1
|
Chen S, Jiang Y, Zheng J, Li P, Liu M, Zhu Y, Zhu S, Chang S. Folate-targeted nanoparticles for glutamine metabolism inhibition enhance anti-tumor immunity and suppress tumor growth in ovarian cancer. J Control Release 2025; 379:89-104. [PMID: 39756690 DOI: 10.1016/j.jconrel.2024.12.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/26/2024] [Accepted: 12/28/2024] [Indexed: 01/07/2025]
Abstract
Ovarian cancer (OC) is a highly malignant gynecological tumor, and its effective treatment is frequently impeded by drug resistance and recurrent tumor growth. The reprogramming of glutamine metabolism in ovarian cancer is closely associated with tumor progression and the immunosuppressive tumor microenvironment. Recently, targeting metabolic reprogramming has emerged as a promising approach for cancer therapy. However, the application of such therapies is often constrained by their significant toxicity to normal tissues. In this study, we fabricated folate-targeted nanoparticles (FA-DCNPs) that co-encapsulate the glutamine metabolism inhibitor 6-diazo-5-oxo-L-norleucine (DON) and calcium carbonate (CaCO3). These nanoparticles alleviate damage to normal tissues by specifically targeting tumor cells via folate receptors (FOLR) mediation. Under acidic conditions, the FA-DCNPs release DON and Ca2+, generating a synergistic anti-tumor effect by impeding glutamine metabolism and inducing calcium overload. Additionally, FA-DCNPs target M2 phenotype tumor-associated macrophages (TAMs) via FOLR2, attenuating M2-TAMs activity. When partially phagocytosed by M0-TAMs, the nanoparticles restrict glutamate production, inhibiting polarization towards the M2 phenotype. This resulted in an increased proportion of M1-TAMs, thereby improving the tumor immune microenvironment. Our study explores a nanotherapeutic strategy that enhances the biosafety of anti-glutamine metabolism therapy through folate targeting, effectively suppresses tumor cell proliferation, and enhances the anti-tumor immune response.
Collapse
Affiliation(s)
- Shuning Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China; Chongqing Key Laboratory of Ultrasound Molecular Imaging and Therapy, The Second Afliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China; State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Yu Jiang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Jiao Zheng
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Pan Li
- Chongqing Key Laboratory of Ultrasound Molecular Imaging and Therapy, The Second Afliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Maoyu Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Yi Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Shenyin Zhu
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, People's Republic of China
| | - Shufang Chang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China.
| |
Collapse
|
2
|
Oliveira I, Rodrigues-Santos P, Ferreira L, Pires das Neves R. Synthetic and biological nanoparticles for cancer immunotherapy. Biomater Sci 2024; 12:5933-5960. [PMID: 39441658 DOI: 10.1039/d4bm00995a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Cancer is becoming the main public health problem globally. Conventional chemotherapy approaches are slowly being replaced or complemented by new therapies that avoid the loss of healthy tissue, limit off-targets, and eradicate cancer cells. Immunotherapy is nowadays an important strategy for cancer treatment, that uses the host's anti-tumor response by activating the immune system and increasing the effector cell number, while, minimizing cancer's immune-suppressor mechanisms. Its efficacy is still limited by poor therapeutic targeting, low immunogenicity, antigen presentation deficiency, impaired T-cell trafficking and infiltration, heterogeneous microenvironment, multiple immune checkpoints and unwanted side effects, which could benefit from improved delivery systems, able to release immunotherapeutic agents to tumor microenvironment and immune cells. Nanoparticles (NPs) for immunotherapy (Nano-IT), have a huge potential to solve these limitations. Natural and/or synthetic, targeted and/or stimuli-responsive nanoparticles can be used to deliver immunotherapeutic agents in their native conformations to the site of interest to enhance their antitumor activity. They can also be used as co-adjuvants that enhance the activity of IT effector cells. These nanoparticles can be engineered in the natural context of cell-derived extracellular vesicles (EVs) or exosomes or can be fully synthetic. In this review, a detailed SWOT analysis is done through the comparison of engineered-synthetic and naturaly-derived nanoparticles in terms of their current and future use in cancer immunotherapy.
Collapse
Affiliation(s)
- Inês Oliveira
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal.
| | - Paulo Rodrigues-Santos
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal.
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Lino Ferreira
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal.
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ricardo Pires das Neves
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal.
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- IIIUC-Institute of Interdisciplinary Research, University of Coimbra, 3004-517 Coimbra, Portugal
| |
Collapse
|
3
|
Kfoury M, Finetti P, Mamessier E, Bertucci F, Sabatier R. Deciphering Folate Receptor alphaGene Expression and mRNA Signatures in Ovarian Cancer: Implications for Precision Therapies. Int J Mol Sci 2024; 25:11953. [PMID: 39596024 PMCID: PMC11593678 DOI: 10.3390/ijms252211953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/16/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Antibody-drug conjugates targeting folate receptor alpha (FRα) are a promising treatment for platinum-resistant ovarian cancer (OC) with high FRα expression. Challenges persist in accurately assessing FRα expression levels. Our study aimed to better elucidate FRα gene expression and identify mRNA signatures in OC. We pooled OC gene expression data from 16 public datasets, encompassing 1832 OC and 30 normal ovarian tissues. Additional data included DNA copy number and methylation data from TCGA and protein data from 363 cancer cell lines from the Broad Institute Cancer Cell Line Encyclopedia. FOLR1 mRNA expression was significantly correlated with protein expression in pan-cancer cell lines and ovarian cancer cell lines. FOLR1 expression was higher in OC samples than in normal ovarian tissues (OR = 3.88, p = 6.97 × 10-12). Patients with high FOLR1 expression were more likely to be diagnosed with serous histology, FIGO stage III-IV, and high-grade tumors; however, nearly similar percentages of patients with low FOLR1 expression were also diagnosed with these features. FOLR1 mRNA expression was not correlated with platinum sensitivity or complete surgery, nor with prognosis. However, we identified a 187-gene signature associated with high FOLR1 expression that was significantly associated with improved survival (HR = 0.71, p = 1.18 × 10-6), independently from clinicopathological features. We identified a gene expression signature correlated to high FRα expression and OC prognosis, which may be used to refine therapeutic strategies targeting FRα in OC. These findings warrant validation in larger cohorts.
Collapse
Affiliation(s)
- Maria Kfoury
- Medical Oncology Department, Institut Paoli-Calmettes, 13009 Marseille, France
| | - Pascal Finetti
- Predictive Oncology Laboratory, Inserm UMR1068, Centre National de la Recherche Scientifique (CNRS) UMR7258, Centre de Recherche en Cancérologie de Marseille (CRCM), Institut Paoli-Calmettes, Aix-Marseille University U105, 13009 Marseille, France
| | - Emilie Mamessier
- Predictive Oncology Laboratory, Inserm UMR1068, Centre National de la Recherche Scientifique (CNRS) UMR7258, Centre de Recherche en Cancérologie de Marseille (CRCM), Institut Paoli-Calmettes, Aix-Marseille University U105, 13009 Marseille, France
| | - François Bertucci
- Medical Oncology Department, Institut Paoli-Calmettes, 13009 Marseille, France
- Predictive Oncology Laboratory, Inserm UMR1068, Centre National de la Recherche Scientifique (CNRS) UMR7258, Centre de Recherche en Cancérologie de Marseille (CRCM), Institut Paoli-Calmettes, Aix-Marseille University U105, 13009 Marseille, France
| | - Renaud Sabatier
- Medical Oncology Department, Institut Paoli-Calmettes, 13009 Marseille, France
- Predictive Oncology Laboratory, Inserm UMR1068, Centre National de la Recherche Scientifique (CNRS) UMR7258, Centre de Recherche en Cancérologie de Marseille (CRCM), Institut Paoli-Calmettes, Aix-Marseille University U105, 13009 Marseille, France
| |
Collapse
|
4
|
Bukowski K, Rogalska A, Marczak A. Folate Receptor Alpha-A Secret Weapon in Ovarian Cancer Treatment? Int J Mol Sci 2024; 25:11927. [PMID: 39595996 PMCID: PMC11593442 DOI: 10.3390/ijms252211927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Epithelial ovarian cancer (EOC) is the most lethal gynecological malignancy worldwide. Due to its nonspecific symptoms and unreliable screening tools, EOC is not diagnosed at an early stage in most cases. Unfortunately, despite achieving initial remission after debulking surgery and platinum-based chemotherapy, most patients experience the recurrence of the disease. The limited therapy approaches have encouraged scientists to search for new detection and therapeutic strategies. In this review, we discuss the role of folate receptor alpha (FRα) in EOC development and its potential application as a biomarker and molecular target in designing new EOC screening and treatment methods. We summarize the mechanisms of the action of various therapeutic strategies based on FRα, including MABs (monoclonal antibodies), ADCs (antibody-drug conjugates), FDCs (folate-drug conjugates), SMDCs (small molecule-drug conjugates), vaccines, and CAR-T (chimeric antigen receptor T) cells, and present the most significant clinical trials of some FRα-based drugs. Furthermore, we discuss the pros and cons of different FR-based therapies, highlighting mirvetuximab soravtansine (MIRV) as the currently most promising EOC-targeting drug.
Collapse
Affiliation(s)
- Karol Bukowski
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland; (A.R.); (A.M.)
| | | | | |
Collapse
|
5
|
Hou X, Xu J, Wang Y, Zhao J, Guan Y, Yang X, Xu T, Du K, He S, Shi Y. Triggering Pyroptosis by Doxorubicin-Loaded Multifunctional Nanoparticles in Combination with Decitabine for Breast Cancer Chemoimmunotherapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58392-58404. [PMID: 39413405 DOI: 10.1021/acsami.4c14034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Pyroptosis, a form of programmed cell death, holds great promise for breast cancer treatment. However, the downregulation of gasdermin E (GSDME) limits the effectiveness of pyroptosis. To address this challenge, we developed a folic acid-modified and glutathione/reactive oxygen species dual-responsive nanocarrier (FPSD NPs) for the targeted delivery of doxorubicin (DOX). Through the combination with DNA methyltransferase inhibitor decitabine (DAC), the GSDME protein expression was significantly increased in 4T1 cells, resulting in cell swelling and ballooning, which are characteristic features of pyroptosis. In vivo experiments further demonstrated the antitumor efficacy of DAC + DOX@FPSD NPs, and the 4T1-bearing mice treated with DAC + DOX@FPSD NPs exhibited reduced tumor volumes, minimized tumor weights, decreased Ki67-positive cells, increased TUNEL apoptosis ratios, and pronounced lesions in H&E staining. Furthermore, DAC + DOX@FPSD NP treatment could promote pyroptosis-associated antitumor immunity, as evidenced by the increased presence of CD3+, CD4+, and CD8+ T cells, heightened secretion of tumor necrosis factor-α and interferon-γ, elevated high-mobility group box-1 levels, and enhanced calreticulin exposure. The FPSD nanocarrier developed in this study had favorable stability, active targeting ability, biocompatibility, and controlled release properties, and the DAC + DOX@FPSD NPs represented an approach to antitumor therapy by inducing pyroptosis, which offers a promising avenue for breast cancer treatment.
Collapse
Affiliation(s)
- Xueyan Hou
- College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, P. R. China
- Pingyuan Laboratory, Xinxiang, Henan 453007, P. R. China
| | - Jingjing Xu
- College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, P. R. China
| | - Yuxin Wang
- College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, P. R. China
| | - Jingya Zhao
- College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, P. R. China
| | - Yalin Guan
- College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, P. R. China
| | - Xue Yang
- College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, P. R. China
| | - Tenglong Xu
- College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, P. R. China
| | - Kun Du
- College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, P. R. China
| | - Sisi He
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, People's Republic of China
| | - Yongli Shi
- College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, P. R. China
| |
Collapse
|
6
|
Qin XY, Ha SY, Chen L, Zhang T, Li MQ. Recent Advances in Folates and Autoantibodies against Folate Receptors in Early Pregnancy and Miscarriage. Nutrients 2023; 15:4882. [PMID: 38068740 PMCID: PMC10708193 DOI: 10.3390/nu15234882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023] Open
Abstract
Though firstly identified in cerebral folate deficiency, autoantibodies against folate receptors (FRAbs) have been implicated in pregnancy complications such as miscarriage; however, the underlying mechanism needs to be further elaborated. FRAbs can be produced via sensitization mediated by folate-binding protein as well as gene mutation, aberrant modulation, or degradation of folate receptors (FRs). FRAbs may interfere with folate internalization and metabolism through blocking or binding with FRs. Interestingly, different types of FRs are expressed on trophoblast cells, decidual epithelium or stroma, and macrophages at the maternal-fetal interface, implying FRAbs may be involved in the critical events necessary for a successful pregnancy. Thus, we propose that FRAbs may disturb pregnancy establishment and maintenance by modulating trophoblastic biofunctions, placental development, decidualization, and decidua homeostasis as well as the functions of FOLR2+ macrophages. In light of these findings, FRAbs may be a critical factor in pathological pregnancy, and deserve careful consideration in therapies involving folic acid supplementation for pregnancy complications.
Collapse
Affiliation(s)
- Xue-Yun Qin
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, China; (X.-Y.Q.); (S.-Y.H.)
| | - Si-Yao Ha
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, China; (X.-Y.Q.); (S.-Y.H.)
| | - Lu Chen
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong 999077, China;
| | - Tao Zhang
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong 999077, China;
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, China; (X.-Y.Q.); (S.-Y.H.)
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, China
| |
Collapse
|
7
|
Guo Y, Gao F, Ahmed A, Rafiq M, Yu B, Cong H, Shen Y. Immunotherapy: cancer immunotherapy and its combination with nanomaterials and other therapies. J Mater Chem B 2023; 11:8586-8604. [PMID: 37614168 DOI: 10.1039/d3tb01358h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Immunotherapy is a new type of tumor treatment after surgery, radiotherapy and chemotherapy, and can be used to manage and destroy tumor cells through activating or strengthening the immune response. Immunotherapy has the benefits of a low recurrence rate and high specificity compared to traditional treatment methods. Immunotherapy has developed rapidly in recent years and has become a research hotspot. Currently, chimeric antigen receptor T-cell immunotherapy and immune checkpoint inhibitors are the most effective tumor immunotherapies in clinical practice. While tumor immunotherapy brings hope to patients, it also faces some challenges and still requires continuous research and progress. Combination therapy is the future direction of anti-tumor treatment. In this review, the main focus is on an overview of the research progress of immune checkpoint inhibitors, cellular therapies, tumor vaccines, small molecule inhibitors and oncolytic virotherapy in tumor treatment, as well as the combination of immunotherapy with other treatments.
Collapse
Affiliation(s)
- Yuanyuan Guo
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Fengyuan Gao
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Adeel Ahmed
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Muhammad Rafiq
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| |
Collapse
|
8
|
Mai J, Wu L, Yang L, Sun T, Liu X, Yin R, Jiang Y, Li J, Li Q. Therapeutic strategies targeting folate receptor α for ovarian cancer. Front Immunol 2023; 14:1254532. [PMID: 37711615 PMCID: PMC10499382 DOI: 10.3389/fimmu.2023.1254532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/11/2023] [Indexed: 09/16/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is the deadliest gynecological cancer, and presents a major clinical challenge due to limited treatment options. Folate receptor alpha (FRα), encoded by the FOLR1 gene, is an attractive therapeutically target due to its prevalent and high expression in EOC cells. Recent basic and translational studies have explored several modalities, such as antibody-drug conjugate (ADC), monoclonal antibodies, small molecules, and folate-drug conjugate, to exploit FRα for EOC treatment. In this review, we summarize the function of FRα, and clinical efficacies of various FRα-based therapeutics. We highlight mirvetuximab soravtansine (MIRV), or Elahere (ImmunoGen), the first FRα-targeting ADC approved by the FDA to treat platinum-resistant ovarian cancer. We discuss potential mechanisms and management of ocular adverse events associated with MIRV administration.
Collapse
Affiliation(s)
- Jia Mai
- Department of Laboratory Medicine, Obstetrics & Gynecology and Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Center of Growth, Metabolism and Aging, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Limei Wu
- Department of Laboratory Medicine, Obstetrics & Gynecology and Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Center of Growth, Metabolism and Aging, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, Sichuan, China
- Department of Obstetrics and Gynecology, Chengdu Second People's Hospital, Chengdu, Sichuan, China
| | - Ling Yang
- Department of Laboratory Medicine, Obstetrics & Gynecology and Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Center of Growth, Metabolism and Aging, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Ting Sun
- Department of Clinical Laboratory, The first Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaojuan Liu
- Department of Laboratory Medicine, Obstetrics & Gynecology and Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Center of Growth, Metabolism and Aging, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Rutie Yin
- Department of Laboratory Medicine, Obstetrics & Gynecology and Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Center of Growth, Metabolism and Aging, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Yongmei Jiang
- Department of Laboratory Medicine, Obstetrics & Gynecology and Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Center of Growth, Metabolism and Aging, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Jinke Li
- Department of Laboratory Medicine, Obstetrics & Gynecology and Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Center of Growth, Metabolism and Aging, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Qintong Li
- Department of Laboratory Medicine, Obstetrics & Gynecology and Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Center of Growth, Metabolism and Aging, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
9
|
Chuangchot N, Jamjuntra P, Yangngam S, Luangwattananun P, Thongchot S, Junking M, Thuwajit P, Yenchitsomanus PT, Thuwajit C. Enhancement of PD-L1-attenuated CAR-T cell function through breast cancer-associated fibroblasts-derived IL-6 signaling via STAT3/AKT pathways. Breast Cancer Res 2023; 25:86. [PMID: 37480115 PMCID: PMC10362675 DOI: 10.1186/s13058-023-01684-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 07/07/2023] [Indexed: 07/23/2023] Open
Abstract
BACKGROUND Carcinoma-associated fibroblasts (CAFs) play a critical role in cancer progression and immune cell modulation. In this study, it was aimed to evaluate the roles of CAFs-derived IL-6 in doxorubicin (Dox) resistance and PD-L1-mediated chimeric antigenic receptor (CAR)-T cell resistance in breast cancer (BCA). METHODS CAF conditioned-media (CM) were collected, and the IL-6 level was measured by ELISA. CAF-CM were treated in MDA-MB-231 and HCC70 TNBC cell lines and siIL-6 receptor (IL-6R) knocked down (KD) cells to determine the effect of CAF-derived IL-6 on Dox resistance by flow cytometry and on increased PD-L1 through STAT3, AKT and ERK1/2 pathways by Western blot analysis. After pre-treating with CM, the folate receptor alpha (FRα)-CAR T cell cytotoxicity was evaluated in 2D and 3D spheroid culture assays. RESULTS The results showed a significant level of IL-6 in CAF-CM compared to that of normal fibroblasts (NFs). The CM with high IL-6 level significantly induced Dox resistance; and PD-L1 expression through STAT3 and AKT pathways in MDA-MB-231 and HCC70 cells. These induction effects were attenuated in siIL-6R KD cells. Moreover, the TNBC cell lines that were CM-treated with STAT3 and an AKT inhibitor had a reduced effect of IL-6 on PD-L1 expression. BCA cells with high IL-6 containing-CM treatment had resistance to cancer cell killing by FRα CAR-T cells compared to untreated cells. CONCLUSION These results highlight CAF-derived IL-6 in the resistance of chemotherapy and T cell therapy. Using inhibitors of IL6-STAT3/AKT-PD-L1 axis may provide a potential benefit of Dox and CAR-T cell therapies in BCA patients.
Collapse
Affiliation(s)
- Nisa Chuangchot
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Siriraj Center of Research Excellence for Cancer Immunotherapy, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Pranisa Jamjuntra
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Supaporn Yangngam
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Piriya Luangwattananun
- Siriraj Center of Research Excellence for Cancer Immunotherapy, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Suyanee Thongchot
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Siriraj Center of Research Excellence for Cancer Immunotherapy, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Mutita Junking
- Siriraj Center of Research Excellence for Cancer Immunotherapy, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Peti Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Pa-Thai Yenchitsomanus
- Siriraj Center of Research Excellence for Cancer Immunotherapy, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Chanitra Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
10
|
Nordin ML, Azemi AK, Nordin AH, Nabgan W, Ng PY, Yusoff K, Abu N, Lim KP, Zakaria ZA, Ismail N, Azmi F. Peptide-Based Vaccine against Breast Cancer: Recent Advances and Prospects. Pharmaceuticals (Basel) 2023; 16:923. [PMID: 37513835 PMCID: PMC10386531 DOI: 10.3390/ph16070923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/07/2023] [Accepted: 06/15/2023] [Indexed: 07/30/2023] Open
Abstract
Breast cancer is considered the second-leading cancer after lung cancer and is the most prevalent cancer among women globally. Currently, cancer immunotherapy via vaccine has gained great attention due to specific and targeted immune cell activity that creates a potent immune response, thus providing long-lasting protection against the disease. Despite peptides being very susceptible to enzymatic degradation and poor immunogenicity, they can be easily customized with selected epitopes to induce a specific immune response and particulate with carriers to improve their delivery and thus overcome their weaknesses. With advances in nanotechnology, the peptide-based vaccine could incorporate other components, thereby modulating the immune system response against breast cancer. Considering that peptide-based vaccines seem to show remarkably promising outcomes against cancer, this review focuses on and provides a specific view of peptide-based vaccines used against breast cancer. Here, we discuss the benefits associated with a peptide-based vaccine, which can be a mainstay in the prevention and recurrence of breast cancer. Additionally, we also report the results of recent trials as well as plausible prospects for nanotechnology against breast cancer.
Collapse
Affiliation(s)
- Muhammad Luqman Nordin
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia (UKM) Kuala Lumpur Campus, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan (UMK), Pengkalan Chepa, Kota Bharu 16100, Kelantan, Malaysia
| | - Ahmad Khusairi Azemi
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu 21030, Malaysia
| | - Abu Hassan Nordin
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Arau 02600, Malaysia
| | - Walid Nabgan
- Departament d'Enginyeria Química, Universitat Rovira I Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain
| | - Pei Yuen Ng
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia (UKM), Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Khatijah Yusoff
- National Institutes of Biotechnology, Malaysia Genome and Vaccine Institute, Jalan Bangi, Kajang 43000, Malaysia
| | - Nadiah Abu
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Centre, Jalan Ya'acob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Kue Peng Lim
- Cancer Immunology & Immunotherapy Unit, Cancer Research Malaysia, No. 1 Jalan SS12/1A, Subang Jaya 47500, Malaysia
| | - Zainul Amiruddin Zakaria
- Borneo Research on Algesia, Inflammation and Neurodegeneration (BRAIN) Group, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Malaysia
| | - Noraznawati Ismail
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu 21030, Malaysia
| | - Fazren Azmi
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia (UKM) Kuala Lumpur Campus, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| |
Collapse
|
11
|
Jiang X, Zhao Y, Sun S, Xiang Y, Yan J, Wang J, Pei R. Research development of porphyrin-based metal-organic frameworks: targeting modalities and cancer therapeutic applications. J Mater Chem B 2023. [PMID: 37305964 DOI: 10.1039/d3tb00632h] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Porphyrins are naturally occurring organic molecules that have attracted widespread attention for their potential in the field of biomedical research. Porphyrin-based metal-organic frameworks (MOFs) that utilize porphyrin molecules as organic ligands have gained attention from researchers due to their excellent results as photosensitizers in tumor photodynamic therapy (PDT). Additionally, MOFs hold significant promise and potential for other tumor therapeutic approaches due to their tunable size and pore size, excellent porosity, and ultra-high specific surface area. Active delivery of nanomaterials via targeted molecules for tumor therapy has demonstrated greater accumulation, lower drug doses, higher therapeutic efficacy, and reduced side effects relative to passive targeting through the enhanced permeation and retention effect (EPR). This paper presents a comprehensive review of the targeting methods employed by porphyrin-based MOFs in tumor targeting therapy over the past few years. It further discusses the applications of porphyrin-based MOFs for targeted cancer therapy through various therapeutic methods. The objective of this paper is to provide a valuable reference and source of ideas for targeted therapy using porphyrin-based MOF materials and to inspire further exploration of their potential in the field of cancer therapy.
Collapse
Affiliation(s)
- Xiang Jiang
- College of Mechanics and Materials, Hohai University, Nanjing, 210098, China.
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Yuewu Zhao
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Shengkai Sun
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Ying Xiang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Jincong Yan
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Jine Wang
- College of Mechanics and Materials, Hohai University, Nanjing, 210098, China.
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
- Jiangxi Institute of Nanotechnology, Nanchang, 330200, China
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| |
Collapse
|
12
|
Synthesis and characterization of folate-functionalized silica-based materials and application for bioimaging of cancer cells. Heliyon 2023; 9:e13207. [PMID: 36747548 PMCID: PMC9898064 DOI: 10.1016/j.heliyon.2023.e13207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Early-stage detection is a vital factor in the later treatment and prognosis of cancer. Enhancing the sensitivity and specificity of the cancer detection pathological and experimental approaches can affect the morbidity and mortality of this disease. A folic acid (FA)-functionalized silica quantum dots (SiQDs)/KCC-NH2@SiO2 nanomaterials were synthesized and characterized as a bioimaging agent of the MCF 7 cancer cells. These nanoparticles showed biocompatible nature with specificity towards folate receptor (FR)-overexpressed MCF 7 cancer cells. Viability findings suggested that the SiQDs/KCC-NH2@SiO2/FA nanomaterials have nontoxic nature towards the cells in the concentration of 200 μg/mL. Fluorescence microscopy images were utilized to estimate the cell internalization of the nanoparticles and further verified by the flow cytometry technique. The differentiation ability of the nanoparticles was also approved by incubation with FR-negative HEK 293 normal cells. The SiQDs/KCC-NH2@SiO2/FA nanoparticle exhibited high stability, bright and high quantum yield fluorescence emission, proposing as a high-quality material for in vivo bioimaging of FR-overexpressed circulating tumoral cancer cells (CTCs).
Collapse
|
13
|
Salek-Maghsoodi M, Golsanamlu Z, Sadeghi-Mohammadi S, Gazizadeh M, Soleymani J, Safaralizadeh R. Simple fluorescence chemosensor for the detection of calcium ions in water samples and its application in bio-imaging of cancer cells. RSC Adv 2022; 12:31535-31545. [PMID: 36380939 PMCID: PMC9631868 DOI: 10.1039/d2ra04815a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/29/2022] [Indexed: 12/27/2023] Open
Abstract
This article describes the design, synthesis and characterization of a sensor suitable for practical measurement of ionized calcium in water samples and cancer cells. Calcium is an important ion in living organs and works as a messenger in several cellular functions. A lack of Ca ions interrupts the immune system and can lead to several diseases. A novel magnetic-polydopamine nanoparticle (PDNP)/rhodamine B (RhB)/folic acid (FA) nanoparticle was developed for the determination of calcium ions in MCF 7 cell lysates and water samples. Furthermore, the produced nanoparticle was employed for bioimaging of folate receptor (FR)-overexpressed cancer cells. This nanoprobe displayed a bright photoluminescence emission at 576 nm under an excitation wavelength of 420 nm. In the presence of calcium ions, the fluorescence emission of the MNPs-PDNPs/RhB/FA probe was proportionally decreased from 20 ng mL-1 to 100 ng mL-1 and 0.5 μg mL-1 to 20 μg mL-1 with a lower limit of quantification (LLOQ) of about 20 ng mL-1. The developed sensor showed a low-interference manner in the presence of possible coexistence interfering ions. In addition, this nanomaterial showed excellent biocompatibility with favorable differentiation ability to attach to the FR-positive cancer cells. The MNPs-PDNPs/RhB/FA nanoparticle has been utilized for bioimaging of the MCF 7 cell with favorable differentiation ability.
Collapse
Affiliation(s)
- Maral Salek-Maghsoodi
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences Tabriz Iran +98 41 3337 5365
| | - Zahra Golsanamlu
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences Tabriz Iran +98 41 3337 5365
| | - Sanam Sadeghi-Mohammadi
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Masoud Gazizadeh
- Liver and Gastrointestinal Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Jafar Soleymani
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences Tabriz Iran +98 41 3337 5365
| | - Reza Safaralizadeh
- Department of Biology, Faculty of Natural Sciences, Tabriz University Tabriz Iran
| |
Collapse
|
14
|
Ma XY, Zhang W, Que RB, Wang C, Shang WW, Zhu YY, Zheng BY, Chen Y, Ke MR, Huang JD. Thermosensitive Liposomal Nanoplatform Based on Metal-Free Phthalocyanine with Copper(II)-Regulated Photoactivities. Chempluschem 2022; 87:e202200113. [PMID: 36220346 DOI: 10.1002/cplu.202200113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/15/2022] [Indexed: 11/12/2022]
Abstract
This work reports the development of a multifunctional thermosensitive liposomal nanoplatform (PcS4@Lip-FA) based on a metal-free phthalocyanine modified with tetra-sulfonates (PcPS4), which exhibited photodynamic and photothermal activities simultaneously. Upon irradiation with a near infrared laser, thermosensitive PcS4@Lip-FA could release PcS4 as a result of the local hyperthermia of PcS4. Interestingly, PcS4 could easily chelate with Cu2+, leading to the enhancement of photothermal activity and decrease of photodynamic activity. In addition, in vivo fluorescence imaging revealed that PcS4@Lip-FA could selectively accumulate in tumor tissue of H22 tumor-bearing mice after tail vein injection, and exhibited a significant anticancer phototherapeutic effect, with a tumor inhibition rate of 83.5 %. Therefore, PcPS4@Lip-FA has realized fluorescence imaging-guided combined cancer treatment, providing a promising multifunctional nanoplatform for cancer diagnostics and therapy.
Collapse
Affiliation(s)
- Xin-Yue Ma
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, 350108, Fu Zhou, P. R. China
| | - Wen Zhang
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, 350108, Fu Zhou, P. R. China
| | - Rong-Bin Que
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, 350108, Fu Zhou, P. R. China
| | - Chao Wang
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, 350108, Fu Zhou, P. R. China
| | - Wen-Wen Shang
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, 350108, Fu Zhou, P. R. China
| | - Yuan-Yuan Zhu
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, 350108, Fu Zhou, P. R. China
| | - Bi-Yuan Zheng
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, 350108, Fu Zhou, P. R. China
| | - Yu Chen
- Cancer Bio-immunotherapy Center, Fujian Medical University Cancer Hospital and Fujian Cancer Hospital, 350000 Fu, Zhou, P. R. China
| | - Mei-Rong Ke
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, 350108, Fu Zhou, P. R. China
| | - Jian-Dong Huang
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, 350108, Fu Zhou, P. R. China
| |
Collapse
|
15
|
Wang C, Zhang M, Shi S, Jiang Y, Fei X, Liu L, Ye D, Zhang S. Interaction mechanism of novel fluorescent antifolates targeted with folate receptors α and β via molecular docking and molecular dynamic simulations. J Mol Model 2022; 28:205. [PMID: 35780236 DOI: 10.1007/s00894-022-05210-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 06/26/2022] [Indexed: 10/17/2022]
Abstract
Eight novel fluorescent antifolates were designed and docked with folate receptors FRα and FRβ. The structures of the complexes were further calculated by molecular dynamic (MD) simulations. The binding energies were calculated by molecular docking and molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) studies. The binding energy differences between FRα and FRβ (|Ebα|-|Ebβ|) values for compounds 3 and 8 were 1.3 and 1.1 kcal/mol calculated by molecular docking, and 13.9 and 10.4 kcal/mol by MM-PBSA simulation, respectively. The results indicated that compounds 3 and 8 may be the best candidates for targeted drug delivery to FRα. The binding structures, interaction residues, negatively charged pocket volume, and surface area were analyzed for all the complexes. We further calculated the root mean square displacement and secondary structural elements of the bound complexes using molecular dynamics simulations. The purpose of this study is to design novel antifolates targeted to FRα and FRβ, and to further distinguish between cancer cells and inflammation.
Collapse
Affiliation(s)
- Cuihong Wang
- School of Science, TianJin ChengJian University, Tianjin, China.
| | - Meiling Zhang
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Shuhui Shi
- School of Mathematics and Physics, Handan College, Handan, China
| | - Yue Jiang
- School of Science, TianJin ChengJian University, Tianjin, China
| | - Xuening Fei
- School of Science, TianJin ChengJian University, Tianjin, China.
| | - Lijuan Liu
- School of Science, TianJin ChengJian University, Tianjin, China
| | - Dan Ye
- School of Science, TianJin ChengJian University, Tianjin, China
| | - Shouchao Zhang
- School of Science, TianJin ChengJian University, Tianjin, China
| |
Collapse
|
16
|
Emerging Nanotherapeutic Approaches to Overcome Drug Resistance in Cancers with Update on Clinical Trials. Pharmaceutics 2022; 14:pharmaceutics14040866. [PMID: 35456698 PMCID: PMC9028322 DOI: 10.3390/pharmaceutics14040866] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 02/04/2023] Open
Abstract
A key issue with modern cancer treatments is the emergence of resistance to conventional chemotherapy and molecularly targeted medicines. Cancer nanotherapeutics were created in order to overcome the inherent limitations of traditional chemotherapeutics. Over the last few decades, cancer nanotherapeutics provided unparalleled opportunities to understand and overcome drug resistance through clinical assessment of rationally designed nanoparticulate delivery systems. In this context, various design strategies such as passive targeting, active targeting, nano-drug, and multimodal nano-drug combination therapy provided effective cancer treatment. Even though cancer nanotherapy has made great technological progress, tumor biology complexity and heterogeneity and a lack of comprehensive knowledge of nano-bio interactions remain important roadblocks to future clinical translation and commercialization. The current developments and advancements in cancer nanotherapeutics employing a wide variety of nanomaterial-based platforms to overcome cancer treatment resistance are discussed in this article. There is also a review of various nanotherapeutics-based approaches to cancer therapy, including targeting strategies for the tumor microenvironment and its components, advanced delivery systems for specific targeting of cancer stem cells (CSC), as well as exosomes for delivery strategies, and an update on clinical trials. Finally, challenges and the future perspective of the cancer nanotherapeutics to reverse cancer drug resistance are discussed.
Collapse
|
17
|
Ebrahimnejad P, Sodagar Taleghani A, Asare-Addo K, Nokhodchi A. An updated review of folate-functionalized nanocarriers: A promising ligand in cancer. Drug Discov Today 2021; 27:471-489. [PMID: 34781032 DOI: 10.1016/j.drudis.2021.11.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/27/2021] [Accepted: 11/09/2021] [Indexed: 12/18/2022]
Abstract
The uncontrolled release of drugs in conventional drug delivery systems has led to the introduction of new nanotechnology-based drug delivery systems and the use of targeted nanocarriers for cancer treatment. These targeted nanocarriers, which consist of intelligent nanoparticles modified with targeting ligands, can deliver drugs to specified locations at the right time and reduce drug doses to prevent side effects. Folate is a suitable targeting ligand for folate receptors overexpressed on cancer cells and has shown promising results in the diagnosis and treatment of cancer. In this review, we highlight the latest developments on the use of folate-conjugated nanoparticles in cancer diagnosis and treatment. Moreover, the toxicity, biocompatibility and efficacy of these nanocarriers are discussed.
Collapse
Affiliation(s)
- Pedram Ebrahimnejad
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran; Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Arezoo Sodagar Taleghani
- Department of Petroleum and Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Kofi Asare-Addo
- Department of Pharmacy, University of Huddersfield, Huddersfield, UK
| | - Ali Nokhodchi
- Pharmaceutics Research Laboratory, School of Life Sciences, University of Sussex, Brighton, UK.
| |
Collapse
|
18
|
Guzik P, Fang HY, Deberle LM, Benešová M, Cohrs S, Boss SD, Ametamey SM, Schibli R, Müller C. Identification of a PET Radiotracer for Imaging of the Folate Receptor-α: A Potential Tool to Select Patients for Targeted Tumor Therapy. J Nucl Med 2021; 62:1475-1481. [PMID: 33452043 PMCID: PMC8724891 DOI: 10.2967/jnumed.120.255760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 01/13/2021] [Indexed: 12/24/2022] Open
Abstract
The aim of this study was to identify a folate receptor-α (FRα)-selective PET agent potentially suitable for the selection of patients who might profit from FRα-targeted therapies. The 6R and 6S isomers of 18F-aza-5-methyltetrahydrofolate (MTHF) were assessed regarding their binding to FRα and FRβ, expressed on cancer and inflammatory cells, respectively, and compared with 18F-AzaFol, the folic acid-based analog. Methods: FR selectivity was investigated using FRα-transfected (RT16) and FRβ-transfected (D4) CHO cells. The cell uptake of 18F-folate tracers was investigated, and receptor-binding affinities were determined with the nonradioactive analogs. In vitro autoradiography of the 18F-folate tracers was performed using RT16 and D4 tissue sections. Biodistribution studies and PET/CT imaging of the radiotracers were performed on mice bearing RT16 and D4 xenografts. Results: The uptake of 18F-6R-aza-5-MTHF was high when using RT16 cells (62% ± 10% of added activity) but much lower when using D4 cells (5% ± 2%). The FRα selectivity of 18F-6R-aza-5-MTHF was further demonstrated by its approximately 43-fold higher binding affinity to FRα (half-maximal inhibitory concentration [IC50], 1.8 ± 0.1 nM) than to FRβ (IC50, 77 ± 27 nM). The uptake of 18F-6S-aza-5-MTHF and 18F-AzaFol was equal in both cell lines (52%-70%), with similar affinities to FRα (IC50, 2.1 ± 0.4 nM and 0.6 ± 0.3 nM, respectively) and FRβ (0.8 ± 0.2 nM and 0.3 ± 0.1 nM, respectively). The autoradiography signal obtained with 18F-6R-aza-5-MTHF was 11-fold more intense for RT16 than for D4 tissue sections. Biodistribution data showed high uptake of 18F-6R-aza-5-MTHF in RT16 xenografts (81% ± 20% injected activity per gram [IA]/g 1 h after injection) but significantly lower accumulation in D4 xenografts (7.3% ± 2.1% IA/g 1 h after injection), which was also visualized using PET. The uptake of 18F-6S-aza-5-MTHF and 18F-AzaFol was similar in RT16 (53% ± 10% IA/g and 45% ± 2% IA/g, respectively) and D4 xenografts (77% ± 10% IA/g and 52% ± 7% IA/g, respectively). Conclusion: This study demonstrated FRα selectivity for 18F-6R-aza-5-MTHF but not for 18F-6S-aza-5-MTHF or 18F-AzaFol. This characteristic, together with its favorable tissue distribution, makes 18F-6R-aza-5-MTHF attractive for clinical translation to enable detection of FRα-positive cancer while preventing undesired accumulation in FRβ-expressing inflammatory cells.
Collapse
Affiliation(s)
- Patrycja Guzik
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute, Villigen-PSI, Switzerland; and
| | - Hsin-Yu Fang
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute, Villigen-PSI, Switzerland; and
| | - Luisa M Deberle
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute, Villigen-PSI, Switzerland; and
| | - Martina Benešová
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute, Villigen-PSI, Switzerland; and
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Susan Cohrs
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute, Villigen-PSI, Switzerland; and
| | - Silvan D Boss
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Simon M Ametamey
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Roger Schibli
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute, Villigen-PSI, Switzerland; and
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Cristina Müller
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute, Villigen-PSI, Switzerland; and
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
19
|
Heterocyclic Substitutions Greatly Improve Affinity and Stability of Folic Acid towards FRα. an In Silico Insight. Molecules 2021; 26:molecules26041079. [PMID: 33670773 PMCID: PMC7922218 DOI: 10.3390/molecules26041079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/14/2021] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
Folate receptor alpha (FRα) is known as a biological marker for many cancers due to its overexpression in cancerous epithelial tissue. The folic acid (FA) binding affinity to the FRα active site provides a basis for designing more specific targets for FRα. Heterocyclic rings have been shown to interact with many receptors and are important to the metabolism and biological processes within the body. Nineteen FA analogs with substitution with various heterocyclic rings were designed to have higher affinity toward FRα. Molecular docking was used to study the binding affinity of designed analogs compared to FA, methotrexate (MTX), and pemetrexed (PTX). Out of 19 FA analogs, analogs with a tetrazole ring (FOL03) and benzothiophene ring (FOL08) showed the most negative binding energy and were able to interact with ASP81 and SER174 through hydrogen bonds and hydrophobic interactions with amino acids of the active site. Hence, 100 ns molecular dynamics (MD) simulations were carried out for FOL03, FOL08 compared to FA, MTX, and PTX. The root mean square deviation (RMSD) and root mean square fluctuation (RMSF) of FOL03 and FOL08 showed an apparent convergence similar to that of FA, and both of them entered the binding pocket (active site) from the pteridine part, while the glutamic part was stuck at the FRα pocket entrance during the MD simulations. Molecular mechanics Poisson-Boltzmann surface accessible (MM-PBSA) and H-bond analysis revealed that FOL03 and FOL08 created more negative free binding and electrostatic energy compared to FA and PTX, and both formed stronger H-bond interactions with ASP81 than FA with excellent H-bond profiles that led them to become bound tightly in the pocket. In addition, pocket volume calculations showed that the volumes of active site for FOL03 and FOL08 inside the FRα pocket were smaller than the FA–FRα system, indicating strong interactions between the protein active site residues with these new FA analogs compared to FA during the MD simulations.
Collapse
|
20
|
Luangwattananun P, Junking M, Sujjitjoon J, Wutti-In Y, Poungvarin N, Thuwajit C, Yenchitsomanus PT. Fourth-generation chimeric antigen receptor T cells targeting folate receptor alpha antigen expressed on breast cancer cells for adoptive T cell therapy. Breast Cancer Res Treat 2021; 186:25-36. [PMID: 33389403 DOI: 10.1007/s10549-020-06032-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/19/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE Treatment of breast cancer (BC) by standard methods is effective in the early stage, but ineffective in the advanced stage of disease. To develop an adoptive T cell therapy for advanced and severe BC, we generated fourth-generation chimeric antigen receptor (CAR) T cells targeting folate receptor alpha antigen (FRα) expressed on BC cells, and preclinically evaluated their anti-BC activities. METHODS The fourth-generation FRα-CAR T cells containing extracellular FRα-specific single-chain variable fragment (scFv) and three intracellular costimulatory domains (CD28, 4-1BB, and CD27) linked to CD3ζ were generated using a lentiviral system, and then were evaluated for their anti-BC activities in two-dimensional and three-dimensional (spheroid) cultures. RESULTS When our fourth-generation FRα-CAR T cells were cocultured with FRα-expressing MDA-MB-231 BC cell line at an effector to target ratio of 20:1, these CAR T cells specifically lysed 88.7 ± 10.6% of the target cells. Interestingly, the cytotoxic lysis of FRα-CAR T cells was more pronounced in target cells with higher surface FRα expression. This specific cytotoxicity of the CAR T cells was not observed when cocultured with FRα-negative MCF10A normal breast-like cell line at the same ratio (34.3 ± 4.7%). When they were cocultured with MDA-MD-231 spheroid, the FRα-CAR T cells exhibited antitumor activity marked with spheroid size reduction and breakage. CONCLUSION This proof-of-concept study thus shows the feasibility of using these fourth-generation FRα-CAR T cells for adoptive T cell therapy in BC.
Collapse
Affiliation(s)
- Piriya Luangwattananun
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.,Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol, University, Bangkok, 10700, Thailand
| | - Mutita Junking
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand. .,Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol, University, Bangkok, 10700, Thailand.
| | - Jatuporn Sujjitjoon
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.,Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol, University, Bangkok, 10700, Thailand
| | - Yupanun Wutti-In
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.,Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Naravat Poungvarin
- Department of Clinical Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Chanitra Thuwajit
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.,Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Pa-Thai Yenchitsomanus
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand. .,Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol, University, Bangkok, 10700, Thailand.
| |
Collapse
|
21
|
Chen S, Song Z, Feng R. Recent Development of Copolymeric Nano-Drug Delivery System for Paclitaxel. Anticancer Agents Med Chem 2020; 20:2169-2189. [PMID: 32682385 DOI: 10.2174/1871520620666200719001038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/25/2020] [Accepted: 06/25/2020] [Indexed: 11/22/2022]
Abstract
Background:
Paclitaxel (PTX) has been clinically used for several years due to its good therapeutic
effect against cancers. Its poor water-solubility, non-selectivity, high cytotoxicity to normal tissue and worse
pharmacokinetic property limit its clinical application.
Objective:
To review the recent progress on the PTX delivery systems.
Methods:
In recent years, the copolymeric nano-drug delivery systems for PTX are broadly studied. It mainly
includes micelles, nanoparticles, liposomes, complexes, prodrugs and hydrogels, etc. They were developed or
further modified with target molecules to investigate the release behavior, targeting to tissues, pharmacokinetic
property, anticancer activities and bio-safety of PTX. In the review, we will describe and discuss the recent
progress on the nano-drug delivery system for PTX since 2011.
Results:
The water-solubility, selective delivery to cancers, tissue toxicity, controlled release and pharmacokinetic
property of PTX are improved by its encapsulation into the nano-drug delivery systems. In addition, its
activities against cancer are also comparable or high when compared with the commercial formulation.
Conclusion:
Encapsulating PTX into nano-drug carriers should be helpful to reduce its toxicity to human, keeping
or enhancing its activity and improving its pharmacokinetic property.
Collapse
Affiliation(s)
- Shiyu Chen
- School of Biological Science and Technology, University of Jinan, No. 336 West Road of Nanxinzhuang, Jinan 250022, Shandong Province, China
| | - Zhimei Song
- School of Biological Science and Technology, University of Jinan, No. 336 West Road of Nanxinzhuang, Jinan 250022, Shandong Province, China
| | - Runliang Feng
- School of Biological Science and Technology, University of Jinan, No. 336 West Road of Nanxinzhuang, Jinan 250022, Shandong Province, China
| |
Collapse
|
22
|
Cancer Alters the Metabolic Fingerprint of Extracellular Vesicles. Cancers (Basel) 2020; 12:cancers12113292. [PMID: 33172086 PMCID: PMC7694806 DOI: 10.3390/cancers12113292] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 12/16/2022] Open
Abstract
Cancer alters cell metabolism. How these changes are manifested in the metabolite cargo of cancer-derived extracellular vesicles (EVs) remains poorly understood. To explore these changes, EVs from prostate, cutaneous T-cell lymphoma (CTCL), colon cancer cell lines, and control EVs from their noncancerous counterparts were isolated by differential ultracentrifugation and analyzed by nanoparticle tracking analysis (NTA), electron microscopy (EM), Western blotting, and liquid chromatography-mass spectrometry (LC-MS). Although minor differences between the cancerous and non-cancerous cell-derived EVs were observed by NTA and Western blotting, the largest differences were detected in their metabolite cargo. Compared to EVs from noncancerous cells, cancer EVs contained elevated levels of soluble metabolites, e.g., amino acids and B vitamins. Two metabolites, proline and succinate, were elevated in the EV samples of all three cancer types. In addition, folate and creatinine were elevated in the EVs from prostate and CTCL cancer cell lines. In conclusion, we present the first evidence in vitro that the altered metabolism of different cancer cells is reflected in common metabolite changes in their EVs. These results warrant further studies on the significance and usability of this metabolic fingerprint in cancer.
Collapse
|
23
|
Th17-inducing autologous dendritic cell vaccination promotes antigen-specific cellular and humoral immunity in ovarian cancer patients. Nat Commun 2020; 11:5173. [PMID: 33057068 PMCID: PMC7560895 DOI: 10.1038/s41467-020-18962-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 09/21/2020] [Indexed: 01/13/2023] Open
Abstract
In ovarian cancer (OC), IL-17-producing T cells (Th17s) predict improved survival, whereas regulatory T cells predict poorer survival. We previously developed a vaccine whereby patient-derived dendritic cells (DCs) are programmed to induce Th17 responses to the OC antigen folate receptor alpha (FRα). Here we report the results of a single-arm open-label phase I clinical trial designed to determine vaccine safety and tolerability (primary outcomes) and recurrence-free survival (secondary outcome). Immunogenicity is also evaluated. Recruitment is complete with a total of 19 Stage IIIC-IV OC patients in first remission after conventional therapy. DCs are generated using our Th17-inducing protocol and are pulsed with HLA class II epitopes from FRα. Mature antigen-loaded DCs are injected intradermally. All patients have completed study-related interventions. No grade 3 or higher adverse events are seen. Vaccination results in the development of Th1, Th17, and antibody responses to FRα in the majority of patients. Th1 and antibody responses are associated with prolonged recurrence-free survival. Antibody-dependent cell-mediated cytotoxic activity against FRα is also associated with prolonged RFS. Of 18 patients evaluable for efficacy, 39% (7/18) remain recurrence-free at the time of data censoring, with a median follow-up of 49.2 months. Thus, vaccination with Th17-inducing FRα-loaded DCs is safe, induces antigen-specific immunity, and is associated with prolonged remission.
Collapse
|
24
|
Jiang Y, Wang C, Zhang M, Fei X, Gu Y. Type and size effect of functional groups on the novel antifolate target recognition folate receptors α and β: Docking, molecular dynamics and MM/PBSA study. J Mol Graph Model 2020; 100:107663. [PMID: 32659629 DOI: 10.1016/j.jmgm.2020.107663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/23/2020] [Accepted: 05/26/2020] [Indexed: 11/19/2022]
Abstract
A series of novel antifolates (32 compounds) were used to study the interactions with folate receptors α and β. The compounds had different sizes of methyl (-CH3), carboxyl (-COOH), hydroxyl (-OH), and amino groups (-NH2). The binding properties of the complexes were studied by molecular docking, molecular dynamic (MD) simulations, and MM/PBSA free energy calculations. The docked binding energies and modes were analyzed to identify compounds with good recognition of FRα from FRβ. The stable conformers, root mean square displacement, root mean square fluctuation free binding energy, and contribution of residues to the binding energy of the complexes were further analyzed to illustrate the interactions between the novel compounds and folate receptors. The data show that introducing long functional groups in folate will increase the binding affinity with FRα but will decrease the binding affinity with FRβ. The results provide a strategy for the design of novel antifolates targeted to FRα.
Collapse
Affiliation(s)
- Yue Jiang
- School of Science, TianJin ChengJian University, Tianjin, China
| | - Cuihong Wang
- School of Science, TianJin ChengJian University, Tianjin, China.
| | - Meiling Zhang
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Xuening Fei
- School of Science, TianJin ChengJian University, Tianjin, China.
| | - Yingchun Gu
- School of Science, TianJin ChengJian University, Tianjin, China
| |
Collapse
|
25
|
Nanoparticle mediated cancer immunotherapy. Semin Cancer Biol 2020; 69:307-324. [PMID: 32259643 DOI: 10.1016/j.semcancer.2020.03.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 03/09/2020] [Accepted: 03/23/2020] [Indexed: 12/18/2022]
Abstract
The versatility and nanoscale size have helped nanoparticles (NPs) improve the efficacy of conventional cancer immunotherapy and opened up exciting approaches to combat cancer. This review first outlines the tumor immune evasion and the defensive tumor microenvironment (TME) that hinders the activity of host immune system against tumor. Then, a detailed description on how the NP based strategies have helped improve the efficacy of conventional cancer vaccines and overcome the obstacles led by TME. Sustained and controlled drug delivery, enhanced cross presentation by immune cells, co-encapsulation of adjuvants, inhibition of immune checkpoints and intrinsic adjuvant like properties have aided NPs to improve the therapeutic efficacy of cancer vaccines. Also, NPs have been efficient modulators of TME. In this context, NPs facilitate better penetration of the chemotherapeutic drug by dissolution of the inhibitory meshwork formed by tumor associated cells, blood vessels, soluble mediators and extra cellular matrix in TME. NPs achieve this by suppression, modulation, or reprogramming of the immune cells and other mediators localised in TME. This review further summarizes the applications of NPs used to enhance the efficacy of cancer vaccines and modulate the TME to improve cancer immunotherapy. Finally, the hurdles faced in commercialization and translation to clinic have been discussed and intriguingly, NPs owe great potential to emerge as clinical formulations for cancer immunotherapy in near future.
Collapse
|
26
|
Targeting cancer cells with nanotherapeutics and nanodiagnostics: Current status and future perspectives. Semin Cancer Biol 2020; 69:52-68. [PMID: 32014609 DOI: 10.1016/j.semcancer.2020.01.011] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 01/23/2020] [Accepted: 01/25/2020] [Indexed: 01/07/2023]
Abstract
Nanotechnology is reshaping health care strategies and is expected to exert a tremendous impact in the coming years offering better healthcare facilities. It has led to not only therapeutic drug delivery feasibility but also to diagnostics. Materials in the size of nano range (1-100 nm) used in the design, fabrication, regulation, and application of therapeutic drugs or devices are classified as medical nanotechnology and nanopharmacology. Delivery of more complex molecules to the specific site of action as well as gene therapy has pushed forward the nanoparticle-based drug delivery to its maximum. Areas that benefit from nano-based drug delivery systems are cancer, diabetes, infectious diseases, neurodegenerative diseases, blood disorders and orthopedic-related ailments. Moreover, development of nanotherapeutics with multi-functionalities has a considerable potential to fill the gaps that exist in the present therapeutic domain. In cancer treatment, nanomedicines have superiority over current therapeutic practices as they can effectively deliver the drug to the affected tissues, thus reducing drug toxicities. Along this line, polymeric conjugates of asparaginase and polymeric micelles of paclitaxel have recently been recommended for the treatment of various types of cancers. Nanotechnology-based therapeutics and diagnostics provide greater effectiveness with less or no toxicity concerns. Similarly, diagnostic imaging holds promising future applications with newer nano-level imaging elements. Advancements in nanotechnology have emerged to a newer direction which use nanorobotics for various applications in healthcare. Accordingly, this review comprehensively highlights the potentialities of various nanocarriers and nanomedicines for multifaceted applications in diagnostics and drug delivery, especially the potentialities of polymeric nanoparticle, nanoemulsion, solid-lipid nanoparticle, nanostructured lipid carrier, self-micellizing anticancer lipids, dendrimer, nanocapsule and nanosponge-based therapeutic approaches in the field of cancer. Furthermore, this article summarizes the most recent literature pertaining to the use of nano-technology in the field of medicine, particularly in treating cancer patients.
Collapse
|
27
|
Glyco-nanoparticles: New drug delivery systems in cancer therapy. Semin Cancer Biol 2019; 69:24-42. [PMID: 31870939 DOI: 10.1016/j.semcancer.2019.12.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/28/2019] [Accepted: 12/02/2019] [Indexed: 12/24/2022]
Abstract
Cancer is known as one of the most common diseases that are associated with high mobility and mortality in the world. Despite several efforts, current cancer treatment modalities often are highly toxic and lack efficacy and specificity. However, the application of nanotechnology has led to the development of effective nanosized drug delivery systems which are highly selective for tumors and allow a slow release of active anticancer agents. Different Nanoparticles (NPs) such as the silicon-based nano-materials, polymers, liposomes and metal NPs have been designed to deliver anti-cancer drugs to tumor sites. Among different drug delivery systems, carbohydrate-functionalized nanomaterials, specially based on their multi-valent binding capacities and desirable bio-compatibility, have attracted considerable attention as an excellent candidate for controlled release of therapeutic agents. In addition, these carbohydrate functionalized nano-carriers are more compatible with construction of the intracellular delivery platforms like the carbohydrate-modified metal NPs, quantum dots, and magnetic nano-materials. In this review, we discuss recent research in the field of multifunctional glycol-nanoparticles (GNPs) intended for cancer drug delivery applications.
Collapse
|
28
|
Shait Mohammed MR, Ahmad V, Ahmad A, Tabrez S, Choudhry H, Zamzami MA, Bakhrebah MA, Ahmad A, Wasi S, Mukhtar H, Khan MI. Prospective of nanoscale metal organic frameworks [NMOFs] for cancer therapy. Semin Cancer Biol 2019; 69:129-139. [PMID: 31866477 DOI: 10.1016/j.semcancer.2019.12.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 11/16/2019] [Accepted: 12/01/2019] [Indexed: 12/12/2022]
Abstract
Nano metal organic frameworks (NMOFs) belong to the group of nanoporous materials. Over the decades, the conducted researches explored the area for the potential applications of NMOFs in areas like biomedical, chemical engineering and materials science. Recently, NMOFs have been explored for their potential use in cancer diagnosis and therapeutics. The excellent physico-chemical features of NMOFs also make them a potential candiadate to facilitate drug design, delivery and storage against cancer cells. In this review, we have explored the characterstic features, synthesis methods, NMOFs based drug delivery, diagnosis and imaging in various cancer types. In addition to this, we have also pondered on the stability and toxicological concerns of NMOFs. Despite, a significant research has been done for the potential use of NMOFs in cancer diagonostic and therapeutics, more information regarding the stability, in-vivo clearance, toxicology, and pharmacokinetics is still needed to ehnace the use of NMOFs in cancer diagonostic and therapeutics.
Collapse
Affiliation(s)
| | - Varish Ahmad
- Health Information Technology Department,Faculty of Applied Studies, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abrar Ahmad
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shams Tabrez
- King Fahd Medical Research Center (KFMRC), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hani Choudhry
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mazin A Zamzami
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muhammed A Bakhrebah
- Life Science and Environmental Research Institute (KFMRC), King Abdulaziz City of Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Aftab Ahmad
- Health Information Technology Department,Faculty of Applied Studies, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Samina Wasi
- College of Medicine, Department of Biochemistry, Imam Abdul Rahman Bin Faisal Uuniversity, Dammam, Saudi Arabia
| | - Hasan Mukhtar
- Department of Dermatology, University of Wisconsin, Madison, 4385 Medical Sciences Center, 1300 University Avenue, Madison, WI 53706, USA
| | - Mohammad Imran Khan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
29
|
Roma-Rodrigues C, Pombo I, Raposo L, Pedrosa P, Fernandes AR, Baptista PV. Nanotheranostics Targeting the Tumor Microenvironment. Front Bioeng Biotechnol 2019; 7:197. [PMID: 31475143 PMCID: PMC6703081 DOI: 10.3389/fbioe.2019.00197] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 07/31/2019] [Indexed: 12/12/2022] Open
Abstract
Cancer is considered the most aggressive malignancy to humans, and definitely the major cause of death worldwide. Despite the different and heterogenous presentation of the disease, there are pivotal cell elements involved in proliferation, differentiation, and immortalization, and ultimately the capability to evade treatment strategies. This is of utmost relevance when we are just beginning to grasp the complexity of the tumor environment and the molecular "evolution" within. The tumor micro-environment (TME) is thought to provide for differentiation niches for clonal development that results in tremendous cancer heterogeneity. To date, conventional cancer therapeutic strategies against cancer are failing to tackle the intricate interplay of actors within the TME. Nanomedicine has been proposing innovative strategies to tackle this TME and the cancer cells that simultaneously provide for biodistribution and/or assessment of action. These nanotheranostics systems are usually multi-functional nanosystems capable to carry and deliver active cargo to the site of interest and provide diagnostics capability, enabling early detection, and destruction of cancer cells in a more selective way. Some of the most promising multifunctional nanosystems are based on gold nanoparticles, whose physic-chemical properties have prompt for the development of multifunctional, responsive nanomedicines suitable for combinatory therapy and theranostics. Herein, we shall focus on the recent developments relying on the properties of gold nanoparticles as the basis for nanotheranostics systems against the heterogeneity within the TME.
Collapse
Affiliation(s)
| | | | | | | | | | - Pedro V. Baptista
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Costa da Caparica, Portugal
| |
Collapse
|