by increasing the percentage of cells arrested in the G2/M and pre-G1 phases utilizing flow cytometric analysis and Annexin V-FITC/PI analysis. Moreover, compound 3b was found to substantially suppress topoisomerase enzyme activity in MCF-7 cells. Molecular modeling studies further supported the potential of compound 3b as a therapeutic candidate by demonstrating significant binding affinity to the active sites of both topoisomerase II and EGFR proteins. Taken together, the presented 2-substituted-quinoxaline analogues, especially compound 3b, show promise as potential candidates for the development of effective anti-breast cancer drugs.
Collapse
Affiliation(s)
- Manar G Salem
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Suez Canal University Ismailia 41522 Egypt
| | - Sara A Abu El-Ata
- Department of Chemistry, Faculty of Science, Port Said University Port Said Egypt
| | - Elsherbiny H Elsayed
- Department of Chemistry, Faculty of Science, Port Said University Port Said Egypt
| | - Suraj N Mali
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology Ranchi 835215 India
| | - Hussah Abdullah Alshwyeh
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University Dammam 31441 Saudi Arabia
- Basic & Applied Scientific Research Centre, Imam Abdulrahman Bin Faisal University PO Box 1982 Dammam 31441 Saudi Arabia
| | - Ghassan Almaimani
- Department of Surgery, Faculty of Medicine, Umm Al-Qura University Al Abdeyah, PO Box 7607 Makkah Saudi Arabia
| | - Riyad A Almaimani
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University Al Abdeyah, PO Box 7607 Makkah Saudi Arabia
| | - Hussain A Almasmoum
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University Al Abdeyah, PO Box 7607 Makkah Saudi Arabia
| | - Najla Altwaijry
- Department of Pharmaceutical Sciences, Princess Nourah Bint Abdulrahman University PO Box 84428 Riyadh 11671 Saudi Arabia
| | - Ebtesam Al-Olayan
- Department of Zoology, College of Science, King Saud University Riyadh Saudi Arabia
| | - Essa M Saied
- Department of Chemistry (Biochemistry Division), Faculty of Science, Suez Canal University Ismailia 41522 Egypt
- Institute for Chemistry, Humboldt Universität zu Berlin Brook-Taylor-Str. 2 12489 Berlin Germany
| | - Mohamed F Youssef
- Department of Chemistry (Organic Chemistry Division), Faculty of Science, Suez Canal University Ismailia 41522 Egypt
| |
Collapse
|