1
|
Parseh B, Khosravi A, Fazel A, Ai J, Ebrahimi-Barough S, Verdi J, Shahbazi M. 3-Dimensional Model to Study Apoptosis Induction of Activated Natural Killer Cells Conditioned Medium Using Patient-Derived Colorectal Cancer Organoids. Front Cell Dev Biol 2022; 10:895284. [PMID: 35721501 PMCID: PMC9204536 DOI: 10.3389/fcell.2022.895284] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 04/26/2022] [Indexed: 12/21/2022] Open
Abstract
Natural killer (NK) cells are innate lymphocytes that can kill tumor cells via different pathways, including the secretion of cytotoxic granules in immunological synapses and the binding of apoptosis-inducing ligands with cognate death receptors on tumor cells. These ligands are also soluble in NK cells conditioned medium (NK-CM). However, novel preclinical in vitro models are required for solid tumors such as colorectal cancer (CRC) to investigate apoptosis induction of activated NK-CM in a tissue-like structure. In the present study, we established a patient-derived CRC organoid culture system as a new tool for CRC research in the last decade. Tumor organoids were stained with hematoxylin and eosin (H&E) and compared with the original tumor taken from the patient. Goblet cell differentiation and mucus secretion were evaluated using periodic acid–Schiff and alcian blue histochemical staining. Moreover, tumor organoids were stained for CDX2 and Ki67 markers with immunohistochemistry (IHC) to investigate gastrointestinal origin and proliferation. Histopathological evaluations indicated tumor organoids represent patient tumor characteristics. Primary NK cells were isolated and characterized using CD56 marker expression and the lack of the CD3 marker. Flow cytometry results showed the purity of isolated CD3−and CD56 + NK cells about 93%. After further ex vivo expansion, IL-2-activated NK-CM was collected. Secretions of IFN-γ and TNF-α were measured to characterize activated NK-CM. Cytokines levels were significantly elevated in comparison to the control group. Soluble forms of apoptosis-inducing ligands, including TNF-related apoptosis-inducing ligand (TRAIL) and FasL, were detected by western blot assay. Colon cancer organoids were treated by IL-2-activated NK-CM. Apoptosis was assessed by Annexin V-FITC/PI staining and quantified by flow cytometry. In conclusion, despite the activated NK-CM containing apoptosis-inducing ligands, these ligands’ soluble forms failed to induce apoptosis in patient-derived colon cancer organoids. Nevertheless, we report a reliable in vitro assessment platform in a personalized setting.
Collapse
Affiliation(s)
- Benyamin Parseh
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Faculty of Advanced Medical Technologies, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ayyoob Khosravi
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran.,Department of Molecular Medicine, Faculty of Advanced Medical Technologies, Golestan University of Medical Sciences, Gorgan, Iran
| | - Abdolreza Fazel
- Cancer Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Jafar Ai
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Javad Verdi
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Shahbazi
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
2
|
Apoptosis-Inducing TNF Superfamily Ligands for Cancer Therapy. Cancers (Basel) 2021; 13:cancers13071543. [PMID: 33801589 PMCID: PMC8036978 DOI: 10.3390/cancers13071543] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/21/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer is a complex disease with apoptosis evasion as one of its hallmarks; therefore, apoptosis induction in transformed cells seems a promising approach as a cancer treatment. TNF apoptosis-inducing ligands, which are naturally present in the body and possess tumoricidal activity, are attractive candidates. The most studied proteins are TNF-α, FasL, and TNF-related apoptosis-inducing ligand (TRAIL). Over the years, different recombinant TNF family-derived apoptosis-inducing ligands and agonists have been designed. Their stability, specificity, and half-life have been improved because most of the TNF ligands have the disadvantages of having a short half-life and affinity to more than one receptor. Here, we review the outlook on apoptosis-inducing ligands as cancer treatments in diverse preclinical and clinical stages and summarize strategies of overcoming their natural limitations to improve their effectiveness.
Collapse
|
3
|
Ni J, Wang X, Shang Y, Li Y, Chen S. CD13 inhibition augments DR4-induced tumor cell death in a p-ERK1/2-independent manner. Cancer Biol Med 2021; 18:j.issn.2095-3941.2020.0196. [PMID: 33710811 PMCID: PMC8185856 DOI: 10.20892/j.issn.2095-3941.2020.0196] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 09/18/2020] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVE Death receptor 4 (DR4; TRAIL-R1) critically mediates extrinsic apoptosis cascades via binding to TNF-related apoptosis-inducing ligand (TRAIL). However, intrinsic and/or acquired resistance are observed in the clinical application of TRAIL. The aim of this study was to investigate the function and molecular mechanism of CD13 in the TRAIL/DR4 pathway against tumor cells, and provide a new strategy for improving therapeutic efficacy or overcoming TRAIL-resistance. METHODS TRAIL protein was expressed as a secretory protein in a Pichia pastoris expression system and was isolated and purified by affinity chromatography. The cell viability and apoptosis were evaluated with MTT (thiazolyl blue tetrazolium bromide) assays and annexin V-FITC/PI staining with flow cytometry analysis, respectively. Western blot analysis was used to detect the levels of the indicated proteins in tumor cells. DR4 degradation or stability was examined with cycloheximide chase assays, and cell surface DR4 was assessed with flow cytometric analysis after staining with a FITC-conjugated antibody. The effects of cell migration were determined with Transwell and gelatin zymography assays. A xenograft nude mouse model was used to detect the anti-tumor effect in vivo, and the proliferation in tumor tissues was examined with immunohistochemical staining. RESULTS CD13 inhibition potently sensitized tumor cells to TRAIL-induced killing, including proliferation inhibition, increased apoptosis, and migration suppression. In addition, the inhibition of CD13 elevated both total cellular expression and cell surface DR4 through stabilizing DR4 by suppressing its degradation. DR4 siRNA attenuated the enhanced anti-tumor effects of TRAIL plus CD13 inhibition. Interestingly, these phenomena were p-ERK1/2 independent, although p-ERK1/2 down-regulation was tightly correlated with the cooperation of TRAIL and CD13 inhibition. Moreover, a synergistic decrease in tumor growth was surprisingly achieved in the xenograft model by treatment of TRAIL with a CD13 inhibitor (**P < 0.01, CDI = 0.47). CONCLUSIONS CD13 inhibition cooperates with TRAIL in enhancing DR4-mediated cell death, through the up-regulation and stabilization of DR4 in a p-ERK1/2-independent manner. Thus CD13 inhibition has emerged as an effective strategy for TRAIL/DR4-based therapy.
Collapse
Affiliation(s)
- Jun Ni
- Department of Cancer Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiaofei Wang
- Department of Cancer Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yue Shang
- Department of Cancer Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yi Li
- Department of Cancer Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Shuzhen Chen
- Department of Cancer Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
4
|
Banach-Orłowska M, Wyszyńska R, Pyrzyńska B, Maksymowicz M, Gołąb J, Miączyńska M. Cholesterol restricts lymphotoxin β receptor-triggered NF-κB signaling. Cell Commun Signal 2019; 17:171. [PMID: 31878945 PMCID: PMC6933913 DOI: 10.1186/s12964-019-0460-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/10/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Lymphotoxin β receptor (LTβR) plays important roles in the development of the immune system and immune response. At the cellular level, ligand-bound LTβR activates the pro-inflammatory NF-κB pathway but the detailed mechanisms regulating its signaling remain unknown. Understanding them is of high importance since LTβR and its ligands are promising therapeutic targets. Here, we studied the consequences of perturbed cellular cholesterol content on LTβR-induced NF-κB signaling. METHODS To modulate cholesterol availability and/or level in lung carcinoma A549 and H2228, and endothelial HUVEC cells different treatment regimens with filipin, methyl-β-cyclodextrin and simvastatin were applied. LTβR localization was studied by confocal microscopy. The activity of LTβR-induced NF-κB pathway was assessed by measuring the levels of NF-κB pathway inhibitor IκBα and phosphorylation of RelA transcription factor by Western blotting. The NF-κB transcriptional response, production of chemokines and adhesion molecules were examined by qRT-PCR, ELISA, and Western blotting, respectively. Adherence of different types of primary immune cells to epithelial A549 cells and endothelial HUVECs was measured fluorometrically. Interactions of LTβR with its protein partners were investigated by immunoprecipitation. RESULTS We showed that filipin-mediated sequestration of cholesterol or its depletion from the plasma membrane with methyl-β-cyclodextrin impaired LTβR internalization and potentiated LTβR-dependent activation of the canonical branch of the NF-κB pathway. The latter was manifested by enhanced degradation of IκBα inhibitor, elevated RelA phosphorylation, substantial increase in the expression of NF-κB target genes encoding, among others, cytokines and adhesion molecules known to play important roles in immune response. It was followed by robust secretion of CXCL8 and upregulation of ICAM1, that favored the adhesion of immune cells (NK and T cells, neutrophils) to A549 cells and HUVECs. Mechanistically, we showed that cholesterol depletion stabilized interactions of ligand-stimulated LTβR with modified forms of TRAF2 and NEMO proteins. CONCLUSIONS Our results showed that the reduction of the plasma membrane content of cholesterol or its sequestration strongly potentiated signaling outcome initiated by LTβR. Thus, drugs modulating cholesterol levels could potentially improve efficacy of LTβR-based therapies. Video abstract.
Collapse
Affiliation(s)
- Magdalena Banach-Orłowska
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109, Warsaw, Poland.
| | - Renata Wyszyńska
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109, Warsaw, Poland
| | - Beata Pyrzyńska
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Małgorzata Maksymowicz
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109, Warsaw, Poland
| | - Jakub Gołąb
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Marta Miączyńska
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109, Warsaw, Poland
| |
Collapse
|
5
|
Cha Z, Cheng J, Xiang H, Qin J, He Y, Peng Z, Jia J, Yu H. Celastrol enhances TRAIL-induced apoptosis in human glioblastoma via the death receptor pathway. Cancer Chemother Pharmacol 2019; 84:719-728. [PMID: 31281953 DOI: 10.1007/s00280-019-03900-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/18/2019] [Indexed: 02/06/2023]
Abstract
PURPOSE Glioblastoma is the most common, malignant and devastating type of primary brain tumor. Tumor necrosis factor-related apoptosis-induced ligand (TRAIL) is characterized by its lethality to precancerous and cancerous cells. However, many kinds of tumor cells, including most glioma cells, tend to evade TRAIL-induced apoptosis. Celastrol is a pleiotropic compound from a traditional Chinese medicine that has proven to be useful as a sensitizer for TRAIL treatment. However, the underlying mechanism and role of celastrol in the sensitization of glioma cells remain to be elucidated. METHODS The viability of glioma cell lines was examined by the CCK-8 assay. The expression of DR5 was detected by reverse transcriptase quantitative real-time PCR. The protein expression of DR5, cleaved caspase-8, cleaved caspase-3 and PARP were measured by western blot. The apoptosis rates and the sub-G1 population were detected by flow cytometry. The cellular morphological changes were assessed by TUNEL apoptosis and Hoechst 33258 staining assays. The knockdown of DR5 expression was conducted by siRNA. RESULTS In this study, we observed that celastrol treatment inhibited cell viability in a dose-dependent manner, while glioma and normal human astroglial cell lines were resistant to TRAIL treatment. We also observed that the antiproliferative effects of TRAIL in combination with a noncytotoxic concentration of celastrol were significantly greater than those of celastrol or TRAIL alone. In addition, cell death induced by the combination treatment was apoptotic and occurred through the death receptor pathway via activation of caspase-8, caspase-3, and PARP. Furthermore, celastrol upregulated death receptor 5 (DR5) at the mRNA and protein levels, and siRNA-mediated DR5 knockdown reduced the killing effect of the combination drug treatment on glioma cells and reduced the activation of caspase-3, caspase-8 and PARP. CONCLUSIONS Taken together, the results of our study demonstrate that celastrol sensitizes glioma cells to TRAIL via the death receptor pathway and that DR5 plays an important role in the effects of this cotreatment. The results indicate that this cotreatment is a promising tumor-killing therapeutic strategy with high efficacy and low toxicity.
Collapse
Affiliation(s)
- Zhe Cha
- Research Center of Neuroscience, Chongqing Medical University, No. 1 of Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Jianzhang Cheng
- Research Center of Neuroscience, Chongqing Medical University, No. 1 of Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Hui Xiang
- Research Center of Neuroscience, Chongqing Medical University, No. 1 of Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Jingjing Qin
- Research Center of Neuroscience, Chongqing Medical University, No. 1 of Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Yujia He
- Laboratory of Radiological Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Zhiping Peng
- Laboratory of Radiological Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Jianhua Jia
- Laboratory of Radiological Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Huarong Yu
- Research Center of Neuroscience, Chongqing Medical University, No. 1 of Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
6
|
Prigozhina TB, Szafer F, Aronin A, Tzdaka K, Amsili S, Makdasi E, Shani N, Dranitzki Elhalel M. Fn14·TRAIL fusion protein is oligomerized by TWEAK into a superefficient TRAIL analog. Cancer Lett 2017; 400:99-109. [DOI: 10.1016/j.canlet.2017.04.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 04/12/2017] [Accepted: 04/14/2017] [Indexed: 01/08/2023]
|
7
|
Ma S, Sun J, Guo Y, Zhang P, Liu Y, Zheng D, Shi J. Combination of AAV-TRAIL with miR-221-Zip Therapeutic Strategy Overcomes the Resistance to TRAIL Induced Apoptosis in Liver Cancer. Am J Cancer Res 2017; 7:3228-3242. [PMID: 28900506 PMCID: PMC5595128 DOI: 10.7150/thno.19893] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/29/2017] [Indexed: 02/06/2023] Open
Abstract
TNF-related apoptosis-inducing ligand (TRAIL) possesses the capacity to induce apoptosis in a wide variety of tumor cells without affecting most normal cells. However, it has now emerged that many primary cancer cells are resistant to TRAIL monotherapy. Overcoming the intrinsic or acquired TRAIL resistance is desirable for TRAIL-mediated cancer therapy. In this study, we found that the miR-221/222 cluster was up-regulated in TRAIL-resistant liver cancer cells. Specific inhibitors of miR-221 and/or miR-222, called sponge, TuD and miR-Zip were constructed, and their ability to overcome TRAIL resistance was compared. Among them, AAV-mediated gene therapy using co-expression of TRAIL with miR-221-Zip showed the most synergistic activity in the induction of apoptosis in vitro. In vivo treatment of nude mice bearing human TRAIL-resistant liver cancer xenografts with AAV-TRAIL-miR-221-Zip also led to growth inhibition. This sensitizing effect of miR-221-Zip was associated with increased expression of PTEN, the miR-221 target, as well as with decreasing levels of Survivin. Moreover, miR-221 expression was concomitant with promotion of Survivin expression and suppression of PTEN expression. TRAIL sensitivity of cancer cells isolated from liver cancer tissues or from patients was significantly correlated with miR-221 expression. And miR-221 blood expression levels in liver cancer patients were correlated with TRAIL sensitivity, thus it had the potential to be a predictor of TRAIL sensitivity in liver cancer. These data suggested the potential of combining AAV-TRAIL with miR-221-Zip as a therapeutic intervention for liver cancer.
Collapse
|
8
|
Ma Z, Fan C, Yang Y, Di S, Hu W, Li T, Zhu Y, Han J, Xin Z, Wu G, Zhao J, Li X, Yan X. Thapsigargin sensitizes human esophageal cancer to TRAIL-induced apoptosis via AMPK activation. Sci Rep 2016; 6:35196. [PMID: 27731378 PMCID: PMC5059685 DOI: 10.1038/srep35196] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/26/2016] [Indexed: 12/22/2022] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising anticancer agent for esophageal squamous cell carcinoma (ESCC). Forced expression of CHOP, one of the key downstream transcription factors during endoplasmic reticulum (ER) stress, upregulates the death receptor 5 (DR5) levels and promotes oxidative stress and cell death. In this study, we show that ER stress mediated by thapsigargin promoted CHOP and DR5 synthesis thus sensitizing TRAIL treatment, which induced ESCC cells apoptosis. These effects were reversed by DR5 siRNA in vitro and CHOP siRNA both in vitro and in vivo. Besides, chemically inhibition of AMPK by Compound C and AMPK siRNA weakened the anti-cancer effect of thapsigargin and TRAIL co-treatment. Therefore, our findings suggest ER stress effectively sensitizes human ESCC to TRAIL-mediated apoptosis via the TRAIL-DR5-AMPK signaling pathway, and that activation of ER stress may be beneficial for improving the efficacy of TRAIL-based anti-cancer therapy.
Collapse
Affiliation(s)
- Zhiqiang Ma
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Chongxi Fan
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Yang Yang
- Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, China
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Shouyin Di
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Wei Hu
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Tian Li
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Yifang Zhu
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Jing Han
- Department of Ophthalmology, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Zhenlong Xin
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Guiling Wu
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Jing Zhao
- Department of Thoracic Surgery, Beijing Military General Hospital, 5 DongSi ShiTiao Road 100070, Beijing 100700, China
| | - Xiaofei Li
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| |
Collapse
|
9
|
Gasparian ME, Bychkov ML, Yagolovich AV, Dolgikh DA, Kirpichnikov MP. Mutations Enhancing Selectivity of Antitumor Cytokine TRAIL to DR5 Receptor Increase Its Cytotoxicity against Tumor Cells. BIOCHEMISTRY (MOSCOW) 2016; 80:1080-91. [PMID: 26547077 DOI: 10.1134/s0006297915080143] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Tumor necrosis factor superfamily cytokine TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) induces apoptosis in tumor cells by binding to death receptors DR4 and DR5 without affecting normal cells. However, the therapeutic use of TRAIL is limited, because many tumor cells are resistant to it. The resistance is partially related to interaction of TRAIL with the decoy receptors DcR1 and DcR2, which do not trigger the apoptotic signal and inhibit signaling of death receptors. Previously, we designed a unique DR5-specific TRAIL mutant variant DR5-B, which binds to DR5 receptor as effectively as the original cytokine, but has practically no interaction with DR4 and DcR1 receptors, and its affinity for DcR2 is reduced 400-fold. In the present work, the cytotoxity of TRAIL and DR5-B was analyzed on 12 different tumor cell lines and two types of normal cells. In nine of 12 tumor cell lines, DR5-B killed 1.5-5.0 times more tumor cells than TRAIL, and it did not exhibit toxicity towards normal cells. Chemotherapeutic drugs such as doxorubicin, paclitaxel, and bortezomib augmented the effect of both TRAIL variants, and the enhancing effect was more pronounced for DR5-B. Half-maximal effective concentrations (EC50) for DR5-B in combination with chemotherapeutic agents were 1.5-10.0 times lower than for wild-type TRAIL. Thus, DR5-B is a promising candidate both for monotherapy and in combination with chemotherapy for treatment of TRAIL-resistant tumors.
Collapse
Affiliation(s)
- M E Gasparian
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| | | | | | | | | |
Collapse
|
10
|
Proapoptotic and antiapoptotic proteins of the Bcl-2 family regulate sensitivity of pancreatic cancer cells toward gemcitabine and T-cell-mediated cytotoxicity. J Immunother 2015; 38:116-26. [PMID: 25751501 DOI: 10.1097/cji.0000000000000073] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Sensitivity of carcinoma cells towards gemcitabine (Gem) has been linked to mitochondrial apoptotic proteins. Recently, we described synergistic efficacy of Gem-based chemoimmunotherapy and a dendritic cell (DC) tumor vaccine in a murine pancreatic carcinoma model. Here, we investigated the role of the mitochondrial proteins Bcl-2, Bcl-xL, and Bax for sensitization of pancreatic carcinoma cells toward T-cell-mediated cytotoxicity alone and in combination with Gem. Bcl-2 expression was silenced by siRNA in Panc02 pancreatic cancer cells expressing the model antigen ovalbumin (PancOVA). Tumor cells were treated with Gem and/or siRNA, and cytotoxicity induced by OVA-specific cytotoxic T lymphocytes (CTL) from OT-1 mice was assessed. Gem-induced and T-cell-induced cytotoxicity was also studied in human Colo357 pancreatic cancer cell lines overexpressing Bax or Bcl-xL. Apoptosis induction by Fas-activating antibody was measured by Annexin V staining. The in vivo capacity of Bcl-2 siRNA to augment CTL efficacy induced by DC vaccinations was assessed in C57BL/6 mice bearing PancOVA tumors. PancOVA cells treated with Bcl-2 siRNA were sensitized towards both Gem and T-cell-mediated killing; combination therapy exhibited an additive effect. Bax overexpression sensitized Colo357 cells to both Gem-mediated and T-cell-mediated cytotoxicity, whereas Bcl-xL overexpression was inhibitory. Combining Bcl-2 silencing with DC therapy improved tumor control in the PancOVA model in vivo without affecting the number of tumor-reactive CTL. In conclusion, expression of Bcl-2, Bcl-xL, and Bax in pancreatic tumor cells determines sensitivity towards both Gem-mediated and CTL-mediated toxicity. Bcl-2 silencing could be exploited therapeutically in tumor vaccine approaches.
Collapse
|
11
|
Popławska-Kita A, Kościuszko-Zdrodowska M, Siewko K, Telejko B, Hryniewicka J, Milewski R, Abdelrazek SS, Szelachowska M, Górska M. High Serum IgG4 Concentrations in Patients with Hashimoto's Thyroiditis. Int J Endocrinol 2015; 2015:706843. [PMID: 25784936 PMCID: PMC4345268 DOI: 10.1155/2015/706843] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 01/27/2015] [Indexed: 12/24/2022] Open
Abstract
Purpose. Since recent reports suggest that Hashimoto thyroiditis (HT) may be associated with IgG4-related disease, we aimed to find out whether the measurement of serum IgG4 allows for the identification of distinct types of HT, with different clinical, sonographic, and serologic characteristics. Methods. The group studied consisted of 53 patients with HT and 28 healthy individuals who underwent thyroid ultrasonography and body composition analysis. Serum concentrations of IgG4, TSH, anti-peroxidase antibodies (TPOAb), anti-TSH receptor antibodies, TNF-α, TGF-β1, Fas Ligand, TRAIL, and chemokines (CXCL9, CXCL11, and CXCL10) were measured by ELISA or radioimmunoassay. Results. The group with IgG4 level >135 IU/ml accounted for 32.5% of the patients. The signs of fibrosis were present in 27.0% of the high-IgG4 patients and in 9.1% of the normal-IgG4 group. The patients with elevated IgG4 required higher doses of L-thyroxine and had significantly lower level of TPOAb (P=0.02) than the non-IgG4-HT individuals and higher TNF-α level in comparison with the controls (P=0.01). Conclusions. Our results suggest that the measurement of serum IgG4 allows for an identification of patients with more rapid progression of HT, requiring higher doses of L-thyroxine. Low TPOAb level and the absence of coexisting autoimmune diseases may suggest distinct pathomechanism of this type of thyroiditis.
Collapse
Affiliation(s)
- Anna Popławska-Kita
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland
- *Anna Popławska-Kita:
| | - Maria Kościuszko-Zdrodowska
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland
| | - Katarzyna Siewko
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland
| | - Beata Telejko
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland
| | - Justyna Hryniewicka
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland
| | - Robert Milewski
- Department of Statistics and Medical Informatics, Medical University of Bialystok, 15-276 Bialystok, Poland
| | | | - Małgorzata Szelachowska
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland
| | - Maria Górska
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland
| |
Collapse
|
12
|
Kermer V, Hornig N, Harder M, Bondarieva A, Kontermann RE, Müller D. Combining antibody-directed presentation of IL-15 and 4-1BBL in a trifunctional fusion protein for cancer immunotherapy. Mol Cancer Ther 2013; 13:112-21. [PMID: 24198185 DOI: 10.1158/1535-7163.mct-13-0282] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Influencing the cytokine receptor network that modulates the immune response holds great potential for cancer immunotherapy. Although encouraging results have been obtained by focusing on individual members of the common γ-chain (γc) receptor family and TNF receptor superfamily so far, combination strategies might be required to further improve the effectiveness of the antitumor response. Here, we propose the combination of interleukin (IL)-15 and 4-1BBL in a single, tumor-directed molecule. Therefore, a trifunctional antibody fusion protein was generated, composed of a tumor-specific recombinant antibody, IL-15 linked to a fragment of the IL-15Rα chain (RD) and the extracellular domain of 4-1BBL. In soluble and targeted forms, the trifunctional antibody fusion protein RD_IL-15_scFv_4-1BBL was shown to stimulate activated T-cell proliferation and induce T-cell cytotoxicity to a similar degree as the bifunctional scFv_RD_IL-15 fusion protein. On the other hand, in targeted form, the trifunctional fusion protein was much more effective in inducing T-cell proliferation and IFN-γ release of unstimulated peripheral blood mononuclear cells (PBMC). Here, the additional signal enhancement could be attributed to the costimulatory activity of 4-1BBL, indicating a clear benefit for the simultaneous presentation of IL-15 and 4-1BBL in one molecule. Furthermore, the trifunctional antibody fusion protein was more effective than the corresponding bifunctional fusion proteins in reducing metastases in a tumor mouse model in vivo. Hence, the targeted combination of IL-15 and 4-BBL in the form of a trifunctional antibody-fusion protein is a promising new approach for cancer immunotherapy.
Collapse
Affiliation(s)
- Vanessa Kermer
- Corresponding Author: Dafne Müller, Institut für Zellbiologie und Immunologie, Universität Stuttgart, Allmandring 31, Stuttgart 70569, Germany.
| | | | | | | | | | | |
Collapse
|
13
|
Hornig N, Reinhardt K, Kermer V, Kontermann RE, Müller D. Evaluating combinations of costimulatory antibody-ligand fusion proteins for targeted cancer immunotherapy. Cancer Immunol Immunother 2013; 62:1369-80. [PMID: 23715927 PMCID: PMC11029554 DOI: 10.1007/s00262-013-1441-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 05/17/2013] [Indexed: 12/19/2022]
Abstract
Combinatory strategies are becoming of increasing interest in cancer immunotherapy. Costimulation by individual members of the immunoglobulin-like (Ig)- and TNF superfamily have already shown promising antitumor potential, thus prompting the exploration of their synergistic abilities in combinatorial approaches. Here, we pursued a targeted strategy with antibody-fusion proteins composed of a tumor-directed antibody and the extracellular domain of the costimulatory ligand B7.1, 4-1BBL, OX40L, GITRL or LIGHT, respectively. Costimulatory activity was assessed in an experimental setting where initial T cell activation was induced by a bispecific antibody (tumor-related antigen × CD3). Advantage of combined targeted costimulation was shown for either B7.1 or 4-1BBL with OX40L, GITRL, LIGHT and 4-1BBL in terms of T cell proliferation and IFN-γ release. Since encouraging results were obtained by the combination of B7.1 and 4-1BBL, we adapted the model system for a time-shift setting. Here, enhanced proliferation and granzyme B expression as well as reduced PD-1 expression on the T cell population demonstrated the benefit of costimulation-assisted restimulation. Finally, the antitumor potential of this combinatorial setting was confirmed in vivo in a lung metastasis mouse model. Thus, combinatorial approaches with costimulatory antibody-ligand fusion proteins seem a promising strategy to be further investigated for cancer immunotherapy.
Collapse
Affiliation(s)
- Nora Hornig
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Katharina Reinhardt
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Vanessa Kermer
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Roland E. Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Dafne Müller
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| |
Collapse
|
14
|
Targeting of the tumor necrosis factor receptor superfamily for cancer immunotherapy. ISRN ONCOLOGY 2013; 2013:371854. [PMID: 23840967 PMCID: PMC3693168 DOI: 10.1155/2013/371854] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 05/11/2013] [Indexed: 12/17/2022]
Abstract
The tumor necrosis factor (TNF) ligand and cognate TNF receptor superfamilies constitute an important regulatory axis that is pivotal for immune homeostasis and correct execution of immune responses. TNF ligands and receptors are involved in diverse biological processes ranging from the selective induction of cell death in potentially dangerous and superfluous cells to providing costimulatory signals that help mount an effective immune response. This diverse and important regulatory role in immunity has sparked great interest in the development of TNFL/TNFR-targeted cancer immunotherapeutics. In this review, I will discuss the biology of the most prominent proapoptotic and co-stimulatory TNF ligands and review their current status in cancer immunotherapy.
Collapse
|
15
|
He W, Wang Q, Xu J, Xu X, Padilla MT, Ren G, Gou X, Lin Y. Attenuation of TNFSF10/TRAIL-induced apoptosis by an autophagic survival pathway involving TRAF2- and RIPK1/RIP1-mediated MAPK8/JNK activation. Autophagy 2012; 8:1811-21. [PMID: 23051914 PMCID: PMC3541290 DOI: 10.4161/auto.22145] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Although it is known that tumor necrosis factor-related apoptosis-inducing ligand (TNFSF10/TRAIL) induces autophagy, the mechanism by which autophagy is activated by TNFSF10 is still elusive. In this report, we show evidence that TRAF2- and RIPK1-mediated MAPK8/JNK activation is required for TNFSF10-induced cytoprotective autophagy. TNFSF10 activated autophagy rapidly in cancer cell lines derived from lung, bladder and prostate tumors. Blocking autophagy with either pharmacological inhibitors or siRNAs targeting the key autophagy factors BECN1/Beclin 1 or ATG7 effectively increased TNFSF10-induced apoptotic cytotoxicity, substantiating a cytoprotective role for TNFSF10-induced autophagy. Blocking MAPK8 but not NFκB effectively blocked autophagy, suggesting that MAPK8 is the main pathway for TNFSF10-induced autophagy. In addition, blocking MAPK8 effectively inhibited degradation of BCL2L1/Bcl-xL and reduction of the autophagy-suppressing BCL2L1-BECN1complex. Knockdown of TRAF2 or RIPK1 effectively suppressed TNFSF10-induced MAPK8 activation and autophagy. Furthermore, suppressing autophagy inhibited expression of antiapoptosis factors BIRC2/cIAP1, BIRC3/cIAP2, XIAP and CFLAR/c-FLIP and increased the formation of TNFSF10-induced death-inducing signaling complex (DISC). These results reveal a critical role for the MAPK8 activation pathway through TRAF2 and RIPK1 for TNFSF10-induced autophagy that blunts apoptosis in cancer cells. Thus, suppression of MAPK8-mediated autophagy could be utilized for sensitizing cancer cells to therapy with TNFSF10.
Collapse
Affiliation(s)
- Weiyang He
- Department of Urology; The First Affiliated Hospital of Chongqing Medical University; Chongqing, China
- Molecular Oncology and Epigenetics Laboratory; The First Affiliated Hospital of Chongqing Medical University; Chongqing, China
- Molecular Biology and Lung Cancer Program; Lovelace Respiratory Research Institute; Albuquerque, NM USA
| | - Qiong Wang
- Molecular Biology and Lung Cancer Program; Lovelace Respiratory Research Institute; Albuquerque, NM USA
| | - Jennings Xu
- Molecular Biology and Lung Cancer Program; Lovelace Respiratory Research Institute; Albuquerque, NM USA
| | - Xiuling Xu
- Molecular Biology and Lung Cancer Program; Lovelace Respiratory Research Institute; Albuquerque, NM USA
| | - Mabel T. Padilla
- Molecular Biology and Lung Cancer Program; Lovelace Respiratory Research Institute; Albuquerque, NM USA
| | - Guosheng Ren
- Molecular Oncology and Epigenetics Laboratory; The First Affiliated Hospital of Chongqing Medical University; Chongqing, China
| | - Xin Gou
- Department of Urology; The First Affiliated Hospital of Chongqing Medical University; Chongqing, China
| | - Yong Lin
- Molecular Biology and Lung Cancer Program; Lovelace Respiratory Research Institute; Albuquerque, NM USA
| |
Collapse
|
16
|
Synergistic induction of TRAIL-mediated apoptosis by anisomycin in human hepatoma cells via the BH3-only protein Bid and c-Jun/AP-1 signaling pathway. Biomed Pharmacother 2012; 67:321-8. [PMID: 23582782 DOI: 10.1016/j.biopha.2012.11.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Accepted: 11/04/2012] [Indexed: 11/22/2022] Open
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF super-family, and it has been shown that many human cancer cell lines are refractory to TRAIL-induced cell death. However, the molecular mechanisms underlying resistance are unclear. In the present study, we show that TRAIL-resistance is reversed in human hepatoma cells by anisomycin, which is known to inhibit protein synthesis and induce ribotoxic stress. Synergistic induction of apoptosis in cells treated with anisomycin plus TRAIL was associated with activation of caspases and cleavage of Bid, a pro-apoptotic BH3-only protein. Silencing of Bid expression by small interfering RNA (siRNA) significantly attenuated the loss of mitochondrial membrane potential (MMP, Δψm) and significantly increased induction of apoptosis in cells treated with anisomycin and TRAIL, confirming that Bid cleavage is required for the response. In addition, c-Jun/AP-1 was rapidly activated upon stimulation with anisomycin; however, the knockdown of c-Jun/AP-1 expression by c-Jun siRNA markedly reduced anisomycin plus TRAIL-induced loss of MMP and apoptosis. Taken together, the findings show that anisomycin sensitizes TRAIL-mediated hepatoma cell apoptosis via the mitochondria-associated pathway, involving the cleavage of Bid and activation of the c-Jun/AP-1 pathway, indicating that this compound can be used as an anti-tumor agent in combination with TRAIL.
Collapse
|
17
|
Yoo KH, Park JH, Lee DOK, Fu YY, Baek NI, Chung IS. Pomolic acid induces apoptosis in SK-OV-3 human ovarian adenocarcinoma cells through the mitochondrial-mediated intrinsic and death receptor-induced extrinsic pathways. Oncol Lett 2012; 5:386-390. [PMID: 23255955 DOI: 10.3892/ol.2012.985] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 10/17/2012] [Indexed: 11/05/2022] Open
Abstract
The cytotoxic effect of pomolic acid (PA), a pentacyclic triterpene isolated from flowers of Osmanthus fragrans var. aurantiacus Makino, was investigated in SK-OV-3 human ovarian adenocarcinoma cells. PA dose-dependently inhibited the viability of SK-OV-3 cells. PA-induced apoptosis was further characterized by detection of cell surface annexin V and sub-G1 apoptotic cell populations. The number of cells immunostained with annexin V-fluorescein isothiocyanate (FITC) increased following treatment with PA. The sub-G1 cell populations also increased in PA-treated SK-OV-3 cells. PA induced the activation of caspase-8, -9 and -3, critical mediators of apoptosis signaling. PA decreased the mitochondrial transmembrane potential (ΔΨ(m)), resulting in the activation of caspase-9. In addition, PA increased the expression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis signaling-related death receptor 5 (DR5), mediating caspase-8-involved extrinsic pathway. Taken together, our results indicate that PA induces apoptosis in SK-OV-3 cells, which is mediated by the mitochondrial-mediated intrinsic and death receptor-induced extrinsic pathways.
Collapse
Affiliation(s)
- Ki Hyun Yoo
- Department of Genetic Engineering and ; Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Republic of Korea
| | | | | | | | | | | |
Collapse
|
18
|
Antibody–cytokine fusion proteins. Arch Biochem Biophys 2012; 526:194-205. [DOI: 10.1016/j.abb.2012.03.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 02/28/2012] [Accepted: 03/01/2012] [Indexed: 01/01/2023]
|
19
|
Lu X, Xiao L, Wang L, Ruden DM. Hsp90 inhibitors and drug resistance in cancer: the potential benefits of combination therapies of Hsp90 inhibitors and other anti-cancer drugs. Biochem Pharmacol 2012; 83:995-1004. [PMID: 22120678 PMCID: PMC3299878 DOI: 10.1016/j.bcp.2011.11.011] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 10/31/2011] [Accepted: 11/14/2011] [Indexed: 12/11/2022]
Abstract
Hsp90 is a chaperone protein that interacts with client proteins that are known to be in the cell cycle, signaling and chromatin-remodeling pathways. Hsp90 inhibitors act additively or synergistically with many other drugs in the treatment of both solid tumors and leukemias in murine tumor models and humans. Hsp90 inhibitors potentiate the actions of anti-cancer drugs that target Hsp90 client proteins, including trastuzumab (Herceptin™) which targets Her2/Erb2B, as Hsp90 inhibition elicits the drug effects in cancer cell lines that are otherwise resistant to the drug. A phase II study of the Hsp90 inhibitor 17-AAG and trastuzumab showed that this combination therapy has anticancer activity in patients with HER2-positive metastatic breast cancer progressing on trastuzumab. In this review, we discuss the results of Hsp90 inhibitors in combination with trastuzumab and other cancer drugs. We also discuss recent results from yeast focused on the genetics of drug resistance when Hsp90 is inhibited and the implications that this might have in understanding the effects of genetic variation in treating cancer in humans.
Collapse
Affiliation(s)
- Xiangyi Lu
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48201
| | - Li Xiao
- University of Alabama at Birmingham, Department of Immunology and Rheumatology, Birmingham, AL 35294
| | - Luan Wang
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48201
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201
| | - Douglas M. Ruden
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48201
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201
| |
Collapse
|
20
|
Huang DY, Chao Y, Tai MH, Yu YH, Lin WW. STI571 reduces TRAIL-induced apoptosis in colon cancer cells: c-Abl activation by the death receptor leads to stress kinase-dependent cell death. J Biomed Sci 2012; 19:35. [PMID: 22462553 PMCID: PMC3348077 DOI: 10.1186/1423-0127-19-35] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 03/30/2012] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND In an effort to achieve better cancer therapies, we elucidated the combination cancer therapy of STI571 (an inhibitor of Bcr-Abl and clinically used for chronic myelogenous leukemia) and TNF-related apoptosis-inducing ligand (TRAIL, a developing antitumor agent) in leukemia, colon, and prostate cancer cells. METHODS Colon cancer (HCT116, SW480), prostate cancer (PC3, LNCaP) and leukemia (K562) cells were treated with STI571 and TRAIL. Cell viability was determined by MTT assay and sub-G1 appearance. Protein expression and kinase phosphorylation were determined by Western blotting. c-Abl and p73 activities were inhibited by target-specific small interfering (si)RNA. In vitro kinase assay of c-Abl was conducted using CRK as a substrate. RESULTS We found that STI571 exerts opposite effects on the antitumor activity of TRAIL. It enhanced cytotoxicity in TRAIL-treated K562 leukemia cells and reduced TRAIL-induced apoptosis in HCT116 and SW480 colon cancer cells, while having no effect on PC3 and LNCaP cells. In colon and prostate cancer cells, TRAIL caused c-Abl cleavage to the active form via a caspase pathway. Interestingly, JNK and p38 MAPK inhibitors effectively blocked TRAIL-induced toxicity in the colon, but not in prostate cancer cells. Next, we found that STI571 could attenuate TRAIL-induced c-Abl, JNK and p38 activation in HCT116 cells. In addition, siRNA targeting knockdown of c-Abl and p73 also reduced TRAIL-induced cytotoxicity, rendering HCT116 cells less responsive to stress kinase activation, and masking the cytoprotective effect of STI571. CONCLUSIONS All together we demonstrate a novel mediator role of p73 in activating the stress kinases p38 and JNK in the classical apoptotic pathway of TRAIL. TRAIL via caspase-dependent action can sequentially activate c-Abl, p73, and stress kinases, which contribute to apoptosis in colon cancer cells. Through the inhibition of c-Abl-mediated apoptotic p73 signaling, STI571 reduces the antitumor activity of TRAIL in colon cancer cells. Our results raise additional concerns when developing combination cancer therapy with TRAIL and STI571 in the future.
Collapse
Affiliation(s)
- Duen-Yi Huang
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
21
|
Wang K, Xing J, Li X, Fu Q, Li W. Fabrication of novel magnetic nanoparticles-coated P(styrene-itaconic acid-divinylbenzene) microspheres. Carbohydr Polym 2012. [DOI: 10.1016/j.carbpol.2011.11.063] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
22
|
Yoo KH, Park JH, Cui EJ, Kim KI, Kim JY, Kim J, Hong SG, Baek NI, Chung IS. 3-O-acetyloleanolic acid induces apoptosis in human colon carcinoma HCT-116 cells. Phytother Res 2012; 26:1541-6. [PMID: 22359244 DOI: 10.1002/ptr.4616] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 12/27/2011] [Accepted: 01/09/2012] [Indexed: 11/10/2022]
Abstract
The cytotoxic effect of 3-O-acetyloleanolic acid, an oleanolic acid derivative isolated from the seeds of Vigna sinensis K., was investigated in human colon carcinoma HCT-116 cells. 3-O-acetyloleanolic acid dose-dependently inhibited the viability of HCT-116 cells. Apoptosis was characterized by detection of cell surface annexin V and sub-G1 apoptotic cell populations. The number of immunostained cells with annexin V-FITC was increased after treatment with 3-O-acetyloleanolic acid. The sub-G1 cell population was also increased. Expression of TRAIL-mediated apoptosis signaling-related death receptor DR5 was increased in 3-O-acetyloleanolic acid-treated HCT-116 cells. Activation of caspase-8 and caspase-3, critical mediators of extrinsic apoptosis signaling, was also increased by 3-O-acetyloleanolic acid. The results indicate that 3-O-acetyloleanolic acid induces apoptosis in HCT-116 cells mediated by an extrinsic apoptosis signaling cascade via up-regulation of DR5.
Collapse
Affiliation(s)
- Ki Hyun Yoo
- Department of Genetic Engineering and Graduate School of Biotechnology, Kyung Hee University, Yongin, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Li B, Ren H, Yue P, Chen M, Khuri FR, Sun SY. The novel Akt inhibitor API-1 induces c-FLIP degradation and synergizes with TRAIL to augment apoptosis independent of Akt inhibition. Cancer Prev Res (Phila) 2012; 5:612-20. [PMID: 22345097 DOI: 10.1158/1940-6207.capr-11-0548] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
API-1 (pyrido[2,3-d]pyrimidines) is a novel small-molecule inhibitor of Akt, which acts by binding to Akt and preventing its membrane translocation and has promising preclinical antitumor activity. In this study, we reveal a novel function of API-1 in regulation of cellular FLICE-inhibitory protein (c-FLIP) levels and TRAIL-induced apoptosis, independent of Akt inhibition. API-1 effectively induced apoptosis in tested cancer cell lines including activation of caspase-8 and caspase-9. It reduced the levels of c-FLIP without increasing the expression of death receptor 4 (DR4) or DR5. Accordingly, it synergized with TRAIL to induce apoptosis. Enforced expression of ectopic c-FLIP did not attenuate API-1-induced apoptosis but inhibited its ability to enhance TRAIL-induced apoptosis. These data indicate that downregulation of c-FLIP mediates enhancement of TRAIL-induced apoptosis by API-1 but is not sufficient for API-1-induced apoptosis. API-1-induced reduction of c-FLIP could be blocked by the proteasome inhibitor MG132. Moreover, API-1 increased c-FLIP ubiquitination and decreased c-FLIP stability. These data together suggest that API-1 downregulates c-FLIP by facilitating its ubiquitination and proteasome-mediated degradation. Because other Akt inhibitors including API-2 and MK2206 had minimal effects on reducing c-FLIP and enhancement of TRAIL-induced apoptosis, it is likely that API-1 reduces c-FLIP and enhances TRAIL-induced apoptosis independent of its Akt-inhibitory activity.
Collapse
Affiliation(s)
- Bo Li
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | |
Collapse
|
24
|
Goren A, Gilert A, Meyron-Holtz E, Melamed D, Machluf M. Alginate encapsulated cells secreting Fas-ligand reduce lymphoma carcinogenicity. Cancer Sci 2012; 103:116-24. [PMID: 22017300 PMCID: PMC11164141 DOI: 10.1111/j.1349-7006.2011.02124.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Fas ligand (CD95L/APO-1) is considered as a potent anti-tumor agent due to its mediated cell death properties. We have designed a polymeric microencapsulation system, which encapsulates soluble FasL secreting cells. The encapsulated cells continuously release soluble FasL (sFasL) at the tumor site, while the device protects the encapsulated cells from the host immune system. The potential and efficacy of this system are demonstrated in vitro and in vivo for tumor inhibition. Polymeric microcapsules composed of Alginate Poly-l-lysine were optimized to encapsulate L5 secreting sFasL cells. The expression and anti-tumor activities of the sFasL were confirmed in vitro and tumor inhibition was studied in vivo in SCID mice bearing subcutaneous lymphoma tumors. In vitro, sFasL secreted by the encapsulated L5-sFasL cells was biologically active, inhibited proliferation and induced apoptotic cell death in Fas sensitive tumor cells. Mice injected with encapsulated L5-sFasL cells on the day of tumor injection or 10 days after tumor injection showed significant reduction in tumor volume, of 87% and 95%, respectively. Our findings show that encapsulated cells expressing sFasL can be used as a local device and efficiently suppress malignant Fas sensitive tumors with no side effects.
Collapse
Affiliation(s)
- Amit Goren
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | | | | |
Collapse
|
25
|
HSP90 Inhibitors for Cancer Therapy and Overcoming Drug Resistance. ADVANCES IN PHARMACOLOGY 2012; 65:471-517. [DOI: 10.1016/b978-0-12-397927-8.00015-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Yan J, Wang Q, Zheng X, Sun H, Zhou Y, Li D, Lin Y, Wang X. Luteolin enhances TNF-related apoptosis-inducing ligand's anticancer activity in a lung cancer xenograft mouse model. Biochem Biophys Res Commun 2011; 417:842-6. [PMID: 22206675 DOI: 10.1016/j.bbrc.2011.12.055] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 12/14/2011] [Indexed: 10/14/2022]
Abstract
Sensitization of cancer cells to apoptosis induced by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) by luteolin has been suggested by in vitro studies. However, no in vivo experiment has been reported to validate the potentiation effect of luteolin on TRAIL's anticancer activity. In this report, we first confirmed that luteolin potentiates TRAIL-induced cytotoxicity in A549 cells and HeLa cells in association with increased activation of apoptosis. Then we performed an in vivo experiment with a non-small cell lung cancer xenograft mouse model, which showed for the first time that the in vivo anticancer activity of TRAIL was greatly enhanced by luteolin. Compared with that in untreated control or treatment with TRAIL or luteolin alone, inhibition of tumor growth and apoptotic cell death in xenograft tumors were significantly increased in animals receiving combination treatment with TRAIL and luteolin. Data from this study thus provide strong in vivo evidence supporting that luteolin is a potential sensitizer for TRAIL in anticancer therapy.
Collapse
Affiliation(s)
- Jiaqi Yan
- Laboratory of Molecular and Translational Medicine, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Zhao L, Yue P, Lonial S, Khuri FR, Sun SY. The NEDD8-activating enzyme inhibitor, MLN4924, cooperates with TRAIL to augment apoptosis through facilitating c-FLIP degradation in head and neck cancer cells. Mol Cancer Ther 2011; 10:2415-25. [PMID: 21914854 DOI: 10.1158/1535-7163.mct-11-0401] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
TNF-related apoptosis-inducing ligand (TRAIL) is a tumor-selective cytokine with potential anticancer activity and is currently under clinical testing. Head and neck squamous cell carcinoma (HNSCC), like other cancer types, exhibits varied sensitivity to TRAIL. MLN4924 is a newly developed investigational small molecule inhibitor of NEDD8-activating enzyme with potent anticancer activity. This study reveals a novel function of MLN4924 in synergizing with TRAIL to induce apoptosis in HNSCC cells. MLN4924 alone effectively inhibited the growth of HNSCC cells and induced apoptosis. When combined with TRAIL, synergistic effects on decreasing the survival and inducing apoptosis of HNSCC cells occurred. MLN4924 decreased c-FLIP levels without modulating death receptor 4 and death receptor 5 expression. Enforced expression of c-FLIP substantially attenuated MLN4924/TRAIL-induced apoptosis. Thus c-FLIP reduction plays an important role in mediating MLN4924/TRAIL-induced apoptosis. Moreover, MLN4924 decreased c-FLIP stability, increased c-FLIP ubiquitination, and facilitated c-FLIP degradation, suggesting that MLN4924 decreases c-FLIP levels through promoting its degradation. MLN4924 activated c-jun-NH(2)-kinase (JNK) signaling, evidenced by increased levels of phospho-c-Jun in MLN4924-treated cells. Chemical inhibition of JNK activation not only prevented MLN4924-induced c-FLIP reduction, but also inhibited MLN4924/TRAIL-induced apoptosis, suggesting that JNK activation mediates c-FLIP downregulation and subsequent enhancement of TRAIL-induced apoptosis by MLN4924. Because knockdown of NEDD8 failed to activate JNK signaling and downregulate c-FLIP, it is likely that MLN4924 reduces c-FLIP levels and enhances TRAIL-induced apoptosis independent of NEDD8 inhibition.
Collapse
Affiliation(s)
- Liqun Zhao
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, 1365-C Clifton Road NE, C3088, Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
28
|
Li Z, Xu X, Bai L, Chen W, Lin Y. Epidermal growth factor receptor-mediated tissue transglutaminase overexpression couples acquired tumor necrosis factor-related apoptosis-inducing ligand resistance and migration through c-FLIP and MMP-9 proteins in lung cancer cells. J Biol Chem 2011; 286:21164-72. [PMID: 21525012 DOI: 10.1074/jbc.m110.207571] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Acquired chemoresistance not only blunts anticancer therapy but may also promote cancer cell migration and metastasis. Our previous studies have revealed that acquired tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) resistance in lung cancer cells is associated with Akt-mediated stabilization of cellular caspase 8 and Fas-associated death domain (FADD)-like apoptosis regulator-like inhibitory protein (c-FLIP) and myeloid cell leukemia 1 (Mcl-1). In this report, we show that cells with acquired TRAIL resistance have significantly increased capacities in migration and invasion. By gene expression screening, tissue transglutaminase (TGM2) was identified as one of the genes with the highest expression increase in TRAIL-resistant cells. Suppressing TGM2 dramatically alleviated TRAIL resistance and cell migration, suggesting that TGM2 contributes to these two phenotypes in TRAIL-resistant cells. TGM2-mediated TRAIL resistance is likely through c-FLIP because TGM2 suppression significantly reduced c-FLIP but not Mcl-1 expression. The expression of matrix metalloproteinase 9 (MMP-9) was suppressed when TGM2 was inhibited, suggesting that TGM2 potentiates cell migration through up-regulating MMP-9 expression. We found that EGF receptor (EGFR) was highly active in the TRAIL-resistant cells, and suppression of EGFR dramatically reduced TGM2 expression. We further determined JNK and ERK, but not Akt and NF-κB, are responsible for EGFR-mediated TGM2 expression. These results identify a novel pathway that involves EGFR, MAPK (JNK and ERK), and TGM2 for acquired TRAIL resistance and cell migration in lung cancer cells. Because TGM2 couples TRAIL resistance and cell migration, it could be a molecular target for circumventing acquired chemoresistance and metastasis in lung cancer.
Collapse
Affiliation(s)
- Zi Li
- Molecular Biology and Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico 87108, USA
| | | | | | | | | |
Collapse
|
29
|
Ishdorj G, Johnston JB, Gibson SB. Inhibition of constitutive activation of STAT3 by curcurbitacin-I (JSI-124) sensitized human B-leukemia cells to apoptosis. Mol Cancer Ther 2011; 9:3302-14. [PMID: 21159613 DOI: 10.1158/1535-7163.mct-10-0550] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Phosphorylation of STAT3 on serine 727 regulates gene expression and is found to be elevated in many B-leukemia cells including chronic lymphocytic leukemia (CLL). It is, however, unclear whether targeting STAT3 will be an effective antileukemia therapy. In this study, we assessed in vitro antileukemia activity of the STAT3 inhibitor JSI-124 (cucurbitacin I). JSI-124 potently induces apoptosis in 3 B-leukemia cell lines (BJAB, I-83, and NALM-6) and in primary CLL cells and was associated with a reduction in serine 727 phosphorylation of STAT3. Similarly, knockdown of STAT3 expression induced apoptosis in these leukemia cells. In addition, we found that JSI-124 and knockdown of STAT3 decreased antiapoptotic protein XIAP expression and overexpression of XIAP blocked JSI-124-induced apoptosis. Furthermore, we found that combined treatment of JSI-124 and TRAIL increased apoptosis associated with an increase in death receptor 4 expression. Besides apoptosis, we found that JSI-124 also induced cell-cycle arrest prior to apoptosis in B-leukemia cells. This corresponded with reduced expression of the cell-cycle regulatory gene, cdc-2. Thus, we present here for the first time that JSI-124 induced suppression of serine 727 phosphorylation of STAT3, leading to apoptosis and cell-cycle arrest through alterations in gene transcription in B-leukemia cells.
Collapse
Affiliation(s)
- Ganchimeg Ishdorj
- Departments of Biochemistry and Medical Genetics, Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | |
Collapse
|
30
|
Jin CY, Park C, Hwang HJ, Kim GY, Choi BT, Kim WJ, Choi YH. Naringenin up-regulates the expression of death receptor 5 and enhances TRAIL-induced apoptosis in human lung cancer A549 cells. Mol Nutr Food Res 2011; 55:300-9. [DOI: 10.1002/mnfr.201000024] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
31
|
Wajant H, Gerspach J, Pfizenmaier K. Engineering death receptor ligands for cancer therapy. Cancer Lett 2011; 332:163-74. [PMID: 21236560 DOI: 10.1016/j.canlet.2010.12.019] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 12/02/2010] [Accepted: 12/18/2010] [Indexed: 01/18/2023]
Abstract
CD95, TNFR1, TRAILR1 and TRAILR2 belong to a subgroup of TNF receptors which is characterized by a conserved cell death-inducing protein domain that connects these receptors to the apoptotic machinery of the cell. Activation of death receptors in malignant cells attracts increasing attention as a principle to fight cancer. Besides agonistic antibodies the major way to stimulate death receptors is the use of their naturally occurring "death ligands" CD95L, TNF and TRAIL. However, dependent from the concept followed to develop a death ligand-based therapy various limiting aspects have to be taken into consideration on the way to a "bedside" usable drug. Problems arise in particular from the cell associated transmembrane nature of the death ligands, the poor serum half life of the soluble fragments derived from the transmembrane ligands, the ubiquitous expression of the death receptors and the existence of additional non-death receptors of the death ligands. Here, we summarize strategies how these limitations can be overcome by genetic engineering.
Collapse
Affiliation(s)
- Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany.
| | | | | |
Collapse
|
32
|
de Bruyn M, Bremer E, Helfrich W. Antibody-based fusion proteins to target death receptors in cancer. Cancer Lett 2011; 332:175-83. [PMID: 21215513 DOI: 10.1016/j.canlet.2010.11.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 11/09/2010] [Accepted: 11/11/2010] [Indexed: 01/06/2023]
Abstract
Ideally, an immunotoxin should be inactive 'en route', acquire activity only after tumor cell surface binding and have no off-target effects towards normal cells. In this respect, antibody-based fusion proteins that exploit the tumor-selective pro-apoptotic death ligands sFasL and sTRAIL appear promising. Soluble FasL largely lacks receptor-activating potential, whereas sTRAIL is inactive towards normal cells. Fusion proteins in which an anti-tumor antibody fragment (scFv) is fused to sFasL or sTRAIL prove to be essentially inactive when soluble, while gaining potent anti-tumor activity after selective binding to a predefined tumor-associated cell surface antigen. Importantly, off-target binding by scFv:sTRAIL to normal cells showed no signs of toxicity. In this review, we highlight the rationale and perspectives of scFv:TRAIL/scFv:sFasL based fusion proteins for cancer therapy.
Collapse
Affiliation(s)
- Marco de Bruyn
- Department of Surgery, Surgical Research Laboratories, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | | | | |
Collapse
|
33
|
Fu L, Lin YD, Elrod HA, Yue P, Oh Y, Li B, Tao H, Chen GZ, Shin DM, Khuri FR, Sun SY. c-Jun NH2-terminal kinase-dependent upregulation of DR5 mediates cooperative induction of apoptosis by perifosine and TRAIL. Mol Cancer 2010; 9:315. [PMID: 21172010 PMCID: PMC3018404 DOI: 10.1186/1476-4598-9-315] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 12/20/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Perifosine, an alkylphospholipid tested in phase II clinical trials, modulates the extrinsic apoptotic pathway and cooperates with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) to augment apoptosis. The current study focuses on revealing the mechanisms by which perifosine enhances TRAIL-induced apoptosis. RESULTS The combination of perifosine and TRAIL was more active than each single agent alone in inducing apoptosis of head and neck squamous cell carcinoma cells and inhibiting the growth of xenografts. Interestingly, perifosine primarily increased cell surface levels of DR5 although it elevated the expression of both DR4 and DR5. Blockade of DR5, but not DR4 upregulation, via small interfering RNA (siRNA) inhibited perifosine/TRAIL-induced apoptosis. Perifosine increased phosphorylated c-Jun NH2-terminal kinase (JNK) and c-Jun levels, which were paralleled with DR4 and DR5 induction. However, only DR5 upregulaiton induced by perifosine could be abrogated by both the JNK inhibitor SP600125 and JNK siRNA. The antioxidants, N-acetylcysteine and glutathione, but not vitamin C or tiron, inhibited perifosine-induced elevation of p-c-Jun, DR4 and DR5. Moreover, no increased production of reactive oxygen species was detected in perifosine-treated cells although reduced levels of intracellular GSH were measured. CONCLUSIONS DR5 induction plays a critical role in mediating perifosine/TRAIL-induced apoptosis. Perifosine induces DR5 expression through a JNK-dependent mechanism independent of reactive oxygen species.
Collapse
Affiliation(s)
- Lei Fu
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Vondalova Blanarova O, Jelinkova I, Szoor A, Skender B, Soucek K, Horvath V, Vaculova A, Andera L, Sova P, Szollosi J, Hofmanova J, Vereb G, Kozubik A. Cisplatin and a potent platinum(IV) complex-mediated enhancement of TRAIL-induced cancer cells killing is associated with modulation of upstream events in the extrinsic apoptotic pathway. Carcinogenesis 2010; 32:42-51. [DOI: 10.1093/carcin/bgq220] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
35
|
Russo M, Mupo A, Spagnuolo C, Russo GL. Exploring death receptor pathways as selective targets in cancer therapy. Biochem Pharmacol 2010; 80:674-82. [DOI: 10.1016/j.bcp.2010.03.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2010] [Revised: 03/08/2010] [Accepted: 03/09/2010] [Indexed: 10/19/2022]
|
36
|
Roos C, Wicovsky A, Müller N, Salzmann S, Rosenthal T, Kalthoff H, Trauzold A, Seher A, Henkler F, Kneitz C, Wajant H. Soluble and transmembrane TNF-like weak inducer of apoptosis differentially activate the classical and noncanonical NF-kappa B pathway. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:1593-605. [PMID: 20610643 DOI: 10.4049/jimmunol.0903555] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
TNF-like weak inducer of apoptosis, TWEAK, is a typical member of the TNF ligand family. Thus, it is initially expressed as a type II transmembrane protein from which a soluble variant can be released by proteolytic processing. In this study, we show that membrane TWEAK is superior to soluble variant of TWEAK (sTWEAK) with respect to the activation of the classical NF-kappaB pathway, whereas both TWEAK variants are potent inducers of TNFR-associated factor-2 depletion, NF-kappaB-inducing kinase accumulation and p100 processing, hallmarks of activation of the noncanonical NF-kappaB pathway. Like other soluble TNF ligands with a poor capability to activate their corresponding receptor, sTWEAK acquires an activity resembling those of the transmembrane ligand by oligomerization or cell surface-immobilization. Blockade of the Fn14 receptor inhibited NF-kappaB signaling irrespective of the TWEAK form used for stimulation, indicating that the differential activities of the two TWEAK variants on classical and noncanonical NF-kappaB signaling is not related to the use of different receptors.
Collapse
Affiliation(s)
- Claudia Roos
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Müller N, Schneider B, Pfizenmaier K, Wajant H. Superior serum half life of albumin tagged TNF ligands. Biochem Biophys Res Commun 2010; 396:793-9. [PMID: 20447380 DOI: 10.1016/j.bbrc.2010.04.134] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Accepted: 04/25/2010] [Indexed: 02/07/2023]
Abstract
Due to their immune stimulating and apoptosis inducing properties, ligands of the TNF family attract increasing interest as therapeutic proteins. A general limitation of in vivo applications of recombinant soluble TNF ligands is their notoriously rapid clearance from circulation. To improve the serum half life of the TNF family members TNF, TWEAK and TRAIL, we genetically fused soluble variants of these molecules to human serum albumin (HSA). The serum albumin-TNF ligand fusion proteins were found to be of similar bioactivity as the corresponding HSA-less counterparts. Upon intravenous injection (i.v.), serum half life of HSA-TNF ligand fusion proteins, as determined by ELISA, was around 15 h as compared to approximately 1h for all of the recombinant control TNF ligands without HSA domain. Moreover, serum samples collected 6 or 24h after i.v. injection still contained high TNF ligand bioactivity, demonstrating that there is only limited degradation/inactivation of circulating HSA-TNF ligand fusion proteins in vivo. In a xenotransplantation model, significantly less of the HSA-TRAIL fusion protein compared to the respective control TRAIL protein was required to achieve inhibition of tumor growth indicating that the increased half life of HSA-TNF ligand fusion proteins translates into better therapeutic action in vivo. In conclusion, our data suggest that genetic fusion to serum albumin is a powerful and generally applicable mean to improve bioavailability and in vivo activity of TNF ligands.
Collapse
Affiliation(s)
- Nicole Müller
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | | | | | | |
Collapse
|
38
|
Chen S, Fu L, Raja SM, Yue P, Khuri FR, Sun SY. Dissecting the roles of DR4, DR5 and c-FLIP in the regulation of geranylgeranyltransferase I inhibition-mediated augmentation of TRAIL-induced apoptosis. Mol Cancer 2010; 9:23. [PMID: 20113484 PMCID: PMC2824632 DOI: 10.1186/1476-4598-9-23] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Accepted: 01/29/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Geranylgeranyltransferase I (GGTase I) has emerged as a cancer therapeutic target. Accordingly, small molecules that inhibit GGTase I have been developed and exhibit encouraging anticancer activity in preclinical studies. However, their underlying anticancer mechanisms remain unclear. Here we have demonstrated a novel mechanism by which GGTase I inhibition modulates apoptosis. RESULTS The GGTase I inhibitor GGTI-298 induced apoptosis and augmented tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in human lung cancer cells. GGTI-298 induced DR4 and DR5 expression and reduced c-FLIP levels. Enforced c-FLIP expression or DR5 knockdown attenuated apoptosis induced by GGTI-298 and TRAIL combination. Surprisingly, DR4 knockdown sensitized cancer cells to GGTI298/TRAIL-induced apoptosis. The combination of GGTI-298 and TRAIL was more effective than each single agent in decreasing the levels of IkappaBalpha and p-Akt, implying that GGTI298/TRAIL activates NF-kappaB and inhibits Akt. Interestingly, knockdown of DR5, but not DR4, prevented GGTI298/TRAIL-induced IkappaBalpha and p-Akt reduction, suggesting that DR5 mediates reduction of IkappaBalpha and p-Akt induced by GGTI298/TRAIL. In contrast, DR4 knockdown further facilitated GGTI298/TRAIL-induced p-Akt reduction. CONCLUSIONS Both DR5 induction and c-FLIP downregulation contribute to GGTI-298-mediated augmentation of TRAIL-induced apoptosis. Moreover, DR4 appears to play an opposite role to DR5 in regulation of GGTI/TRAIL-induced apoptotic signaling.
Collapse
Affiliation(s)
- Shuzhen Chen
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, Georgia, USA
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
The term "metronomic" was recently introduced to describe continuous low-dose administration of chemotherapeutics following the discovery that this causes minimal side effects (Hanahan et al. 2000, J Clin Invest, 105(8), 1045-1047; Bisland et al. 2004, Photochem Photobiol, 80, 22-30). Metronomic dosing in PDT is proposed by analogy and the rationale is as a means to improve the tumor-specific response through cell death by apoptosis. We investigated the molecular mechanisms associated with apoptosis following ALA-PDT treatment in two brain glioma cell lines, namely U87 (human) and CNS-1 (rat) cells. We used the high energy of light at a short time (acute PDT) and the low energy of light at a long time of exposure (metronomic PDT) to treat both cell lines. To identify potential cell death pathways associated with metronomic PDT, microarray analysis of gene expression was conducted on RNA from glioblastoma cells with metronomic ALA-PDT. The apoptosis mechanism for metronomic ALA-PDT occurred via the inhibition of LTbetaR and the transcription factor NF-kappaB. This inhibition was ALA concentration dependent.
Collapse
Affiliation(s)
- Gurmit Singh
- Department of Pathology and Molecular Medicine, Juravinski Cancer Centre, McMaster University, Hamilton, ON, Canada
| | | | | |
Collapse
|
40
|
Pei GT, Wu CW, Lin WW. Hypoxia-induced decoy receptor 2 gene expression is regulated via a hypoxia-inducible factor 1alpha-mediated mechanism. Biochem Biophys Res Commun 2009; 391:1274-9. [PMID: 20018172 DOI: 10.1016/j.bbrc.2009.12.058] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Accepted: 12/09/2009] [Indexed: 12/31/2022]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising candidate for anti-tumor therapy because of its high selectivity towards cancer cells. TRAIL has four major distinct receptors: DR4 and DR5 can recruit Fas-associated death domain protein to induce extrinsic death signal, while DcR1 and DcR2 are decoy receptors that can neutralize TRAIL toxicity by binding to TRAIL. Hypoxia is an important feature of solid tumors that renders tumor cells resistant to some chemotherapeutic agents, including TRAIL, and we therefore investigated the role of hypoxia in TRAIL receptor expression in human colon cancer cells. Hypoxia upregulated DcR2 protein expression in five different human colon cancer cell lines (HCT116, HT29, SW480, SW620, and WiDr). Flow cytometry analysis indicated that the increased DcR2 protein was expressed on the cell surface membrane. In contrast, hypoxia had no effect on DR4, DR5, or DcR1 protein levels. RT-PCR analysis suggested that this protein increase was the result of DcR2 gene transcription. Transcription factors were investigated using p53-null cells, pharmacological inhibitors, and a small interfering RNA approach. Our results demonstrated that hypoxia-inducible factor 1alpha played a crucial role in regulating the transcription of DcR2, but that neither p53 nor NF-kappaB contributed to this regulation. Moreover, TRAIL-induced, but not agonistic DR5 antibody-induced cell death was attenuated under hypoxic conditions. These results suggest that increased DcR2 protein levels might play a role in TRAIL resistance in solid tumors.
Collapse
Affiliation(s)
- Guo-Ting Pei
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | |
Collapse
|
41
|
Chen W, Bai L, Wang X, Xu S, Belinsky SA, Lin Y. Acquired activation of the Akt/cyclooxygenase-2/Mcl-1 pathway renders lung cancer cells resistant to apoptosis. Mol Pharmacol 2009; 77:416-23. [PMID: 19933775 DOI: 10.1124/mol.109.061226] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Acquired apoptosis resistance plays an important role in acquired chemoresistance in cancer cells during chemotherapy. Our previous observations demonstrated that acquired tumor necrosis factor-related apoptosis-inducing ligand resistance in lung cancer cells was associated with Akt-mediated stabilization of cellular FLICE-like inhibitory protein (c-FLIP) and Mcl-1. In this report, we determined that these cells also have acquired resistance to apoptosis induced by chemotherapeutics such as cisplatin and doxorubicin (Adriamycin), which was detected in vitro in cell cultures and in vivo in xenografted tumors. We further found that cyclooxygenase-2 (COX-2) is dramatically overexpressed in cells with acquired apoptosis resistance. COX-2 seems to be a crucial mediator in acquired apoptosis resistance because suppressing COX-2 activity with a chemical inhibitor or reducing COX-2 protein expression level with COX-2 small interfering RNA dramatically alleviated resistance to therapeutic-induced apoptosis. Inhibiting Akt markedly suppressed COX-2 expression, suggesting COX-2 is a downstream effector of this cell survival kinase-mediated apoptosis resistance. Furthermore, the expression of Mcl-1 but not c-FLIP was significantly reduced when COX-2 was suppressed, and knockdown of Mcl-1 substantially sensitized the cells to apoptosis. Our results establish a novel pathway that consists of Akt, COX-2, and Mcl-1 for acquired apoptosis resistance, which could be a molecular target for circumventing acquired chemoresistance in lung cancer.
Collapse
Affiliation(s)
- Wenjie Chen
- Molecular Biology and Lung Cancer Program, Lovelace Respiratory Research Institute, 2425 Ridgecrest Dr., SE, Albuquerque, NM 87108, USA
| | | | | | | | | | | |
Collapse
|
42
|
The TNF superfamily in 2009: new pathways, new indications, and new drugs. Drug Discov Today 2009; 14:1082-8. [PMID: 19837186 DOI: 10.1016/j.drudis.2009.10.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Revised: 09/23/2009] [Accepted: 10/05/2009] [Indexed: 12/31/2022]
Abstract
Today's most successful class of biologics targets the inflammatory cytokine tumor necrosis factor in autoimmune diseases including rheumatoid arthritis, psoriasis and Crohn's. With five anti-TNF biologics now on the market, attention has turned toward novel strategies to improve the safety and efficacy of next-generation TNF inhibitors. Beyond TNF, drugs are under development that modulate many other ligands and receptors of the TNF superfamily. Biologics targeting at least 16 of the approximately 22 known ligand-receptor pairs are now in clinical development for autoimmune diseases, cancers and osteoporosis. A deeper understanding of intracellular signaling has also facilitated small-molecule interventions, opening the door to oral therapies. This report summarizes recent developments in this highly druggable superfamily, including highlights of the latest international TNF conference.
Collapse
|
43
|
Prognostic significance of tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor expression in patients with breast cancer. J Mol Med (Berl) 2009; 87:995-1007. [PMID: 19680616 DOI: 10.1007/s00109-009-0510-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Revised: 06/24/2009] [Accepted: 07/17/2009] [Indexed: 01/02/2023]
Abstract
TNF-related apoptosis-inducing ligand (TRAIL) induces apoptosis upon binding to TRAIL receptors 1 and 2 (TRAIL-R1/DR4 and TRAIL-R2/DR5). TRAIL-R3 (DcR1) and TRAIL-R4 (DcR2) have no or only a truncated cytoplasmic death domain. Consequently, they cannot induce apoptosis and instead have been proposed to inhibit apoptosis induction by TRAIL. Agonists for the apoptosis-inducing TRAIL-R1 and TRAIL-R2 are currently tested in clinical trials. To determine the expression pattern of all surface-bound TRAIL receptors and their prognostic clinical value, we investigated tumour samples of 311 patients with breast cancer by immunohistochemistry. TRAIL receptor expression profiles were correlated with clinico-pathological data, disease-free survival and overall survival. TRAIL-R1 was more strongly expressed in better differentiated tumours, and correlated positively with surrogate markers of a better prognosis (hormone receptor status, Bcl-2, negative nodal status), but negatively with the expression of Her2/neu and the proliferation marker Ki67. In contrast, TRAIL-R2 and TRAIL-R4 expression correlated with higher tumour grades, higher Ki67 index, higher Her2/neu expression and a positive nodal status at the time of diagnosis, but with lower expression of Bcl-2. Thus, the TRAIL receptor expression pattern was predictive of nodal status. Patients with grade 1 and 2 tumours, who had TRAIL-R2 but no TRAIL-R1, showed a positive lymph node status in 47% of the cases. Vice versa, only 19% had a positive nodal status with high TRAIL-R1 but low TRAIL-R2. Most strikingly, TRAIL-R4 and -R2 expression negatively correlated with overall survival of breast cancer patients. Although TRAIL-R2 correlated with more aggressive tumour behaviour, mammary carcinoma could be sensitised to TRAIL-R2-induced apoptosis, suggesting that TRAIL-R2 might therefore be used to therapeutically target such tumours. Hence, determination of the TRAIL receptor expression profile may aid in defining which breast cancer patients have a higher risk of lymph node metastasis and worse overall survival and on the other hand will help to guide TRAIL-based tumour therapy.
Collapse
|
44
|
Wyzgol A, Müller N, Fick A, Munkel S, Grigoleit GU, Pfizenmaier K, Wajant H. Trimer Stabilization, Oligomerization, and Antibody-Mediated Cell Surface Immobilization Improve the Activity of Soluble Trimers of CD27L, CD40L, 41BBL, and Glucocorticoid-Induced TNF Receptor Ligand. THE JOURNAL OF IMMUNOLOGY 2009; 183:1851-61. [DOI: 10.4049/jimmunol.0802597] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
45
|
Gerspach J, Pfizenmaier K, Wajant H. Improving TNF as a cancer therapeutic: tailor-made TNF fusion proteins with conserved antitumor activity and reduced systemic side effects. Biofactors 2009; 35:364-72. [PMID: 19484741 DOI: 10.1002/biof.50] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Tumor necrosis factor (TNF) is highly pleiotropic cytokine regulating diverse cellular processes such as proliferation, cell migration, angiogenesis, differentiation, apoptosis, necrosis, but also survival. Because of its name-giving tumor necrosis-inducing capabilities, TNF has attracted attention very early for antitumor therapy. Although TNF is in clinical use for treatment of soft tissue sarcoma in isolated limb perfusion, its broad use in tumor therapy is prevented so far by its strong systemic proinflammatory effects. Nevertheless, over the past decade, a variety of tailor-made TNF variants have been developed with the aim to reduce TNFs systemic activity without losing its antitumoral effects. Here, we review the progress made toward improving the efficacy of TNF by genetic engineering, tumor targeting, and introduction of prodrug concepts.
Collapse
Affiliation(s)
- Jeannette Gerspach
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany.
| | | | | |
Collapse
|
46
|
Wicovsky A, Salzmann S, Roos C, Ehrenschwender M, Rosenthal T, Siegmund D, Henkler F, Gohlke F, Kneitz C, Wajant H. TNF-like weak inducer of apoptosis inhibits proinflammatory TNF receptor-1 signaling. Cell Death Differ 2009; 16:1445-59. [PMID: 19557010 DOI: 10.1038/cdd.2009.80] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Soluble TNF-like weak inducer of apoptosis (TWEAK) trimers induce, in a variety of cell lines, translocation of cytosolic tumor necrosis factor (TNF) receptor-associated factor-2 (TRAF2) to a triton X-100-insoluble compartment without changes in the total cellular TRAF2 content. TWEAK-induced TRAF2 translocation is paralleled by a strong increase in nuclear factor kappaB 2 (NFkappaB2)/p100 processing to p52, indicating that TRAF2 redistribution is sufficient for activation of the alternative NFkappaB pathway. In accordance with the crucial role of TRAF2 in proinflammatory, anti-apoptotic TNF receptor-1 (TNFR1) signaling, we observed that TWEAK-primed cells have a reduced capacity to activate the classical NFkappaB pathway or JNK (cJun N-terminal kinase) in response to TNF. Furthermore, TWEAK-primed cells are sensitized for the TNFR1-mediated induction of apoptotic and necrotic cell death. Notably, the expression of the NFkappaB-regulated, TRAF2-interacting TRAF1 protein can attenuate TWEAK-induced depletion of the triton X-100-soluble TRAF2 fraction and improve TNFR1-induced NFkappaB signaling in TWEAK-primed cells. Taken together, we demonstrate that soluble TWEAK desensitizes cells for proinflammatory TNFR1 signaling and thus identify TWEAK as a modifier of TNF signaling.
Collapse
Affiliation(s)
- A Wicovsky
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Röntgenring 11, Würzburg 97070, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Messerschmidt SKE, Musyanovych A, Altvater M, Scheurich P, Pfizenmaier K, Landfester K, Kontermann RE. Targeted lipid-coated nanoparticles: delivery of tumor necrosis factor-functionalized particles to tumor cells. J Control Release 2009; 137:69-77. [PMID: 19306900 DOI: 10.1016/j.jconrel.2009.03.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Revised: 03/11/2009] [Accepted: 03/13/2009] [Indexed: 01/13/2023]
Abstract
Polymeric nanoparticles displaying tumor necrosis factor on their surface (TNF nanocytes) are useful carrier systems capable of mimicking the bioactivity of membrane-bound TNF. Thus, TNF nanocytes are potent activators of TNF receptor 1 and 2 leading to a striking enhancement of apoptosis. However, in vivo applications are hampered by potential systemic toxicity. Here, using TNF nanocytes as a model system, we developed a procedure to generate targeted lipid-coated particles (TLP) in which TNF activity is shielded. The TLPs generated here are composed of an inner single-chain TNF (scTNF)-functionalized, polymeric nanoparticle core surrounded by a lipid coat endowed with polyethylene glycol (PEG) for sterical stabilization and a single-chain Fv (scFv) fragment for targeting. Using a scFv directed against the tumor stroma marker fibroblast activation protein (FAP) we show that TLP and scTNF-TLP specifically bind to FAP-expressing, but not to FAP-negative cells. Lipid coating strongly reduced nonspecific binding of particles and scTNF-mediated cytotoxicity towards FAP-negative cells. In contrast, an increased cytotoxicity of TLP was observed for FAP-positive cells. Thus, through liposome encapsulation, nanoparticles carrying bioactive molecules, which are subject to nonselective uptake and activity towards various cells and tissues, can be converted into target cell-specific composite particles exhibiting a selective activity towards antigen-positive target cells. Besides safe and targeted delivery of death ligands such as TNF, TLP should be suitable for various diagnostic and therapeutic applications, which benefit from a targeted delivery of reagents embedded into the particle core or displayed on the core particle surface.
Collapse
Affiliation(s)
- Sylvia K E Messerschmidt
- Institut für Zellbiologie und Immunologie, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | | | | | | | | | | | | |
Collapse
|
48
|
Death ligands designed to kill: development and application of targeted cancer therapeutics based on proapoptotic TNF family ligands. Results Probl Cell Differ 2009; 49:241-73. [PMID: 19142623 DOI: 10.1007/400_2008_22] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The identification of molecular markers associated with cancer development or progression, opened a new era in the development of therapeutics. The successful introduction of a few low molecular weight chemicals and recombinant protein therapeutics with targeted actions into clinical practice have raised great expectations to broadly improve cancer therapy with respect to both overall clinical responses and tolerability. Targeting the apoptotic machinery of malignant cells is an attractive concept to combat cancer, which is currently exploited for the proapoptotic members of the TNF ligand family at various stages of preclinical and clinical development. This review summarizes recent progress in this rapidly progressing field of "biologic" therapies targeting the death receptors of TNF, CD95L, and TRAIL by means of its cognate protein ligands, receptor specific antibodies, and gene therapeutic approaches. Preclinical data on newly derived variants and fusion proteins based on these death ligands, designed to act in a tumor restricted manner, thereby preventing a systemic, potentially harmful action, will also be discussed.
Collapse
|
49
|
Papenfuss K, Cordier SM, Walczak H. Death receptors as targets for anti-cancer therapy. J Cell Mol Med 2008; 12:2566-85. [PMID: 19210756 PMCID: PMC3828874 DOI: 10.1111/j.1582-4934.2008.00514.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Accepted: 09/25/2008] [Indexed: 01/06/2023] Open
Abstract
Human tumour cells are characterized by their ability to avoid the normal regulatory mechanisms of cell growth, division and death. The classical chemotherapy aims to kill tumour cells by causing DNA damage-induced apoptosis. However, as many tumour cells possess mutations in intracellular apoptosis-sensing molecules like p53, they are not capable of inducing apoptosis on their own and are therefore resistant to chemotherapy. With the discovery of the death receptors the opportunity arose to directly trigger apoptosis from the outside of tumour cells, thereby circumventing chemotherapeutic resistance. Death receptors belong to the tumour necrosis factor receptor superfamily, with tumour necrosis factor (TNF) receptor-1, CD95 and TNF-related apoptosis-inducing ligand-R1 and -R2 being the most prominent members. This review covers the current knowledge about these four death receptors, summarizes pre-clinical approaches engaging these death receptors in anti-cancer therapy and also gives an overview about their application in clinical trials conducted to date.
Collapse
Affiliation(s)
| | | | - Henning Walczak
- Tumour Immunology Unit, Division of Medicine, Imperial College LondonUnited Kingdom
| |
Collapse
|
50
|
Su RY, Chi KH, Huang DY, Tai MH, Lin WW. 15-deoxy-Δ12,14-prostaglandin J2 up-regulates death receptor 5 gene expression in HCT116 cells: involvement of reactive oxygen species and C/EBP homologous transcription factor gene transcription. Mol Cancer Ther 2008; 7:3429-40. [DOI: 10.1158/1535-7163.mct-08-0498] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|