1
|
Szukiewicz D. CX3CL1 (Fractalkine)-CX3CR1 Axis in Inflammation-Induced Angiogenesis and Tumorigenesis. Int J Mol Sci 2024; 25:4679. [PMID: 38731899 PMCID: PMC11083509 DOI: 10.3390/ijms25094679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
The chemotactic cytokine fractalkine (FKN, chemokine CX3CL1) has unique properties resulting from the combination of chemoattractants and adhesion molecules. The soluble form (sFKN) has chemotactic properties and strongly attracts T cells and monocytes. The membrane-bound form (mFKN) facilitates diapedesis and is responsible for cell-to-cell adhesion, especially by promoting the strong adhesion of leukocytes (monocytes) to activated endothelial cells with the subsequent formation of an extracellular matrix and angiogenesis. FKN signaling occurs via CX3CR1, which is the only known member of the CX3C chemokine receptor subfamily. Signaling within the FKN-CX3CR1 axis plays an important role in many processes related to inflammation and the immune response, which often occur simultaneously and overlap. FKN is strongly upregulated by hypoxia and/or inflammation-induced inflammatory cytokine release, and it may act locally as a key angiogenic factor in the highly hypoxic tumor microenvironment. The importance of the FKN/CX3CR1 signaling pathway in tumorigenesis and cancer metastasis results from its influence on cell adhesion, apoptosis, and cell migration. This review presents the role of the FKN signaling pathway in the context of angiogenesis in inflammation and cancer. The mechanisms determining the pro- or anti-tumor effects are presented, which are the cause of the seemingly contradictory results that create confusion regarding the therapeutic goals.
Collapse
Affiliation(s)
- Dariusz Szukiewicz
- Department of Biophysics, Physiology & Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, 02-004 Warsaw, Poland
| |
Collapse
|
2
|
Qian X, Zheng Y, Xu L, Liu Z, Chen M, Tong F, Fan P, Chen Z, Dong N, Zhang C, Liu J. Deciphering the role of CX3CL1-CX3CR1 in aortic aneurysm pathogenesis: insights from Mendelian randomization and transcriptomic analyses. Front Immunol 2024; 15:1383607. [PMID: 38715600 PMCID: PMC11074460 DOI: 10.3389/fimmu.2024.1383607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/09/2024] [Indexed: 06/05/2024] Open
Abstract
Background The crucial role of inflammation in aortic aneurysm (AA) is gaining prominence, while there is still a lack of key cytokines or targets for effective clinical translation. Methods Mendelian randomization (MR) analysis was performed to identify the causal relationship between 91 circulating inflammatory proteins and AA and between 731 immune traits and AA. Bulk RNA sequencing data was utilized to demonstrate the expression profile of the paired ligand-receptor. Gene enrichment analysis, Immune infiltration, and correlation analysis were employed to deduce the potential role of CX3CR1. We used single-cell RNA sequencing data to pinpoint the localization of CX3CL1 and CX3CR1, which was further validated by multiplex immunofluorescence staining. Cellchat analysis was utilized to infer the CX3C signaling pathway. Trajectory analysis and the Cytosig database were exploited to determine the downstream effect of CX3CL1-CX3CR1. Results We identified 4 candidates (FGF5, CX3CL1, IL20RA, and SCF) in multiple two-sample MR analyses. Subsequent analysis of the expression profile of the paired receptor revealed the significant upregulation of CX3CR1 in AA and its positive correlation with pro-inflammatory macrophages. Two sample MR between immune cell traits and AA demonstrated the potential causality between intermediate monocytes and AA. We finally deciphered in single-cell sequencing data that CX3CL1 sent by endothelial cells (ECs) acted on CX3CR1 of intermediated monocytes, leading to its recruitment and pro-inflammatory responses. Conclusion Our study presented a genetic insight into the pathogenetic role of CX3CL1-CX3CR1 in AA, and further deciphered the CX3C signaling pathway between ECs and intermediate monocytes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chao Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Junwei Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
3
|
Zhang C, Zhang Y, Zhuang R, Yang K, Chen L, Jin B, Ma Y, Zhang Y, Tang K. Alterations in CX3CL1 Levels and Its Role in Viral Pathogenesis. Int J Mol Sci 2024; 25:4451. [PMID: 38674036 PMCID: PMC11050295 DOI: 10.3390/ijms25084451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
CX3CL1, also named fractalkine or neurotactin, is the only known member of the CX3C chemokine family that can chemoattract several immune cells. CX3CL1 exists in both membrane-anchored and soluble forms, with each mediating distinct biological activities. CX3CL1 signals are transmitted through its unique receptor, CX3CR1, primarily expressed in the microglia of the central nervous system (CNS). In the CNS, CX3CL1 acts as a regulator of microglia activation in response to brain disorders or inflammation. Recently, there has been a growing interest in the role of CX3CL1 in regulating cell adhesion, chemotaxis, and host immune response in viral infection. Here, we provide a comprehensive review of the changes and function of CX3CL1 in various viral infections, such as human immunodeficiency virus (HIV), SARS-CoV-2, influenza virus, and cytomegalovirus (CMV) infection, to highlight the emerging roles of CX3CL1 in viral infection and associated diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yun Zhang
- Department of Immunology, The Fourth Military Medical University, Xi’an 710032, China; (C.Z.); (Y.Z.); (R.Z.); (K.Y.); (L.C.); (B.J.); (Y.M.)
| | - Kang Tang
- Department of Immunology, The Fourth Military Medical University, Xi’an 710032, China; (C.Z.); (Y.Z.); (R.Z.); (K.Y.); (L.C.); (B.J.); (Y.M.)
| |
Collapse
|
4
|
Stangret A, Sadowski KA, Jabłoński K, Kochman J, Opolski G, Grabowski M, Tomaniak M. Chemokine Fractalkine and Non-Obstructive Coronary Artery Disease-Is There a Link? Int J Mol Sci 2024; 25:3885. [PMID: 38612695 PMCID: PMC11012077 DOI: 10.3390/ijms25073885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Non-obstructive coronary artery disease (NO-CAD) constitutes a heterogeneous group of conditions collectively characterized by less than 50% narrowing in at least one major coronary artery with a fractional flow reserve (FFR) of ≤0.80 observed in coronary angiography. The pathogenesis and progression of NO-CAD are still not fully understood, however, inflammatory processes, particularly atherosclerosis and microvascular dysfunction are known to play a major role in it. Chemokine fractalkine (FKN/CX3CL1) is inherently linked to these processes. FKN/CX3CL1 functions predominantly as a chemoattractant for immune cells, facilitating their transmigration through the vessel wall and inhibiting their apoptosis. Its concentrations correlate positively with major cardiovascular risk factors. Moreover, promising preliminary results have shown that FKN/CX3CL1 receptor inhibitor (KAND567) administered in the population of patients with ST-elevation myocardial infarction (STEMI) undergoing percutaneous coronary intervention (PCI), inhibits the adverse reaction of the immune system that causes hyperinflammation. Whereas the link between FKN/CX3CL1 and NO-CAD appears evident, further studies are necessary to unveil this complex relationship. In this review, we critically overview the current data on FKN/CX3CL1 in the context of NO-CAD and present the novel clinical implications of the unique structure and function of FKN/CX3CL1 as a compound which distinctively contributes to the pathomechanism of this condition.
Collapse
Affiliation(s)
- Aleksandra Stangret
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland;
| | - Karol Artur Sadowski
- 1st Department of Cardiology, Medical University of Warsaw, Banacha 1a, 01-267 Warsaw, Poland; (K.A.S.); (K.J.); (J.K.); (G.O.); (M.G.)
| | - Konrad Jabłoński
- 1st Department of Cardiology, Medical University of Warsaw, Banacha 1a, 01-267 Warsaw, Poland; (K.A.S.); (K.J.); (J.K.); (G.O.); (M.G.)
| | - Janusz Kochman
- 1st Department of Cardiology, Medical University of Warsaw, Banacha 1a, 01-267 Warsaw, Poland; (K.A.S.); (K.J.); (J.K.); (G.O.); (M.G.)
| | - Grzegorz Opolski
- 1st Department of Cardiology, Medical University of Warsaw, Banacha 1a, 01-267 Warsaw, Poland; (K.A.S.); (K.J.); (J.K.); (G.O.); (M.G.)
| | - Marcin Grabowski
- 1st Department of Cardiology, Medical University of Warsaw, Banacha 1a, 01-267 Warsaw, Poland; (K.A.S.); (K.J.); (J.K.); (G.O.); (M.G.)
| | - Mariusz Tomaniak
- 1st Department of Cardiology, Medical University of Warsaw, Banacha 1a, 01-267 Warsaw, Poland; (K.A.S.); (K.J.); (J.K.); (G.O.); (M.G.)
| |
Collapse
|
5
|
Wu LY, Chong JR, Chong JPC, Hilal S, Venketasubramanian N, Tan BY, Richards AM, Chen CP, Lai MKP. Serum Placental Growth Factor as a Marker of Cerebrovascular Disease Burden in Alzheimer's Disease. J Alzheimers Dis 2024; 97:1289-1298. [PMID: 38217598 DOI: 10.3233/jad-230811] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2024]
Abstract
BACKGROUND Concomitant cerebrovascular diseases (CeVD) have been identified as an important determinant of Alzheimer's disease (AD) progression. Development of robust blood-based biomarkers will provide critical tools to evaluate prognosis and potential interventional strategies for AD with CeVD. OBJECTIVE This study investigated circulating placental growth factor (PlGF), a potent pro-angiogenic factor related to endothelial dysfunction and vascular inflammation, in an Asian memory clinic cohort of non-demented individuals as well as AD, including its associations with neuroimaging markers of CeVD. METHODS 109 patients with AD, 76 cognitively impaired with no dementia (CIND), and 56 non-cognitively impaired (NCI) were included in this cross-sectional study. All subjects underwent 3T brain magnetic resonance imaging to assess white matter hyperintensities (WMH), lacunes, cortical infarcts, and cerebral microbleeds (CMBs). Serum PlGF concentrations were measured by electrochemiluminescence immunoassays. RESULTS Serum PlGF was elevated in AD, but not CIND, compared to the NCI controls. Adjusted concentrations of PlGF were associated with AD only in the presence of significant CeVD. Elevated PlGF was significantly associated with higher burden of WMH and with CMBs in AD patients. CONCLUSIONS Serum PlGF has potential utility as a biomarker for the presence of CeVD, specifically WMH and CMBs, in AD. Further studies are needed to elucidate the underlying pathophysiological mechanisms linking PlGF to CeVD, as well as to further assess PlGF's clinical utility.
Collapse
Affiliation(s)
- Liu-Yun Wu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Memory Aging and Cognition Centre, National University Health System, Singapore
| | - Joyce R Chong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Memory Aging and Cognition Centre, National University Health System, Singapore
| | - Jenny P C Chong
- Cardiovascular Research Institute, National University Heart Centre, Singapore
| | - Saima Hilal
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Memory Aging and Cognition Centre, National University Health System, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | | | | | - Arthur Mark Richards
- Cardiovascular Research Institute, National University Heart Centre, Singapore
- Department of Medicine, National University Health System, Singapore
| | - Christopher P Chen
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Memory Aging and Cognition Centre, National University Health System, Singapore
| | - Mitchell K P Lai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Memory Aging and Cognition Centre, National University Health System, Singapore
| |
Collapse
|
6
|
Stangret A, Dykacz W, Jabłoński K, Wesołowska A, Klimczak-Tomaniak D, Kochman J, Tomaniak M. The cytokine trio - visfatin, placental growth factor and fractalkine - and their role in myocardial infarction with non-obstructive coronary arteries (MINOCA). Cytokine Growth Factor Rev 2023; 74:76-85. [PMID: 37679252 DOI: 10.1016/j.cytogfr.2023.08.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/09/2023]
Abstract
Myocardial infarction with nonobstructive coronary arteries (MINOCA) remains a puzzling clinical entity. It is characterized by clinical evidence of myocardial infarction (MI) with normal or near-normal coronary arteries in angiography. Given the complex etiology including multiple possible scenarios with varied pathogenetic mechanisms, profound investigation of the plausible biomarkers of MINOCA may bring further pathophysiological insights and novel diagnostic opportunities. Cytokines have a great diagnostic potential and are used as biomarkers for many diseases. An unusual trio of visfatin, placental growth factor (PlGF) and fractalkine (CX3CL1) can directly promote vascular dysfunction, inflammation and angiogenesis through the activation of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling. They are redundant in physiological processes and become overexpressed in the pathomechanisms underlying MINOCA. The knowledge about their concentration might serve as a valuable diagnostic and/or therapeutic tool for assessing vascular endothelial function. Here we analyze the current knowledge on visfatin, PlGF and CX3CL1 in the context of MINOCA and present the novel clinical implications of their combined expression as predictors or indicators of this condition.
Collapse
Affiliation(s)
- Aleksandra Stangret
- Department of Human Physiology and Pathophysiology, Faculty of Medicine, Collegium Medicum Cardinal Stefan Wyszynski University in Warsaw, Wóycickiego 1/3, 01-938 Warsaw, Poland; College of Medical Sciences, Nicolaus Copernicus Superior School, Nowogrodzka 47a, 00-695 Warsaw, Poland
| | - Weronika Dykacz
- First Department of Cardiology, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland
| | - Konrad Jabłoński
- First Department of Cardiology, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland
| | - Aleksandra Wesołowska
- First Department of Cardiology, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland
| | - Dominika Klimczak-Tomaniak
- Department of Cardiology, Hypertension and Internal Medicine, Medical University of Warsaw, Warsaw, Poland; Department of Immunology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Janusz Kochman
- First Department of Cardiology, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland
| | - Mariusz Tomaniak
- First Department of Cardiology, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland.
| |
Collapse
|
7
|
Zuo B, Zhu S, Zhong G, Bu H, Chen H. Causal association between placental growth factor and coronary heart disease: a Mendelian randomization study. Aging (Albany NY) 2023; 15:10117-10132. [PMID: 37787982 PMCID: PMC10599727 DOI: 10.18632/aging.205061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/28/2023] [Indexed: 10/04/2023]
Abstract
OBJECTIVE Placental growth factor (PlGF), an important polypeptide hormone, plays an important regulatory role in various physiological processes. Observational studies have shown that PlGF is associated with the risk of coronary heart disease (CHD). However, the causal association between PlGF and CHD is unclear at present. This study aimed to investigate the causal association between genetically predicted PlGF levels and CHD. METHODS Single nucleotide polymorphisms (SNPs) associated with PlGF were selected as instrumental variables (IVs) to evaluate the causal association between genetically predicted circulating PlGF levels and CHD risk by two-sample Mendelian randomization (MR). RESULTS Inverse variance weighted (IVW) analysis showed that there was a suggestive causal association between genetically predicted PlGF level and the risk of CHD (OR = 0.79, 95% CI: 0.66-0.95, P = 0.011) overall. In addition, PlGF levels had a significant negative causal association with the risk of myocardial infarction (OR = 0.83, 95% CI: 0.72-0.95, P = 0.007). A negative correlation trend was found between PlGF level and the risk of angina pectoris (OR = 0.89, 95% CI: 0.79-1.01, P = 0.067). In addition, PlGF levels had a significant negative association with the risk of unstable angina pectoris (OR = 0.78, 95% CI: 0.64-0.94, P = 0.008). PlGF levels were negatively correlated with CHD events with suggestive significance (OR = 0.89, 95% CI: 0.80-0.99, P = 0.046). CONCLUSION Genetically predicted circulating PlGF levels are causally associated with the risk of CHD, especially acute coronary syndrome, and PlGF is a potential therapeutic target for CHD.
Collapse
Affiliation(s)
- Bo Zuo
- Department of Cardiology, Cardiovascular Centre, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Sha Zhu
- Department of Neurology, Peking University International Hospital, Beijing 102206, China
| | - Guoting Zhong
- Department of Neurology, Peking University International Hospital, Beijing 102206, China
| | - Haoyang Bu
- Department of Neurology, The First Hospital of Handan, Handan, China
| | - Hui Chen
- Department of Cardiology, Cardiovascular Centre, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| |
Collapse
|
8
|
Loh SX, Ekinci Y, Spray L, Jeyalan V, Olin T, Richardson G, Austin D, Alkhalil M, Spyridopoulos I. Fractalkine Signalling (CX 3CL1/CX 3CR1 Axis) as an Emerging Target in Coronary Artery Disease. J Clin Med 2023; 12:4821. [PMID: 37510939 PMCID: PMC10381654 DOI: 10.3390/jcm12144821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Acute myocardial infarction (MI) is the most common and dramatic complication of atherosclerosis, which, despite successful reperfusion therapy, can lead to incident heart failure (HF). HF occurs when the healing process is impaired due to adverse left ventricular remodelling, and can be the result of so-called ischaemia/reperfusion injury (IRI), visualised by the development of intramyocardial haemorrhage (IMH) or microvascular obstruction (MVO) in cardiac MRI. Thus far, translation of novel pharmacological strategies from preclinical studies to target either IRI or HF post MI have been largely unsuccessful. Anti-inflammatory therapies also carry the risk of affecting the immune system. Fractalkine (FKN, CX3CL1) is a unique chemokine, present as a transmembrane protein on the endothelium, or following cleavage as a soluble ligand, attracting leukocyte subsets expressing the corresponding receptor CX3CR1. We have shown previously that the fractalkine receptor CX3CR1 is associated with MVO in patients undergoing primary PCI. Moreover, inhibition of CX3CR1 with an allosteric small molecule antagonist (KAND567) in the rat MI model reduces acute infarct size, inflammation, and IMH. Here we review the cellular biology of fractalkine and its receptor, along with ongoing studies that introduce CX3CR1 as a future target in coronary artery disease, specifically in patients with myocardial infarction.
Collapse
Affiliation(s)
- Shu Xian Loh
- Department of Cardiology, Freeman Hospital, Newcastle upon Tyne NHS Foundation Trust, Newcastle upon Tyne NE7 7DN, UK; (S.X.L.); (V.J.); (M.A.)
| | - Yasemin Ekinci
- Translational Research Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (Y.E.); (L.S.)
| | - Luke Spray
- Translational Research Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (Y.E.); (L.S.)
| | - Visvesh Jeyalan
- Department of Cardiology, Freeman Hospital, Newcastle upon Tyne NHS Foundation Trust, Newcastle upon Tyne NE7 7DN, UK; (S.X.L.); (V.J.); (M.A.)
- Academic Cardiovascular Unit, The James Cook University Hospital, Middlesbrough TS4 3BW, UK;
- Population Health Science Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Thomas Olin
- Kancera AB, Karolinska Institutet Science Park, 171 65 Solna, Sweden;
| | - Gavin Richardson
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK;
| | - David Austin
- Academic Cardiovascular Unit, The James Cook University Hospital, Middlesbrough TS4 3BW, UK;
- Population Health Science Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Mohammad Alkhalil
- Department of Cardiology, Freeman Hospital, Newcastle upon Tyne NHS Foundation Trust, Newcastle upon Tyne NE7 7DN, UK; (S.X.L.); (V.J.); (M.A.)
- Translational Research Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (Y.E.); (L.S.)
| | - Ioakim Spyridopoulos
- Department of Cardiology, Freeman Hospital, Newcastle upon Tyne NHS Foundation Trust, Newcastle upon Tyne NE7 7DN, UK; (S.X.L.); (V.J.); (M.A.)
- Translational Research Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (Y.E.); (L.S.)
| |
Collapse
|
9
|
Markin AM, Markina YV, Bogatyreva AI, Tolstik TV, Chakal DA, Breshenkov DG, Charchyan ER. The Role of Cytokines in Cholesterol Accumulation in Cells and Atherosclerosis Progression. Int J Mol Sci 2023; 24:ijms24076426. [PMID: 37047399 PMCID: PMC10094347 DOI: 10.3390/ijms24076426] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Atherosclerosis is the most common cardiovascular disease and is the number one cause of death worldwide. Today, atherosclerosis is a multifactorial chronic inflammatory disease with an autoimmune component, accompanied by the accumulation of cholesterol in the vessel wall and the formation of atherosclerotic plaques, endothelial dysfunction, and chronic inflammation. In the process of accumulation of atherogenic lipids, cells of the immune system, such as monocytes, macrophages, dendritic cells, etc., play an important role, producing and/or activating the production of various cytokines—interferons, interleukins, chemokines. In this review, we have tried to summarize the most important cytokines involved in the processes of atherogenesis.
Collapse
|
10
|
Fioretto BS, Rosa I, Matucci-Cerinic M, Romano E, Manetti M. Current Trends in Vascular Biomarkers for Systemic Sclerosis: A Narrative Review. Int J Mol Sci 2023; 24:ijms24044097. [PMID: 36835506 PMCID: PMC9965592 DOI: 10.3390/ijms24044097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Systemic sclerosis (SSc, scleroderma) is a multifaceted rare connective tissue disease whose pathogenesis is dominated by immune dysregulation, small vessel vasculopathy, impaired angiogenesis, and both cutaneous and visceral fibrosis. Microvascular impairment represents the initial event of the disease, preceding fibrosis by months or years and accounting for the main disabling and/or life-threatening clinical manifestations, including telangiectasias, pitting scars, periungual microvascular abnormalities (e.g., giant capillaries, hemorrhages, avascular areas, ramified/bushy capillaries) clinically detectable by nailfold videocapillaroscopy, ischemic digital ulcers, pulmonary arterial hypertension, and scleroderma renal crisis. Despite a variety of available treatment options, treatment of SSc-related vascular disease remains problematic, even considering SSc etherogenity and the quite narrow therapeutic window. In this context, plenty of studies have highlighted the great usefulness in clinical practice of vascular biomarkers allowing clinicians to assess the evolution of the pathological process affecting the vessels, as well as to predict the prognosis and the response to therapy. The current narrative review provides an up-to-date overview of the main candidate vascular biomarkers that have been proposed for SSc, focusing on their main reported associations with characteristic clinical vascular features of the disease.
Collapse
Affiliation(s)
- Bianca Saveria Fioretto
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Irene Rosa
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Marco Matucci-Cerinic
- Section of Internal Medicine, Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases (UnIRAR), IRCCS San Raffaele Hospital, 20132 Milan, Italy
| | - Eloisa Romano
- Section of Internal Medicine, Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Mirko Manetti
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- Imaging Platform, Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- Correspondence:
| |
Collapse
|
11
|
Lee S, Affandi J, Waters S, Price P. Human Cytomegalovirus Infection and Cardiovascular Disease: Current Perspectives. Viral Immunol 2023; 36:13-24. [PMID: 36622943 DOI: 10.1089/vim.2022.0139] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Infections with human cytomegalovirus (HCMV) are often asymptomatic in healthy adults but can be severe in people with a compromised immune system. While several studies have demonstrated associations between cardiovascular disease in older adults and HCMV seropositivity, the underlying mechanisms are unclear. We review evidence published within the last 5 years establishing how HCMV can contribute directly and indirectly to the development and progression of atherosclerotic plaques. We also discuss associations between HCMV infection and cardiovascular outcomes in populations with a high or very high burden of HCMV, including patients with renal or autoimmune disease, transplant recipients, and people living with HIV.
Collapse
Affiliation(s)
- Silvia Lee
- Department of Microbiology, Pathwest Laboratory Medicine, Perth, Western Australia, Australia.,Department of Advanced Clinical and Translational Cardiovascular Imaging, Harry Perkins Institute of Medical Research, Murdoch, Western Australia, Australia.,Curtin Medical School and the Curtin Health Innovation Research Institute (CHIRI); Bentley, Western Australia, Australia
| | - Jacquita Affandi
- Curtin School of Population Health; Curtin University, Bentley, Western Australia, Australia
| | - Shelley Waters
- Curtin Medical School and the Curtin Health Innovation Research Institute (CHIRI); Bentley, Western Australia, Australia
| | - Patricia Price
- Curtin Medical School and the Curtin Health Innovation Research Institute (CHIRI); Bentley, Western Australia, Australia
| |
Collapse
|
12
|
Wang J, Li J, Yang Z, Chen Y, Shen H, Chen L, Chen Y, Shen Z. The Characteristic of Resident Macrophages and their Therapeutic Potential for Myocardial Infarction. Curr Probl Cardiol 2022; 48:101570. [PMID: 36584729 DOI: 10.1016/j.cpcardiol.2022.101570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022]
Abstract
Resident macrophages (R-mac) are a subset of macrophages with self-renewal functions, which play a pivotal role in the homeostasis, inflammation, injury, and repair of the heart. In this paper, we summarize the knowledge related to cardiac R-mac and describe their dominating functions in myocardial infarction, such as inhibiting fibrosis and adverse remodeling, promoting revascularization and improving arrhythmia, etc. In the last, we sketch out the extended application of R-mac in tissue engineering, providing a novel direction of research and application for the therapy in the future.
Collapse
Affiliation(s)
- Jiang Wang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, China; Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Jingjing Li
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, China; Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Ziying Yang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, China; Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Yihuan Chen
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, China; Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Han Shen
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, China; Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Lei Chen
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, China; Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Yueqiu Chen
- Institute for Cardiovascular Science, Soochow University, Suzhou, China.
| | - Zhenya Shen
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, China; Institute for Cardiovascular Science, Soochow University, Suzhou, China.
| |
Collapse
|
13
|
Chen L, Yu YN, Liu J, Chen YY, Wang B, Qi YF, Guan S, Liu X, Li B, Zhang YY, Hu Y, Wang Z. Modular networks and genomic variation during progression from stable angina pectoris through ischemic cardiomyopathy to chronic heart failure. Mol Med 2022; 28:140. [DOI: 10.1186/s10020-022-00569-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 11/04/2022] [Indexed: 11/28/2022] Open
Abstract
Abstract
Background
Analyzing disease–disease relationships plays an important role for understanding etiology, disease classification, and drug repositioning. However, as cardiovascular diseases with causative links, the molecular relationship among stable angina pectoris (SAP), ischemic cardiomyopathy (ICM) and chronic heart failure (CHF) is not clear.
Methods
In this study, by integrating the multi-database data, we constructed paired disease progression modules (PDPMs) to identified relationship among SAP, ICM and CHF based on module reconstruction pairs (MRPs) of K-value calculation (a Euclidean distance optimization by integrating module topology parameters and their weights) methods. Finally, enrichment analysis, literature validation and structural variation (SV) were performed to verify the relationship between the three diseases in PDPMs.
Results
Total 16 PDPMs were found with K > 0.3777 among SAP, ICM and CHF, in which 6 pairs in SAP–ICM, 5 pairs for both ICM–CHF and SAP–CHF. SAP–ICM was the most closely related by having the smallest average K-value (K = 0.3899) while the maximum is SAP–CHF (K = 0.4006). According to the function of the validation gene, inflammatory response were through each stage of SAP–ICM–CHF, while SAP–ICM was uniquely involved in fibrosis, and genes were related in affecting the upstream of PI3K–Akt signaling pathway. 4 of the 11 genes (FLT1, KDR, ANGPT2 and PGF) in SAP–ICM–CHF related to angiogenesis in HIF-1 signaling pathway. Furthermore, we identified 62.96% SVs were protein deletion in SAP–ICM–CHF, and 53.85% SVs were defined as protein replication in SAP–ICM, while ICM–CHF genes were mainly affected by protein deletion.
Conclusion
The PDPMs analysis approach combined with genomic structural variation provides a new avenue for determining target associations contributing to disease progression and reveals that inflammation and angiogenesis may be important links among SAP, ICM and CHF progression.
Collapse
|
14
|
Tseng HY, Chen YW, Lee BS, Chang PC, Wang YP, Lin CP, Cheng SJ, Kuo MYP, Hou HH. The neutrophil elastase-upregulated placenta growth factor promotes the pathogenesis and progression of periodontal disease. J Periodontol 2022; 93:1401-1410. [PMID: 34967007 DOI: 10.1002/jper.21-0587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/10/2021] [Accepted: 12/20/2021] [Indexed: 01/05/2023]
Abstract
BACKGROUND Periodontal disease is a chronic inflammatory disease. Given its high prevalence, especially in aging population, the detailed mechanisms about pathogenesis of periodontal disease are important issues for study. Neutrophil firstly infiltrates to periodontal disease-associated pathogen loci and amplifies the inflammatory response for host defense. However, excessive neutrophil-secreted neutrophil elastase (NE) damages the affected gingival. In lung and esophageal epithelium, NE had been proved to upregulate several growth factors including placenta growth factor (PGF). PGF is an angiogenic factor with proinflammatory properties, which mediates the progression of inflammatory disease. Therefore, we hypothesize excessive NE upregulates PGF and participates in the pathogenesis and progression of periodontal disease. METHODS In gingival epithelial cells (GEC), growth factors array demonstrated NE-increased growth factors and further be corroborated by Western blot assay and ELISA. The GEC inflammation was evaluated by ELISA. In mice, the immunohistochemistry results demonstrated ligature implantation-induced neutrophil infiltration and growth factor upregulation. By multiplex assay, the ligature-induced proinflammatory cytokines level in gingival crevicular fluid (GCF) were evaluated. Finally, alveolar bone absorption was analyzed by micro-CT images and H & E staining. RESULTS NE upregulated PGF expression and secretion in GEC. PGF promoted GEC to secret IL-1β, IL-6, and TNF-α in GCF In periodontal disease animal model, ligature implantation triggered NE infiltration and PGF expression. Blockade of PGF attenuated the ligature implantation-induced IL-1β, IL-6, TNF-α and MIP-2 secretion and ameliorated the alveolar bone loss in mice. CONCLUSION In conclusion, the NE-induced PGF triggers gingival epithelium inflammation and promotes the pathogenesis and progression of periodontal disease.
Collapse
Affiliation(s)
- Hsiu-Yang Tseng
- Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Yi-Wen Chen
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan.,Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Bor-Shiunn Lee
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan.,Graduate Institute of Oral Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Po-Chun Chang
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan.,Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Ping Wang
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan.,Department of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chun-Pin Lin
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan.,Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan.,Department of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shih-Jung Cheng
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan.,Graduate Institute of Oral Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Mark Yen-Ping Kuo
- Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan.,Department of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsin-Han Hou
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Oral Biology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
15
|
Horna P, King RL, Jevremovic D, Fajgenbaum DC, Dispenzieri A. The lymph node transcriptome of unicentric and idiopathic multicentric Castleman disease. Haematologica 2022; 108:207-218. [PMID: 35484648 PMCID: PMC9827154 DOI: 10.3324/haematol.2021.280370] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Indexed: 02/05/2023] Open
Abstract
Castleman disease is a polyclonal lymphoproliferative disorder characterized by unicentric or multicentric lymphadenopathy with characteristic histomorphological features, in addition to variable inflammatory symptomatology. The molecular mechanisms and etiologies of unicentric Castleman disease (UCD) and idiopathic multicentric Castleman disease (iMCD) are poorly understood, and identification of targetable disease mediators remains an unmet clinical need. We performed whole exome sequencing on lymph node biopsies from patients with UCD and iMCD and compared the transcriptomic profiles to that of benign control lymph nodes. We identified significantly upregulated genes in UCD (n=443), iMCD (n=316) or both disease subtypes (n=51) and downregulated genes in UCD (n=321), iMCD (n=105) or both (n=10). The transcriptomes of UCD and iMCD showed enrichment and upregulation of elements of the complement cascade. By immunohistochemistry, C4d deposits indicative of complement activation were found to be present in UCD and iMCD, mostly within abnormally regressed germinal centers, but also in association with plasma cell clusters, endothelial cells and stroma cell proliferations. Other enriched gene sets included collagen organization, S1P3 pathway and VEGFR pathway in UCD; and humoral response, oxidative phosphorylation and proteosome in iMCD. Analysis of cytokine transcripts showed upregulation of CXCL13 but not IL6 in UCD and iMCD. Among angiogenic mediators, the VEGFR1 ligand placental growth factor (PGF) was upregulated in both disease subtypes. We hereby report for the first time the whole lymph node transcriptomes of UCD and iMCD, underscoring findings that could aid in the discovery of targetable disease mediators.
Collapse
Affiliation(s)
- Pedro Horna
- Division of Hematopathology, Mayo Clinic, Rochester, MN,P. Horna
| | | | | | - David C. Fajgenbaum
- Center for Cytokine Storm Treatment & Laboratory, University of Pennsylvania, Philadelphia, PA
| | | |
Collapse
|
16
|
Besse S, Nadaud S, Balse E, Pavoine C. Early Protective Role of Inflammation in Cardiac Remodeling and Heart Failure: Focus on TNFα and Resident Macrophages. Cells 2022; 11:1249. [PMID: 35406812 PMCID: PMC8998130 DOI: 10.3390/cells11071249] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 02/24/2022] [Accepted: 04/01/2022] [Indexed: 12/13/2022] Open
Abstract
Cardiac hypertrophy, initiated by a variety of physiological or pathological stimuli (hemodynamic or hormonal stimulation or infarction), is a critical early adaptive compensatory response of the heart. The structural basis of the progression from compensated hypertrophy to pathological hypertrophy and heart failure is still largely unknown. In most cases, early activation of an inflammatory program reflects a reparative or protective response to other primary injurious processes. Later on, regardless of the underlying etiology, heart failure is always associated with both local and systemic activation of inflammatory signaling cascades. Cardiac macrophages are nodal regulators of inflammation. Resident macrophages mostly attenuate cardiac injury by secreting cytoprotective factors (cytokines, chemokines, and growth factors), scavenging damaged cells or mitochondrial debris, and regulating cardiac conduction, angiogenesis, lymphangiogenesis, and fibrosis. In contrast, excessive recruitment of monocyte-derived inflammatory macrophages largely contributes to the transition to heart failure. The current review examines the ambivalent role of inflammation (mainly TNFα-related) and cardiac macrophages (Mφ) in pathophysiologies from non-infarction origin, focusing on the protective signaling processes. Our objective is to illustrate how harnessing this knowledge could pave the way for innovative therapeutics in patients with heart failure.
Collapse
Affiliation(s)
| | | | | | - Catherine Pavoine
- INSERM, Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, UMR_S1166, F-75013 Paris, France; (S.B.); (S.N.); (E.B.)
| |
Collapse
|
17
|
Flamant M, Mougenot N, Balse E, Le Fèvre L, Atassi F, Gautier EL, Le Goff W, Keck M, Nadaud S, Combadière C, Boissonnas A, Pavoine C. Early activation of the cardiac CX3CL1/CX3CR1 axis delays β-adrenergic-induced heart failure. Sci Rep 2021; 11:17982. [PMID: 34504250 PMCID: PMC8429682 DOI: 10.1038/s41598-021-97493-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 08/23/2021] [Indexed: 12/24/2022] Open
Abstract
We recently highlighted a novel potential protective paracrine role of cardiac myeloid CD11b/c cells improving resistance of adult hypertrophied cardiomyocytes to oxidative stress and potentially delaying evolution towards heart failure (HF) in response to early β-adrenergic stimulation. Here we characterized macrophages (Mφ) in hearts early infused with isoproterenol as compared to control and failing hearts and evaluated the role of upregulated CX3CL1 in cardiac remodeling. Flow cytometry, immunohistology and Mφ-depletion experiments evidenced a transient increase in Mφ number in isoproterenol-infused hearts, proportional to early concentric hypertrophy (ECH) remodeling and limiting HF. Combining transcriptomic and secretomic approaches we characterized Mφ-enriched CD45+ cells from ECH hearts as CX3CL1- and TNFα-secreting cells. In-vivo experiments, using intramyocardial injection in ECH hearts of either Cx3cl1 or Cx3cr1 siRNA, or Cx3cr1−/− knockout mice, identified the CX3CL1/CX3CR1 axis as a protective pathway delaying transition to HF. In-vitro results showed that CX3CL1 not only enhanced ECH Mφ proliferation and expansion but also supported adult cardiomyocyte hypertrophy via a synergistic action with TNFα. Our data underscore the in-vivo transient protective role of the CX3CL1/CX3CR1 axis in ECH remodeling and suggest the participation of CX3CL1-secreting Mφ and their crosstalk with CX3CR1-expressing cardiomyocytes to delay HF.
Collapse
Affiliation(s)
- M Flamant
- Sorbonne Université, UPMC Univ Paris 06, INSERM, Institute of Cardiometabolism and Nutrition (ICAN), Team 3, UMR_S ICAN 1166 Team 3, 91 bd de l'hôpital, 75013, Paris, France
| | - N Mougenot
- Sorbonne Université, UMS28, Plateforme d'Expérimentation Cœur, Muscles, Vaisseaux (PECMV), 75013, Paris, France
| | - E Balse
- Sorbonne Université, UPMC Univ Paris 06, INSERM, Institute of Cardiometabolism and Nutrition (ICAN), Team 3, UMR_S ICAN 1166 Team 3, 91 bd de l'hôpital, 75013, Paris, France
| | - L Le Fèvre
- Sorbonne Université, UPMC Univ Paris 06, INSERM, Institute of Cardiometabolism and Nutrition (ICAN), Team 3, UMR_S ICAN 1166 Team 3, 91 bd de l'hôpital, 75013, Paris, France.,Medical and Infectious Intensive Care Unit, Bichat hospital, APHP, 46 rue Henri Huchard, 75018, Paris, France
| | - F Atassi
- Sorbonne Université, UPMC Univ Paris 06, INSERM, Institute of Cardiometabolism and Nutrition (ICAN), Team 3, UMR_S ICAN 1166 Team 3, 91 bd de l'hôpital, 75013, Paris, France
| | - E L Gautier
- Sorbonne Université, UPMC Univ Paris 06, INSERM, Institute of Cardiometabolism and Nutrition (ICAN), UMR_S ICAN 1166 Team 5, 75013, Paris, France
| | - W Le Goff
- Sorbonne Université, UPMC Univ Paris 06, INSERM, Institute of Cardiometabolism and Nutrition (ICAN), UMR_S ICAN 1166 Team 4, 75013, Paris, France
| | - M Keck
- Sorbonne Université, UPMC Univ Paris 06, INSERM, Institute of Cardiometabolism and Nutrition (ICAN), Team 3, UMR_S ICAN 1166 Team 3, 91 bd de l'hôpital, 75013, Paris, France.,Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SIMoS, 91191, Gif-sur-Yvette, France
| | - S Nadaud
- Sorbonne Université, UPMC Univ Paris 06, INSERM, Institute of Cardiometabolism and Nutrition (ICAN), Team 3, UMR_S ICAN 1166 Team 3, 91 bd de l'hôpital, 75013, Paris, France
| | - C Combadière
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses CIMI-Paris, 75013, Paris, France
| | - A Boissonnas
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses CIMI-Paris, 75013, Paris, France
| | - C Pavoine
- Sorbonne Université, UPMC Univ Paris 06, INSERM, Institute of Cardiometabolism and Nutrition (ICAN), Team 3, UMR_S ICAN 1166 Team 3, 91 bd de l'hôpital, 75013, Paris, France.
| |
Collapse
|
18
|
Chen Y, Nilsson AH, Goncalves I, Edsfeldt A, Engström G, Melander O, Orho-Melander M, Rauch U, Tengryd C, Venuraju SM, Lahiri A, Liang C, Nilsson J. Evidence for a protective role of placental growth factor in cardiovascular disease. Sci Transl Med 2021; 12:12/572/eabc8587. [PMID: 33268513 DOI: 10.1126/scitranslmed.abc8587] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 10/28/2020] [Indexed: 12/13/2022]
Abstract
Placental growth factor (PlGF) is a mitogen for endothelial cells, but it can also act as a proinflammatory cytokine. Because it promotes early stages of plaque formation in experimental models of atherosclerosis and was implicated in epidemiological associations with risk of cardiovascular disease (CVD), PlGF has been attributed a pro-atherogenic role. Here, we investigated whether PlGF has a protective role in CVD and whether elevated PlGF reflects activation of repair processes in response to vascular stress. In a population cohort of 4742 individuals with 20 years of follow-up, high baseline plasma PlGF was associated with increased risk of cardiovascular death, myocardial infarction, and stroke, but these associations were lost or weakened when adjusting for cardiovascular risk factors known to cause vascular stress. Exposure of cultured endothelial cells to high glucose, oxidized low-density lipoprotein (LDL) or an inducer of apoptosis enhanced the release of PlGF. Smooth muscle cells and endothelial cells treated with PlGF small interference RNA demonstrated that autocrine PlGF stimulation plays an important role in vascular repair responses. High expression of PlGF in human carotid plaques removed at surgery was associated with a more stable plaque phenotype and a lower risk of future cardiovascular events. When adjusting associations of PlGF with cardiovascular risk in the population cohort for plasma soluble tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor-2, a biomarker of cellular stress, a high PlGF/TRAIL receptor-2 ratio was associated with a lower risk. Our findings provide evidence for a protective role of PlGF in CVD.
Collapse
Affiliation(s)
- Yihong Chen
- Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden.,Department of Cardiology, Shanghai Changzheng Hospital, Second Military Medical University, 200003 Shanghai, China
| | | | - Isabel Goncalves
- Department of Clinical Sciences Malmö, Lund University, 21428 Malmö, Sweden.,Department of Cardiology, Skåne University Hospital, 20502 Malmö, Sweden
| | - Andreas Edsfeldt
- Department of Clinical Sciences Malmö, Lund University, 21428 Malmö, Sweden.,Wallenberg Center for Molecular Medicine, Lund University, Sweden-Klinikgatan 32, 22184 Lund, Sweden
| | - Gunnar Engström
- Department of Clinical Sciences Malmö, Lund University, 21428 Malmö, Sweden
| | - Olle Melander
- Department of Clinical Sciences Malmö, Lund University, 21428 Malmö, Sweden.,Department of Emergency and Internal Medicine, Skåne University Hospital, 20502 Malmö, Sweden
| | | | - Uwe Rauch
- Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden
| | | | | | | | - Chun Liang
- Department of Cardiology, Shanghai Changzheng Hospital, Second Military Medical University, 200003 Shanghai, China
| | - Jan Nilsson
- Department of Clinical Sciences Malmö, Lund University, 21428 Malmö, Sweden. .,Department of Emergency and Internal Medicine, Skåne University Hospital, 20502 Malmö, Sweden
| |
Collapse
|
19
|
Vinekar A, Nair AP, Sinha S, Vaidya T, Chakrabarty K, Shetty R, Ghosh A, Sethu S. Tear Fluid Angiogenic Factors: Potential Noninvasive Biomarkers for Retinopathy of Prematurity Screening in Preterm Infants. Invest Ophthalmol Vis Sci 2021; 62:2. [PMID: 33646290 PMCID: PMC7938022 DOI: 10.1167/iovs.62.3.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Purpose To determine the status of proangiogenic factors in the tear fluid of preterm infants with and without retinopathy of prematurity (ROP). Methods Preterm infants (n = 36) undergoing routine ROP screening included in the prospective study were categorized as No-ROP (n = 13, no ROP at any visits), ROP (if ROP was present at first visit; n = 18), or No-ROP to ROP (no disease at first visit, but developed ROP subsequently; n = 5). Infants with ROP were also grouped as progressing (n = 7) and regressing (n = 16) based on ROP evolution between the first and subsequent visits. Schirmer's strips were used to collect tear fluid and proangiogenic factors (VEGF, angiogenin, soluble vascular cell adhesion molecule, and fractalkine) levels (in picograms per milliliter) in tear fluid were measured by multiplex ELISA. Results Lower levels of VEGF (135 ± 69; mean ± standard deviation) and higher levels of angiogenin (6568 ± 4975) were observed in infants with ROP compared with infants without ROP (172.5 ± 54.0; 4139 ± 3909) at the first visit. Significantly lower levels of VEGF were observed in the No-ROP to ROP group compared with the No-ROP and ROP groups. The VEGF and angiogenin levels at the first visit were significantly lower in infants with ROP with progressing disease. Angiogenin levels negatively correlated with birth weight and gestational age in ROP. The area under the curve (AUC) and odds ratio (OR) analysis demonstrated that angiogenin/birth weight (AUC = 0.776; OR, 8.6); angiogenin/gestational age (AUC = 0.706; OR, 7.3) and Angiogenin/VEGF (AUC = 0.806; OR, 14.3) ratios were able to differentiated preterm infants with and without ROP. Conclusions The association between angiogenin and ROP suggests its possible role in ROP. The ratio of angiogenin level with birth weight, gestational age, and/or VEGF could serve as a potential noninvasive screening biomarker for ROP.
Collapse
Affiliation(s)
- Anand Vinekar
- Department of Pediatric Retina, Narayana Nethralaya, Bangalore, India
| | - Archana Padmanabhan Nair
- GROW Research Lab, Narayana Nethralaya Foundation, Bangalore, India.,Manipal Academy of Higher Education, Manipal, India
| | - Shivani Sinha
- Department of Pediatric Retina, Narayana Nethralaya, Bangalore, India
| | - Tanuja Vaidya
- GROW Research Lab, Narayana Nethralaya Foundation, Bangalore, India.,Manipal Academy of Higher Education, Manipal, India
| | | | - Rohit Shetty
- Department of Cornea and Refractive Surgery, Narayana Nethralaya, Bangalore, India
| | - Arkasubhra Ghosh
- GROW Research Lab, Narayana Nethralaya Foundation, Bangalore, India.,Singapore Eye Research Institute, Singapore
| | | |
Collapse
|
20
|
Stochmal A, Czuwara J, Zaremba M, Rudnicka L. Metabolic mediators determine the association of antinuclear antibody subtypes with specific clinical symptoms in systemic sclerosis. Adv Med Sci 2021; 66:119-127. [PMID: 33494024 DOI: 10.1016/j.advms.2020.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/14/2020] [Accepted: 12/28/2020] [Indexed: 11/28/2022]
Abstract
PURPOSE The aim of this study was to investigate the possible link between different types of systemic sclerosis-specific antinuclear antibodies, adipokines and endothelial molecules which were recently found to have a pathogenic significance in systemic sclerosis. MATERIALS/METHODS Serum concentration of adiponectin, resistin, leptin, endothelin-1, fractalkine and galectin-3 were determined in the sera of patients with systemic sclerosis (n = 100) and healthy controls (n = 20) using ELISA. RESULTS The following associations between antinuclear antibodies and increased serum concentrations were identified: anticentromere antibodies with endothelin-1 (p < 0.0001; mean level in patients 2.21 vs control group 1.31 pg/ml), anti-topoisomerase I antibodies with fractalkine (p < 0.0001; 3.68 vs 1.68 ng/ml) and galectin-3 (p = 0.0010, 6.39 vs 3.26 ng/ml). Anti-RNA polymerase III antibodies were associated with increased resistin (p < 0.0001; 15.13 vs 8.54 ng/ml) and decreased adiponectin (p < 0.0001; 2894 vs 8847 ng/ml). CONCLUSION In systemic sclerosis metabolic and vascular factors may serve as mediators between immunological abnormalities and non-immune driven clinical symptoms.
Collapse
Affiliation(s)
- Anna Stochmal
- Department of Dermatology, Medical University of Warsaw, Poland
| | - Joanna Czuwara
- Department of Dermatology, Medical University of Warsaw, Poland
| | - Michał Zaremba
- Department of Dermatology, Medical University of Warsaw, Poland
| | - Lidia Rudnicka
- Department of Dermatology, Medical University of Warsaw, Poland.
| |
Collapse
|
21
|
Erdem B, Gok M. Evaluation of the Effects of Intravitreal Aflibercept and Ranibizumab on Systemic Inflammatory and Cardiovascular Biomarkers in Patients with Neovascular Age-related Macular Degeneration. Curr Eye Res 2021; 46:1387-1392. [PMID: 33471564 DOI: 10.1080/02713683.2021.1879868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Purpose: To investigate the effects of intravitreal ranibizumab (IVR) and intravitreal aflibercept (IVA) on systemic inflammatory and cardiovascular biomarkers in treatment-naive patients with neovascular age-related macular degeneration (nAMD)Methods: This study included 24 eyes of 24 patients treated with 0.5 mg ranibizumab (IVR group) and 25 eyes of 25 patients treated with 2.0 mg aflibercept (IVA group). Complete blood count, C-reactive protein (CRP), low-density lipoprotein cholesterol (LDL-c), high-density lipoprotein cholesterol (HDL-c), uric acid (UA), albumin, fibrinogen levels were measured in blood samples before and after the three-monthly loading dose treatment. Neutrophil/lymphocyte ratio (NLR), monocyte/HDL-c ratio (MHR), CRP/albumin ratio (CAR), monocyte/lymphocyte ratio (MLR), platelet/lymphocyte ratio (PLR) were also calculated.Results: A statistically significant decline was determined in post-treatment CRP (P = .002), LDL-c (P < .001) levels, white blood cell (WBC, P = .001), neutrophil (P < .001), monocyte (P = .019) counts and NLR (P = .020), MHR (P = .042), CAR (P = .010) ratios comparing with pre-treatment values in the IVA group. No statistically significant change was found in any of the parameters evaluated in the study in the IVR group. Also, there was no significant change in fibrinogen, lymphocyte count, MLR, HDL-c, UA, PLR, and platelet count values in both groups.Conclusion: Compared to IVR, IVA treatment had a small but significant effect on systemic inflammatory and cardiovascular biomarkers.
Collapse
Affiliation(s)
- Burak Erdem
- Department of Ophthalmology, Ordu University Faculty of Medicine, Ordu, Turkey
| | - Mustafa Gok
- Department of Ophthalmology, Private Atanur Eye Hospital, Isparta, Turkey
| |
Collapse
|
22
|
Tanaka Y, Hoshino-Negishi K, Kuboi Y, Tago F, Yasuda N, Imai T. Emerging Role of Fractalkine in the Treatment of Rheumatic Diseases. Immunotargets Ther 2020; 9:241-253. [PMID: 33178636 PMCID: PMC7649223 DOI: 10.2147/itt.s277991] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/09/2020] [Indexed: 12/14/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disorder that affects joints and is characterized by synovial hyperplasia and bone erosion associated with neovascularization and infiltration of proinflammatory cells. The introduction of biological disease-modifying anti-rheumatic drugs has dramatically changed the treatment of RA over the last 20 years. However, fewer than 50% of RA patients enter remission, and 10–15% are treatment refractory. There is currently no cure for RA. Fractalkine (FKN, also known as CX3CL1) is a cell membrane-bound chemokine that can be induced on activated vascular endothelial cells. FKN has dual functions as a cell adhesion molecule and a chemoattractant. FKN binds specifically to the chemokine receptor CX3CR1, which is selectively expressed on subsets of immune cells such as patrolling monocytes and killer lymphocytes. The FKN–CX3CR1 axis is thought to play important roles in the initiation of the inflammatory cascade and can contribute to exacerbation of tissue injury in inflammatory diseases. Accordingly, studies in animal models have shown that inhibition of the FKN–CX3CR1 axis not only improves rheumatic diseases but also reduces associated complications, such as pulmonary fibrosis and cardiovascular disease. Recently, a humanized anti-FKN monoclonal antibody, E6011, showed promising efficacy with a dose-dependent clinical response and favorable safety profile in a Phase 2 clinical trial in patients with RA (NCT02960438). Taken together, the preclinical and clinical results suggest that E6011 may represent a new therapeutic approach for rheumatic diseases by suppressing a major contributor to inflammation and mitigating concomitant cardiovascular and fibrotic diseases. In this review, we describe the role of the FKN–CX3CR1 axis in rheumatic diseases and the therapeutic potential of anti-FKN monoclonal antibodies to fulfill unmet clinical needs.
Collapse
Affiliation(s)
- Yoshiya Tanaka
- First Department of Internal Medicine, University of Occupational and Environmental Health, Fukuoka, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Zhang J, Shi J, Ma H, Liu L, He L, Qin C, Zhang D, Guo Y, Gong R. The placental growth factor attenuates intimal hyperplasia in vein grafts by improving endothelial dysfunction. Eur J Pharmacol 2019; 868:172856. [PMID: 31836533 DOI: 10.1016/j.ejphar.2019.172856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 02/05/2023]
Abstract
Saphenous vein grafts (SVG) patency is limited by intimal hyperplasia (IH) caused by endothelial dysfunction. This study aimed to explore the effect of placental growth factor (PlGF) on the endothelial function of SVG. In rat models of external jugular vein-carotid artery graft treated with PlGF or saline hydrogel, PlGF inhibited vein graft IH (day 28: 12.0 ± 1.9 vs. 61.7 ± 13.1 μm, P < 0.001), promoted microvessel proliferation (day 14: 33.3% 3+ vs. 50.0% 2+, P = 0.03), and increased nitric oxide (NO) production (P < 0.05 on days 1/3/5) and NO synthase (NOS) expression by immunohistochemistry. In human umbilical vein endothelial cells (HUVECs) cultured under hypoxia and treated or not with PlGF, PlGF restored the survival (50 ng/ml PlGF, 48 h: 91.7 ± 0.6% vs. 84.9 ± 0.5%, P < 0.01), migration (by Matrigel assay), and tube formation ability (junctions, tubules, and tubule total length; all P < 0.01) of HUVECs after hypoxia. PlGF increased NO production through increased eNOS expression (P < 0.05), without changes in iNOS expression. The mRNA expression of eNOS decreased after the addition of the PI3K inhibitor LY294002 (P < 0.05). PlGF promoted the protein expression of eNOS by up-regulating AKT, and the AKT and eNOS protein levels were decreased after adding LY294002 (all P < 0.05). In conclusion, PlGF is a candidate for the inhibition of IH in SVG after coronary artery bypass graft. The effects of PlGF are mediated by the upregulation of the eNOS mRNA and protein through the PI3K/AKT signaling pathway. PlGF promotes the secretion of NO by endothelial cells and thereby reduces the occurrence and development of IH.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Cardiac Macrovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China; Department of Cardiovascular Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, PR China
| | - Jun Shi
- Department of Cardiac Macrovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Hao Ma
- Department of Cardiac Macrovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Lulu Liu
- Department of Cardiac Macrovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Li He
- Department of Cardiac Macrovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Chaoyi Qin
- Department of Cardiac Macrovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Dengshen Zhang
- Department of Cardiac Macrovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | - Yingqiang Guo
- Department of Cardiac Macrovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China.
| | - Renrong Gong
- Anesthesia Surgery Center, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China.
| |
Collapse
|
24
|
Le Berre L, Danger R, Mai HL, Amon R, Leviatan Ben-Arye S, Bruneau S, Senage T, Perreault H, Teraiya M, Nguyen TVH, Le Tourneau T, Yu H, Chen X, Galli C, Roussel JC, Manez R, Costa C, Brouard S, Galinanes M, Harris KM, Gitelman S, Cozzi E, Charreau B, Padler-Karavani V, Soulillou JP. Elicited and pre-existing anti-Neu5Gc antibodies differentially affect human endothelial cells transcriptome. Xenotransplantation 2019; 26:e12535. [PMID: 31293002 DOI: 10.1111/xen.12535] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/10/2019] [Accepted: 05/17/2019] [Indexed: 12/12/2022]
Abstract
Humans cannot synthesize N-glycolylneuraminic acid (Neu5Gc) but dietary Neu5Gc can be absorbed and deposited on endothelial cells (ECs) and diet-induced anti-Neu5Gc antibodies (Abs) develop early in human life. While the interaction of Neu5Gc and diet-induced anti-Neu5Gc Abs occurs in all normal individuals, endothelium activation by elicited anti-Neu5Gc Abs following a challenge with animal-derived materials, such as following xenotransplantation, had been postulated. Ten primary human EC preparations were cultured with affinity-purified anti-Neu5Gc Abs from human sera obtained before or after exposure to Neu5Gc-glycosylated rabbit IgGs (elicited Abs). RNAs of each EC preparation stimulated in various conditions by purified Abs were exhaustively sequenced. EC transcriptomic patterns induced by elicited anti-Neu5Gc Abs, compared with pre-existing ones, were analyzed. qPCR, cytokines/chemokines release, and apoptosis were tested on some EC preparations. The data showed that anti-Neu5Gc Abs induced 967 differentially expressed (DE) genes. Most DE genes are shared following EC activation by pre-existing or anti-human T-cell globulin (ATG)-elicited anti-Neu5Gc Abs. Compared with pre-existing anti-Neu5Gc Abs, which are normal component of ECs environment, elicited anti-Neu5Gc Abs down-regulated 66 genes, including master genes of EC function. Furthermore, elicited anti-Neu5Gc Abs combined with complement-containing serum down-regulated most transcripts mobilized by serum alone. Both types of anti-Neu5Gc Abs-induced a dose- and complement-dependent release of selected cytokines and chemokines. Altogether, these data show that, compared with pre-existing anti-Neu5Gc Abs, ATG-elicited anti-Neu5Gc Abs specifically modulate genes related to cytokine responses, MAPkinase cascades, chemotaxis, and integrins and do not skew the EC transcriptome toward a pro-inflammatory profile in vitro.
Collapse
Affiliation(s)
- Ludmilla Le Berre
- Centre de Recherche en Transplantation et Immunologie (CRTI), INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Richard Danger
- Centre de Recherche en Transplantation et Immunologie (CRTI), INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Hoa L Mai
- Centre de Recherche en Transplantation et Immunologie (CRTI), INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Ron Amon
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shani Leviatan Ben-Arye
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Sarah Bruneau
- Centre de Recherche en Transplantation et Immunologie (CRTI), INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Thomas Senage
- Service de Chirurgie Cardio-Thoracique, CHU Nantes, Hopital Laennec, Nantes, France
| | - Helene Perreault
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Milan Teraiya
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Thi Van Ha Nguyen
- Centre de Recherche en Transplantation et Immunologie (CRTI), INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | | | - Hai Yu
- Department of Chemistry, University of California-Davis, Davis, California
| | - Xi Chen
- Department of Chemistry, University of California-Davis, Davis, California
| | - Cesare Galli
- Avantea, Laboratory of Reproductive Technologies and Fondazione Avantea, Cremona, Italy
| | | | - Rafael Manez
- Intensive Care Medicine Department, Hospital Universitario de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain.,Infectious Diseases and Transplantation Division, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Cristina Costa
- Infectious Diseases and Transplantation Division, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Sophie Brouard
- Centre de Recherche en Transplantation et Immunologie (CRTI), INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Manuel Galinanes
- Department of Cardiac Surgery/Reparative Therapy of the Heart, Vall d'Hebron Research Institute and University Hospital Vall d'Hebron, Barcelona, Spain
| | - Kristina M Harris
- Immune Tolerance Network, Massachusetts General Hospital, Bathesda, Maryland
| | - Stephen Gitelman
- Division of Pediatric Endocrinology and Diabetes, University of California at San Francisco, San Francisco, California
| | - Emanuele Cozzi
- Transplantation Immunology Unit, Padua University Hospital, Padova, Italy
| | - Beatrice Charreau
- Centre de Recherche en Transplantation et Immunologie (CRTI), INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Vered Padler-Karavani
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Jean-Paul Soulillou
- Centre de Recherche en Transplantation et Immunologie (CRTI), INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| |
Collapse
|
25
|
Ji CL, Nomi A, Li B, Shen C, Song BC, Zhang JG. Increased Plasma Soluble Fractalkine in Patients with Chronic Heart Failure and Its Clinical Significance. Int Heart J 2019; 60:701-707. [PMID: 31019174 DOI: 10.1536/ihj.18-422] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Fractalkine has been reported to play an important role in the pathophysiology of various cardiovascular disorders. This research aims to study the change of soluble fractalkine (sFKN) in plasma level of patients with chronic heart failure (CHF) and evaluate its prognostic value.A total of 96 patients with CHF and 45 healthy subjects were included in this study. The plasma levels of sFKN, brain natriuretic peptide (BNP), and Interleukin-18 (IL-18) were determined by ELISA kits when they were first admitted to the hospital. Left ventricular ejection fraction (LVEF) was measured by echocardiogram. Rehospitalization status within 1 year after the first hospitalization was also recorded.The plasma levels of sFKN, BNP, and IL-18 in patients with CHF were significantly higher than in the control group (P < 0.05). The concentrations of sFKN and BNP were increased with the severity of heart failure classified by NYHA classification (P < 0.05). There were no statistical differences among all CHF subgroups classified by etiology (P > 0.05). Plasma sFKN level in CHF group was positively correlated with BNP (r = 0.441, P < 0.001) and IL-18 (r = 0.592, P < 0.001). Receiver operating characteristic curve analysis showed that area under the curve values of FKN, BNP, and IL-18 were 0.885 (95%CI: 0.810 to 0.960, P < 0.001), 0.889 (95%CI: 0.842 to 0.956, P < 0.001), and 0.878 (95%CI: 0.801-0.954, P < 0.001), respectively. The concentrations of sFKN and BNP were increased in patients readmitted more than once within 1 year (P < 0.05).
Collapse
Affiliation(s)
- Cui-Ling Ji
- Department of Cardiology II, The Affiliated Hospital of Jining Medical University
| | - Adnan Nomi
- Teaching and Research Section of International Students, Jining Medical University
| | - Bin Li
- Department of Cardiology IV, The Affiliated Hospital of Jining Medical University
| | - Cheng Shen
- Department of Cardiology II, The Affiliated Hospital of Jining Medical University
| | - Bing-Chun Song
- Department of Cardiology II, The Affiliated Hospital of Jining Medical University
| | - Jin-Guo Zhang
- Department of Cardiology II, The Affiliated Hospital of Jining Medical University
| |
Collapse
|
26
|
Zwaans BMM, Bartolone SN, Chancellor MB, Nicolai HE, Lamb LE. Altered Angiogenic Growth Factors in Urine of Prostate Cancer Survivors With Radiation History and Radiation Cystitis. Urology 2018; 120:180-186. [PMID: 30059715 DOI: 10.1016/j.urology.2018.07.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/13/2018] [Accepted: 07/17/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To determine if the vascular damage in bladders of prostate cancer (PCa) survivors with radiation cystitis can be detected through altered angiogenic growth factors in urine. METHODS Urine samples from PCa survivors with a history of external beam radiation therapy were tested for a panel of angiogenic growth factors by Luminex assay. Urine creatinine levels were measured through high performance liquid chromatography. Through a patient survey, data on patient demographics, radiation history, and urinary symptoms were collected. RESULTS Hepatocyte growth factor (HGF), placental growth factor (PlGF), and vascular endothelial growth factor (VEGF) were altered in urine of PCa survivors with a history of radiation therapy. HGF and PlGF were elevated in response to irradiation, while VEGF had a decreasing trend. Within the irradiated population, HGF was also increased in patients diagnosed with radiation cystitis and patients with hematuria. PlGF and VEGF were only increased in the first year postirradiation, and VEGF was elevated in patients with hematuria. Finally, creatinine levels were increased in PCa survivors with a history of radiation therapy. CONCLUSION Radiation cystitis is a debilitating bladder condition that cancer survivors are at risk of developing after pelvic radiation. In this study, we identified 3 pro-angiogenic factors that may be urine biomarkers and, if validated in future studies, could indicate new strategy approaches to treat radiation cystitis.
Collapse
Affiliation(s)
- Bernadette M M Zwaans
- Department of Urology, William Beaumont Hospital, MI; Oakland University William Beaumont School of Medicine, Royal Oak, MI
| | | | - Michael B Chancellor
- Department of Urology, William Beaumont Hospital, MI; Oakland University William Beaumont School of Medicine, Royal Oak, MI
| | - Heinz E Nicolai
- Urology Department, University of Chile, Santiago, Chile; Clinical Hospital San Borja Arriarán, Santiago, Chile
| | - Laura E Lamb
- Department of Urology, William Beaumont Hospital, MI; Oakland University William Beaumont School of Medicine, Royal Oak, MI.
| |
Collapse
|